Quantitative Analysis of Retinal Perfusion in Patients with Frontotemporal Dementia Using Optical Coherence Tomography Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Examinations
2.3. OCT Angiography
2.4. MoCa Score
- Visuospatial and Executive Functions: Assessing the ability to perceive spatial relationships and plan and execute tasks;
- Naming: Evaluating language and semantic memory by asking individuals to name certain objects;
- Memory: Testing short-term memory recall and recognition;
- Attention: Assessing sustained attention and concentration;
- Language: Evaluating language skills, including sentence repetition and verbal fluency;
- Abstraction: Testing the ability to understand and interpret proverbs or similar conceptual tasks;
- Delayed Recall: Measuring the ability to remember information after a short delay;
- Orientation: Assessing awareness of person, place, and time.
2.5. Fazekas Score
- 0: Absence of lesions;
- 1: Focal lesions;
- 2: Beginning of confluence of lesions;
- 3: Large confluent lesions
2.6. Statistics
3. Results
3.1. OCT-A Findings
3.2. Association of OCT-A Alterations with Clinical and Paraclinical Findings
4. Discussion
Formularbeginn
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bang, J.; Spina, S.; Miller, B.L. Frontotemporal dementia. Lancet 2015, 386, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Boeve, B.F.; Boxer, A.L.; Kumfor, F.; Pijnenburg, Y.; Rohrer, J.D. Advances and controversies in frontotemporal dementia: Diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022, 21, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.; Huang, S.-C.; Magnani, G.; Ambrosi, A.; Comi, G.; Leocani, L. Optical Coherence Tomography Reveals Retinal Neuroaxonal Thinning in Frontotemporal Dementia as in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 56, 1101–1107. [Google Scholar] [CrossRef]
- Krämer, J.; Lueg, G.; Schiffler, P.; Vrachimis, A.; Weckesser, M.; Wenning, C.; Pawlowski, M.; Johnen, A.; Teuber, A.; Wersching, H.; et al. Diagnostic Value of Diffusion Tensor Imaging and Positron Emission Tomography in Early Stages of Frontotemporal Dementia. J. Alzheimer’s Dis. 2018, 63, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Moinuddin, O.; Khandwala, N.S.; Young, K.Z.; Sathrasala, S.K.; Barmada, S.J.; Albin, R.L.; Besirli, C.G. Role of Optical Coherence Tomography in Identifying Retinal Biomarkers in Frontotemporal Dementia: A Review. Neurol. Clin. Pract. 2021, 11, e516–e523. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Grossman, M.; Song, D.; Saludades, S.; Pan, W.; Dominguez-Perez, S.; Dunaief, J.L.; Aleman, T.S.; Ying, G.S.; Irwin, D.J. Persistent and Progressive Outer Retina Thinning in Frontotemporal Degeneration. Front. Neurosci. 2019, 13, 298. [Google Scholar] [CrossRef]
- Kim, B.J.; Irwin, D.J.; Song, D.; Daniel, E.; Leveque, J.D.; Raquib, A.R.; Pan, W.; Ying, G.S.; Aleman, T.S.; Dunaief, J.L.; et al. Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration. Neurology 2017, 89, 1604–1611. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.T.; Sun, Z.; Tang, S.; Chen, L.J.; Wong, A.; Tham, C.C.; Wong, T.Y.; Chen, C.; Ikram, M.K.; Whitson, H.E.; et al. Spectral-Domain OCT Measurements in Alzheimer’s Disease: A Systematic Review and Meta-analysis. Ophthalmology 2019, 126, 497–510. [Google Scholar] [CrossRef]
