Assessing Differential Transfusion Requirements for Children with Congenital Malformations vs. Pediatric Acute Abdomen Emergencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Laboratory Variables
2.3. Transfusions
2.4. Statistical Analysis
3. Results
Demographics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez-Torres, V.; Torres, N.; Davis, J.A.; Corrales-Medina, F.F. Anemia and Associated Risk Factors in Pediatric Patients. Pediatr. Health Med. Ther. 2023, 14, 267–280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chaparro, C.M.; Suchdev, P.S. Anemia Epidemiology, Pathophysiology, and Etiology in Low- and Middle-income Countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef] [PubMed]
- Lokeshwar, M.R.; Dalal, R.; Manglani, M.; Shah, N. Anemia in Newborn. Indian J. Pediatr. 1998, 65, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Gedfie, S.; Getawa, S.; Melku, M. Prevalence and Associated Factors of Iron Deficiency and Iron Deficiency Anemia Among Under-5 Children: A Systematic Review and Meta-Analysis. Glob. Pediatr. Health 2022, 9, 2333794X2211108. [Google Scholar] [CrossRef]
- Nazari, M.; Mohammadnejad, E.; Dalvand, S.; Ghanei Gheshlagh, R. Prevalence of Iron Deficiency Anemia in Iranian Children under 6 Years of Age: A Systematic Review and Meta-Analysis. J. Blood Med. 2019, 10, 111–117. [Google Scholar] [CrossRef]
- Kato, G.J.; Piel, F.B.; Reid, C.D.; Gaston, M.H.; Ohene-Frempong, K.; Krishnamurti, L.; Smith, W.R.; Panepinto, J.A.; Weatherall, D.J.; Costa, F.F.; et al. Sickle Cell Disease. Nat. Rev. Dis. Primers 2018, 4, 18010. [Google Scholar] [CrossRef]
- Varma, N.; Naseem, S. Hematologic Changes in Visceral Leishmaniasis/Kala Azar. Indian J. Hematol. Blood Transfus. 2010, 26, 78–82. [Google Scholar] [CrossRef]
- Hamouda, M.A.; Al Barbry, D.H.; El Mahdy, A.M. Importance of Preoperative Full Blood Count in Pediatric Patients Undergoing Surgeries. Benha J. Appl. Sci. 2019, 4, 17–21. [Google Scholar] [CrossRef]
- Davies, P.; Robertson, S.; Hegde, S.; Greenwood, R.; Massey, E.; Davis, P. Calculating the Required Transfusion Volume in Children. Transfusion 2007, 47, 212–216. [Google Scholar] [CrossRef]
- Yanagisawa, R.; Fujihara, I.; Komori, K.; Abe, S.; Ono, T.; Sakashita, K.; Nakamura, T. Transfusion-Associated Circulatory Overload in a Pediatric Patient with Neuroblastoma. Transfus. Apher. Sci. 2017, 56, 445–447. [Google Scholar] [CrossRef]
- Piccin, A.; Cronin, M.; Brady, R.; Sweeney, J.; Marcheselli, L.; Lawlor, E. Transfusion-associated Circulatory Overload in Ireland: A Review of Cases Reported to the National Haemovigilance Office 2000 to 2010. Transfusion 2015, 55, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- De Cloedt, L.; Emeriaud, G.; Lefebvre, É.; Kleiber, N.; Robitaille, N.; Jarlot, C.; Lacroix, J.; Gauvin, F. Transfusion-associated Circulatory Overload in a Pediatric Intensive Care Unit: Different Incidences with Different Diagnostic Criteria. Transfusion 2018, 58, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, D.; DiNardo, J.A.; Goobie, S.M. Relationship Between Preoperative Anemia and In-Hospital Mortality in Children Undergoing Noncardiac Surgery. Anesth. Analg. 2016, 123, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Chen-Edinboro, L.; Caulfield, L.; Murray-Kolb, L. The Impact of Anemia on Child Mortality: An Updated Review. Nutrients 2014, 6, 5915–5932. [Google Scholar] [CrossRef]