- Cheung, C.Y.; Mok, V.; Foster, P.J.; Trucco, E.; Chen, C.; Wong, T.Y. Retinal imaging in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2021, 92, 983–994. [Google Scholar] [CrossRef]
- Cheung, C.Y.L.; Ong, Y.T.; Hilal, S.; Ikram, M.K.; Low, S.; Ong, Y.L.; Venketasubramanian, N.; Yap, P.; Seow, D.; Chen, C.L.H.; et al. Retinal ganglion cell analysis using high-definition optical coherence tomography in patients with mild cognitive impairment and Alzheimer’s disease. J. Alzheimer’s Dis. 2015, 45, 45–56. [Google Scholar] [CrossRef]
- Coppola, G.; Di Renzo, A.; Ziccardi, L.; Martelli, F.; Fadda, A.; Manni, G.; Barboni, P.; Pierelli, F.; Sadun, A.A.; Parisi, V. Optical Coherence Tomography in Alzheimer’s Disease: A Meta-Analysis. PLoS ONE 2015, 10, e0134750. [Google Scholar] [CrossRef] [PubMed]
- López-Cuenca, I.; Salobrar-García, E.; Sánchez-Puebla, L.; Espejel, E.; García del Arco, L.; Rojas, P.; Elvira-Hurtado, L.; Fernández-Albarral, J.A.; Ramírez-Toraño, F.; Barabash, A.; et al. Retinal Vascular Study Using OCTA in Subjects at High Genetic Risk of Developing Alzheimer’s Disease and Cardiovascular Risk Factors. J. Clin. Med. 2022, 11, 3248. [Google Scholar] [CrossRef] [PubMed]
- Hosari, S.; Hohberger, B.; Theelke, L.; Sari, H.; Lucio, M.; Mardin, C.Y. OCT Angiography: Measurement of Retinal Macular Microvasculature with Spectralis II OCT Angiography—Reliability and Reproducibility. Ophthalmologica 2020, 243, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Alnawaiseh, M. Optische Kohärenztomographie-Angiographie zur Beurteilung der Mikrozirkulation bei systemischen Erkrankungen. Ophthalmologe 2019, 116, 712–713. [Google Scholar] [CrossRef] [PubMed]
- Lahme, L.; Esser, E.L.; Mihailovic, N.; Schubert, F.; Lauermann, J.; Johnen, A.; Eter, N.; Duning, T.; Alnawaiseh, M. Evaluation of Ocular Perfusion in Alzheimer’s Disease Using Optical Coherence Tomography Angiography. J. Alzheimer’s Dis. 2018, 66, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; Van Swieten, J.C.; Seelaar, H.; Dopper, E.G.; Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011, 134 Pt 9, 2456–2477. [Google Scholar] [CrossRef]
- Scheltens, P.; Erkinjunti, T.; Leys, D.; Wahlund, L.O.; Inzitari, D.; del Ser, T.; Pasquier, F.; Barkhof, F.; Mäntylä, R.; Bowler, J.; et al. White matter changes on CT and MRI: An overview of visual rating scales. European Task Force on Age-Related White Matter Changes. Eur. Neurol. 1998, 39, 80–89. [Google Scholar] [CrossRef]
- Foulsham, W.; Chien, J.; Lenis, T.L.; Papakostas, T.D. Optical Coherence Tomography Angiography: Clinical Utility and Future Directions. J. VitreoRetin. Dis. 2022, 6, 229–242. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Fazekas, F.; Chawluk, J.B.; Alavi, A.; Hurtig, H.I.; Zimmerman, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar] [CrossRef]
- Verhagen, M.V.; Guit, G.L.; Hafkamp, G.J.; Kalisvaart, K. The impact of MRI combined with visual rating scales on the clinical diagnosis of dementia: A prospective study. Eur. Radiol. 2016, 26, 1716–1722. [Google Scholar] [CrossRef] [PubMed]
- Tosun, D.; Rosen, H.; Miller, B.L.; Weiner, M.W.; Schuff, N. MRI patterns of atrophy and hypoperfusion associations across brain regions in frontotemporal dementia. Neuroimage 2012, 59, 2098–2109. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The overlap between neurodegenerative and vascular factors in the pathogenesis of dementia. Acta Neuropathol. 2010, 120, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Mutsaerts, H.J.; Mirza, S.S.; Petr, J.; Thomas, D.L.; Cash, D.M.; Bocchetta, M.; De Vita, E.; Metcalfe, A.W.; Shirzadi, Z.; Robertson, A.D.; et al. Cerebral perfusion changes in presymptomatic genetic frontotemporal dementia: A GENFI study. Brain 2019, 142, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Ssali, T.; Anazodo, U.C.; Narciso, L.; Liu, L.; Jesso, S.; Richardson, L.; Günther, M.; Konstandin, S.; Eickel, K.; Prato, F.; et al. Sensitivity of Arterial Spin Labeling for Characterization of Longitudinal Perfusion Changes in Frontotemporal Dementia and Related Disorders. Neuroimage Clin. 2022, 35, 102853. [Google Scholar] [CrossRef]
- Du, A.T.; Jahng, G.H.; Hayasaka, S.; Kramer, J.H.; Rosen, H.J.; Gorno-Tempini, M.L.; Rankin, K.P.; Miller, B.L.; Weiner, M.W.; Schuff, N. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006, 67, 1215–1220. [Google Scholar] [CrossRef]
- Bambo, M.P.; Garcia-Martin, E.; Otin, S.; Pinilla, J.; Larrosa, J.M.; Polo, V.; Pablo, L.E. Visual function and retinal nerve fibre layer degeneration in patients with Alzheimer disease: Correlations with severity of dementia. Acta Ophthalmol. 2015, 93, e507–e508. [Google Scholar] [CrossRef]
- Wang, X.N.; Zhao, Q.; Li, D.J.; Wang, Z.Y.; Chen, W.; Li, Y.F.; Cui, R.; Shen, L.; Wang, R.K.; Peng, X.Y.; et al. Quantitative evaluation of primary retinitis pigmentosa patients using colour Doppler flow imaging and optical coherence tomography angiography. Acta Ophthalmol. 2019, 97, e993–e997. [Google Scholar] [CrossRef]
- Alnawaiseh, M.; Brand, C.; Bormann, E.; Wistuba, J.; Eter, N.; Heiduschka, P. Quantitative analysis of retinal perfusion in mice using optical coherence tomography angiography. Exp. Eye Res. 2017, 164, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Brand, C.; Zitzmann, M.; Eter, N.; Kliesch, S.; Wistuba, J.; Alnawaiseh, M.; Heiduschka, P. Aberrant ocular architecture and function in patients with Klinefelter syndrome. Sci. Rep. 2017, 7, 13130. [Google Scholar] [CrossRef] [PubMed]
- Lange, P.S.; Mihailovic, N.; Esser, E.; Frommeyer, G.; Fischer, A.J.; Bode, N.; Höwel, D.; Rosenberger, F.; Eter, N.; Eckardt, L.; et al. Improvement of Retinal Microcirculation after Pulmonary Vein Isolation in Patients with Atrial Fibrillation—An Optical Coherence Tomography Angiography Study. Diagnostics 2021, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Oktem, E.O.; Derle, E.; Kibaroglu, S.; Oktem, C.; Akkoyun, I.; Can, U. The relationship between the degree of cognitive impairment and retinal nerve fiber layer thickness. Neurol. Sci. 2015, 36, 1141–1146. [Google Scholar] [CrossRef]
- Freitas, S.; Simões, M.R.; Alves, L.; Duro, D.; Santana, I. Montreal Cognitive Assessment (MoCA): Validation study for frontotemporal dementia. J. Geriatr. Psychiatry Neurol. 2012, 25, 146–154. [Google Scholar] [CrossRef]
- Deutsch, M.B.; Liang, L.-J.; Jimenez, E.E.; Mather, M.J.; Mendez, M.F. Are we comparing frontotemporal dementia and Alzheimer disease patients with the right measures? Int. Psychogeriatr. 2016, 28, 1481–1485. [Google Scholar] [CrossRef]
Patients | Healthy Controls | p Value | |
---|---|---|---|
Subjects, n | 18 | 18 | |
Gender (m/f), n | 10/8 | 10/8 | |