- Skorupski, C.P.; Cheung, M.C.; Lin, Y. Preoperative anemia in major elective surgery. Can. Med. Assoc. J. 2023, 195, E551. [Google Scholar] [CrossRef]
- Lăzărescu, A.E.; Văduva, A.O.; Hogea, G.B.; Croicu, C.; Pătraşcu, J.M., Jr.; Petrescu, P.H.; Andor, B.C.; Muntean, M.D.; Pătraşcu, J.M. Comparing PRP and bone marrow aspirate effects on cartilage defects associated with partial meniscectomy: A confocal microscopy study on an animal model. Rom. J. Morphol. Embryol. 2021, 62, 263–268. [Google Scholar] [CrossRef]
- Feier, C.V.I.; Muntean, C.; Faur, A.M.; Gaborean, V.; Petrache, I.A.; Cozma, G.V. Exploring Inflammatory Parameters in Lung Cancer Patients: A Retrospective Analysis. J. Pers. Med. 2024, 14, 552. [Google Scholar] [CrossRef]
- Loghin, A.; Preda, O.; Bacârea, V.; Moldovan, C.; Porav-Hodade, D.; Dema, A.; Berger, N.; Borda, A. Predictive preoperatory variables of the prostate tumor volume. Rom. J. Morphol. Embryol. 2011, 52 (Suppl. 1), 363–368. [Google Scholar]
- Kaiafa, G.; Savopoulos, C.; Kanellos, I.; Mylonas, K.S.; Tsikalakis, G.; Tegos, T.; Kakaletsis, N.; Hatzitolios, A.I. Anemia and Stroke: Where Do We Stand? Acta Neurol. Scand. 2017, 135, 596–602. [Google Scholar] [CrossRef]
- Abuga, K.M.; Muriuki, J.M.; Williams, T.N.; Atkinson, S.H. How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children. Int. J. Mol. Sci. 2020, 21, 6976. [Google Scholar] [CrossRef]
- Gómez-Ramirez, S.; Jericó, C.; Muñoz, M. Perioperative Anemia: Prevalence, Consequences and Pathophysiology. Transfus. Apher. Sci. 2019, 58, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Gelebo, K.G.; Neme, D.; Destaw, B.; Aweke, Z.; Kasa, S.M. The Effect of Preoperative Anemia on Perioperative Outcomes among Patients Undergoing Emergency Surgery: A Multicenter Prospective Cohort Study. Heliyon 2023, 9, e17804. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Pang, S.; Robinson, M.; Goede, D.; Meenrajan, S. A Review of Perioperative Anemia: A Modifiable and Not so Benign Risk Factor. J. Fam. Med. Prim. Care 2022, 11, 5004. [Google Scholar] [CrossRef] [PubMed]
- Baron, D.M.; Hochrieser, H.; Posch, M.; Metnitz, B.; Rhodes, A.; Moreno, R.P.; Pearse, R.M.; Metnitz, P. Preoperative Anaemia Is Associated with Poor Clinical Outcome in Non-Cardiac Surgery Patients. Br. J. Anaesth. 2014, 113, 416–423. [Google Scholar] [CrossRef]
- Tennant, P.W.G.; Samarasekera, S.D.; Pless-Mulloli, T.; Rankin, J. Sex Differences in the Prevalence of Congenital Anomalies: A Population-Based Study. Birth Defects Res. Part A Clin. Mol. Teratol. 2011, 91, 894–901. [Google Scholar] [CrossRef]
- Sokal, R.; Tata, L.J.; Fleming, K.M. Sex Prevalence of Major Congenital Anomalies in the United Kingdom: A National Population-based Study and International Comparison Meta-analysis. Birth Defects Res. Part A Clin. Mol. Teratol. 2014, 100, 79–91. [Google Scholar] [CrossRef]
- Shaw, G.M.; Carmichael, S.L.; Kaidarova, Z.; Harris, J.A. Differential Risks to Males and Females for Congenital Malformations among 2.5 Million California Births, 1989–1997. Birth Defects Res. Part A Clin. Mol. Teratol. 2003, 67, 953–958. [Google Scholar] [CrossRef]