Age (y) | 65.67 ± 6.82 (66 [61.25, 70.25]) | 66.67 ± 7.87 (69 [58.50, 73.25]) | 0.56 |
Spherical equivalent (D) | 0.84 ± 1.79 (0.56 [−0.38, 1.28]) | 0.76 ± 1.45 (0.44 [−0.16, 1.22]) | 0.83 |
IOP (mmHg) | 16.11 ± 3.32 (16 [14.75,18.00]) | 15.61 ± 2.38 (15 [14.75, 17.25]) | 0.72 |
Visual acuity (LogMar notation) | 0.06 ± 0.1 (0.0 [0.0, 0.1]) | 0.06 ± 0.1 (0.5 [0.0, 0.1]) | 0.88 |
CSF amyloid ß (pg/mL) | 922.31 ± 290.78 (971.50 [671.00, 1142.75]) | ||
CSF total tau protein (pg/mL) | 329.44 ± 214.01 (273.50 [188.75, 393.75]) | ||
Fazekas score | 0.95 ± 0.73 (1.0 [0.0, 1.25]) | ||
MoCA score | 16.82 ± 6.70 (17.0 [11.0, 22.5]) |
Patients | Healthy Controls | p Value | |
---|---|---|---|
OCT-A SCP | |||
whole en face | 44.42 ± 2.82 (44.55 [43.03, 46.50]) | 49.97 ± 3.72 (50.37 [45.77, 53.11]) | <0.001 |
fovea | 19.09 ± 4.78 (18.85 [15.96, 22.38]) | 28.42 ± 5.94 (29.82 [25.84, 33.15]) | <0.001 |
parafoveal | 47.10 ± 3.26 (47.85 [46.15, 49.38]) | 52.07 ± 3.46 (52.42 [48.92, 55.08]) | <0.001 |
OCT-A DCP | |||
whole en face | 47.93 ± 3.64 (47.20 [45.80, 49.95]) | 56.24 ± 2.56 (56.55 [54.75, 58.24]) | <0.001 |
fovea | 33.41 ± 6.44(33.85 [27.20, 38.83]) | 27.71 ± 6.28(27.14 [24.25, 30.42]) | 0.006 |
parafoveal | 49.84 ± 3.86 (49.25 [48.35, 50.80]) | 58.97 ± 2.95 (59.14 [57.53, 61.29]) | <0.001 |
OCT-A ONH | |||
whole en face | 48.08 ± 1.85 (47.95 [46.68, 49.55]) | 54.57 ± 4.90 (55.03 [50.92, 56.68]) | <0.001 |
peripapillary | 50.69 ± 2.47 (50.5 [49.30, 52.53]) | 62.17 ± 5.48 (63.53 [58.63, 65.71]) | <0.001 |
Flow Density Whole En Face | Flow Density Parafoveal | ||
---|---|---|---|
CSF amyloid-ß (pg/mL) | Spearman’s r | 0.200 | 0.060 |
p-Value | 0.458 | 0.824 | |
CSF total tau protein (pg/mL) | Spearman’s r | 0.365 | 0.456 |
p-Value | 0.165 | 0.076 | |
MoCA score | Spearman’s r | 0.207 | 0.054 |
p-Value | 0.425 | 0.836 | |
Fazekas score | Spearman’s r | −0.221 | −0.161 |
p-value | 0.378 | 0.524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esser, E.L.; Lahme, L.; Dierse, S.; Diener, R.; Eter, N.; Wiendl, H.; Duning, T.; Pawlowski, M.; Krämer, J.; Alnawaiseh, M. Quantitative Analysis of Retinal Perfusion in Patients with Frontotemporal Dementia Using Optical Coherence Tomography Angiography. Diagnostics 2024, 14, 211. https://doi.org/10.3390/diagnostics14020211
Esser EL, Lahme L, Dierse S, Diener R, Eter N, Wiendl H, Duning T, Pawlowski M, Krämer J, Alnawaiseh M. Quantitative Analysis of Retinal Perfusion in Patients with Frontotemporal Dementia Using Optical Coherence Tomography Angiography. Diagnostics. 2024; 14(2):211. https://doi.org/10.3390/diagnostics14020211
Chicago/Turabian StyleEsser, Eliane Luisa, Larissa Lahme, Sebastian Dierse, Raphael Diener, Nicole Eter, Heinz Wiendl, Thomas Duning, Matthias Pawlowski, Julia Krämer, and Maged Alnawaiseh. 2024. "Quantitative Analysis of Retinal Perfusion in Patients with Frontotemporal Dementia Using Optical Coherence Tomography Angiography" Diagnostics 14, no. 2: 211. https://doi.org/10.3390/diagnostics14020211
APA StyleEsser, E. L., Lahme, L., Dierse, S., Diener, R., Eter, N., Wiendl, H., Duning, T., Pawlowski, M., Krämer, J., & Alnawaiseh, M. (2024). Quantitative Analysis of Retinal Perfusion in Patients with Frontotemporal Dementia Using Optical Coherence Tomography Angiography. Diagnostics, 14(2), 211. https://doi.org/10.3390/diagnostics14020211