- Lary, J.M.; Paulozzi, L.J. Sex Differences in the Prevalence of Human Birth Defects: A Population-based Study. Teratology 2001, 64, 237–251. [Google Scholar] [CrossRef]
- Linderkamp, O.; Wu, P.Y.K.; Meiselman, H.J. Geometry of Neonatal and Adult Red Blood Cells. Pediatr. Res. 1983, 17, 250–253. [Google Scholar] [CrossRef]
- Bower, C.; Rudy, E.; Callaghan, A.; Quick, J.; Nassar, N. Age at Diagnosis of Birth Defects. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 251–255. [Google Scholar] [CrossRef]
- Zhu, J.L.; Madsen, K.M.; Vestergaard, M.; Olesen, A.V.; Basso, O.; Olsen, J. Paternal Age and Congenital Malformations. Hum. Reprod. 2005, 20, 3173–3177. [Google Scholar] [CrossRef]
Group | Gender | Diagnosis | Count | Total |
---|---|---|---|---|
CM | F | Gastrointestinal tract malformation | 12 | 15 |
Central nervous system defect | 2 | |||
Cleft palate | 1 | |||
M | Gastrointestinal tract malformation | 27 | 38 | |
Urinary tract malformation | 5 | |||
Diaphragmatic hernia | 2 | |||
Cleft palate | 1 | |||
Central nervous system defect | 2 | |||
Pulmonary sequestration | 1 | |||
AA | F | Gastrointestinal tract hemorrhage | 2 | 22 |
Intraperitoneal bleeding | 2 | |||
Appendicitis | 5 | |||
Peritonitis | 5 | |||
Intestinal obstruction | 7 | |||
Necrotizing enterocolitis | 1 | |||
M | Gastrointestinal tract hemorrhage | 2 | 32 | |
Intraperitoneal bleeding | 10 | |||
Appendicitis | 3 | |||
Peritonitis | 6 | |||
Intestinal obstruction | 9 | |||
Necrotizing enterocolitis | 2 |
Variables | All N = 107 | Female N = 37 | Male N = 70 | p-Value | CM N = 53 | AA N = 54 | p-Value |
---|---|---|---|---|---|---|---|
Gender F/M N, (%)/N, (%) | 37 (34.58%)/70 (65.42%) | 37 | 70 | - | 15 (28.30%)/38 (71.70%) | 22 (40.74%)/32 (59.26%) | <0.001 * |
Age in months | 29.86 ± 56.67 | 41.06 ± 66.35 | 23.93 ± 50.32 | 0.175 ** | 16.94 ± 23.94 | 52.34 ± 69.42 | <0.001 ** |
Hospitalization days (mean, ± SD) | 17.02 ± 12.94 | 15.11 ± 7.47 | 18.03 ± 15.00 | 0.182 ** | 15.08 ± 7.99 | 18.93 ± 16.27 | 0.123 ** |
Variables | All N = 107 | Female N = 37 | Male N = 70 | p-Value | Congenital Malformation N = 53 | Acute Abdomen N = 54 | p-Value |
---|---|---|---|---|---|---|---|
Baseline evaluation | |||||||
RBC (×106/mm3) | 2.89 ± 0.42 | 2.82 ± 0.49 | 2.92 ± 0.36 | 0.307 ** | 2.89 ± 0.42 | 2.88 ± 0.40 | 0.927 ** |
HGB (g/dL) | 8.21 ±1.07 | 8.11 ± 1.25 | 8.25 ± 0.95 | 0.560 ** | 8.54 ± 1.00 | 7.87 ± 1.02 | 0.001 ** |
HCT (%) | 25.01 ±3.62 | 24.66 ± 4.45 | 25.19 ± 3.11 | 0.521 ** | 26.07 ± 3.98 | 23.95 ± 2.90 | 0.002 ** |
Evaluation at 48 h following the transfusion | |||||||
RBC (×106/mm3) | 4.05 ±0.66 | 3.95 ± 0.77 | 4.09 ± 0.59 | 0.340 ** | 4.09 ± 0.56 | 4.00 ± 0.74 | 0.451 ** |
HGB (g/dL) | 11.77 ± 1.88 | 11.62 ± 2.27 | 11.85 ± 1.64 | 0.596 ** | 12.35 ± 1.49 | 11.20 ± 2.05 | 0.001 ** |
HCT (%) | 34.26 ± 4.96 | 33.74 ± 6.14 | 34.52 ± 4.23 | 0.491 ** | 35.60 ± 4.13 | 32.94 ± 5.37 | 0.005 ** |
Evaluation at discharge | |||||||
RBC (×106/mm3) | 3.99 ± 0.69 | 3.87 ± 0.73 | 4.05 ± 0.66 | 0.204 ** | 3.90 ± 0.59 | 4.07 ± 0.77 | 0.204 ** |
HGB (g/dL) | 11.30 ± 1.55 | 11.04 ± 1.78 | 11.43 ± 1.40 | 0.256 ** | 11.43 ± 1.33 | 11.16 ± 1.72 | 0.359 ** |
HCT (%) | 33.49 ± 4.32 | 32.86 ± 5.10 | 33.81 ± 3.84 | 0.325 ** | 33.47 ± 3.89 | 33.49 ± 4.73 | 0.984 ** |
Anemia at discharge | 61(57%) | 24 (64.8%) | 37(52.8%) | 0.794 * | 30 (56.6%) | 31 (57.4%) | 0.898 * |
Age Groups | Subgroup | N | RBC (× 106/mm3) | HGB (g/dL) | HCT (%) | Anemia at Discharge |
---|---|---|---|---|---|---|
0–12 months | CM | 16 | 2.86 ± 0.41 | 8.67 ± 1.02 | 25.94 ± 3.87 | 58% |
AA | 18 | 2.81 ± 0.38 | 7.78 ± 1.09 | 23.87 ± 2.92 | 63% | |
12–24 months | CM | 14 | 2.93 ± 0.45 | 8.74 ± 0.98 | 26.19 ± 4.01 | 54% |
AA | 15 | 2.88 ± 0.42 | 7.95 ± 1.12 | 24.05 ± 3.08 | 59% | |
>24 months | CM | 23 | 2.92 ± 0.44 | 8.50 ± 1.05 | 25.76 ± 3.98 | 57% |
AA | 21 | 2.85 ± 0.39 | 8.02 ± 1.15 | 24.22 ± 2.85 | 60% |
Variables | All n = 107 | Acute Abdomen n = 54 | Congenital Malformation n = 53 | |||
---|---|---|---|---|---|---|
Pearson Correlation | p-Value | Pearson Correlation | p- Value | Pearson Correlation | p-Value | |
HGB baseline × age (months) | −0.469 | <0.001 | −0.378 | 0.005 | −0.611 | <0.001 |
HGB baseline × HBG after transfusion | 0.392 | <0.001 | 0.226 | 0.052 | 0.423 | 0.002 |
Variable | Coefficient | Standard Error | p-Value |
---|---|---|---|
Group (Reference: CM) | 12 | ||
Acute Abdomen (AA) | −0.87 | 0.28 | 0.004 |
Age (Months) | −0.02 | 0.01 | 0.037 |
Gender (Reference: Male) | |||
Female | 0.54 | 0.33 | 0.112 |
Baseline Hemoglobin (g/dL) | 0.49 | 0.09 | <0.001 |
Hospitalization Days | 0.07 | 0.03 | 0.028 |
Diagnosis Category | Mean Hemoglobin Increase (g/dL) | p-Value |
---|---|---|
Congenital Malformations | ||
Gastrointestinal Tract Malformation | 3.24 | 0.052 |
Central Nervous System Defect | 3.67 | 0.038 |
Diaphragmatic Hernia | 2.98 | 0.112 |
Acute Abdomen | ||
Appendicitis | 1.76 | 0.101 |
Intestinal Obstruction | 1.89 | 0.093 |
Peritonitis | 2.03 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, A.; Mihăilescu, A.; Chiriță-Emandi, A.; Munagala, N.; David, V.L.; Dumache, R.; Săndesc, D.; Bedreag, O.; Folescu, R.; Bratosin, F.; et al. Assessing Differential Transfusion Requirements for Children with Congenital Malformations vs. Pediatric Acute Abdomen Emergencies. Diagnostics 2024, 14, 2216. https://doi.org/10.3390/diagnostics14192216
Ionescu A, Mihăilescu A, Chiriță-Emandi A, Munagala N, David VL, Dumache R, Săndesc D, Bedreag O, Folescu R, Bratosin F, et al. Assessing Differential Transfusion Requirements for Children with Congenital Malformations vs. Pediatric Acute Abdomen Emergencies. Diagnostics. 2024; 14(19):2216. https://doi.org/10.3390/diagnostics14192216
Chicago/Turabian StyleIonescu, Alin, Alexandra Mihăilescu, Adela Chiriță-Emandi, Nitesh Munagala, Vlad Laurențiu David, Raluca Dumache, Dorel Săndesc, Ovidiu Bedreag, Roxana Folescu, Felix Bratosin, and et al. 2024. "Assessing Differential Transfusion Requirements for Children with Congenital Malformations vs. Pediatric Acute Abdomen Emergencies" Diagnostics 14, no. 19: 2216. https://doi.org/10.3390/diagnostics14192216
APA StyleIonescu, A., Mihăilescu, A., Chiriță-Emandi, A., Munagala, N., David, V. L., Dumache, R., Săndesc, D., Bedreag, O., Folescu, R., Bratosin, F., Barata, P. I., Cristescu, D. -M., & Săndesc, M. A. (2024). Assessing Differential Transfusion Requirements for Children with Congenital Malformations vs. Pediatric Acute Abdomen Emergencies. Diagnostics, 14(19), 2216. https://doi.org/10.3390/diagnostics14192216