Real-Time Tracheal Ultrasound vs. Capnography for Intubation Confirmation during CPR Wearing a Powered Air-Purifying Respirator in COVID-19 Era
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Methods and Measurements
2.3.1. Study Protocol
2.3.2. Waveform Capnography
2.3.3. Ultrasound
2.3.4. Data Collection
2.4. Outcomes
2.5. Sample Size and Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chou, H.C.; Chong, K.M.; Sim, S.S.; Ma, M.H.; Liu, S.H.; Chen, N.C.; Wu, M.C.; Fu, C.M.; Wang, C.H.; Lee, C.C.; et al. Real-time tracheal ultrasonography for confirmation of endotracheal tube placement during cardiopulmonary resuscitation. Resuscitation 2013, 84, 1708–1712. [Google Scholar] [CrossRef] [PubMed]
- Linko, K.; Paloheimo, M.; Tammisto, T. Capnography for detection of accidental oesophageal intubation. Acta Anaesthesiol. Scand. 1983, 27, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.C.; Tseng, W.P.; Wang, C.H.; Ma, M.H.; Wang, H.P.; Huang, P.C.; Sim, S.S.; Liao, Y.C.; Chen, S.Y.; Hsu, C.Y.; et al. Tracheal rapid ultrasound exam (T.R.U.E.) for confirming endotracheal tube placement during emergency intubation. Resuscitation 2011, 82, 1279–1284. [Google Scholar] [CrossRef]
- Weaver, B.; Lyon, M.; Blaivas, M. Confirmation of endotracheal tube placement after intubation using the ultrasound sliding lung sign. Acad. Emerg. Med. 2006, 13, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Brunel, W.; Coleman, D.L.; Schwartz, D.E.; Peper, E.; Cohen, N.H. Assessment of routine chest roentgenograms and the physical examination to confirm endotracheal tube position. Chest 1989, 96, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Grmec, S. Comparison of three different methods to confirm tracheal tube placement in emergency intubation. Intensive Care Med. 2002, 28, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Tanigawa, K.; Tanaka, H.; Hayashi, Y.; Goto, E.; Tanaka, K. The assessment of three methods to verify tracheal tube placement in the emergency setting. Resuscitation 2003, 56, 153–157. [Google Scholar] [CrossRef]
- Sandroni, C.; De Santis, P.; D’Arrigo, S. Capnography during cardiac arrest. Resuscitation 2018, 132, 73–77. [Google Scholar] [CrossRef]
- Tanigawa, K.; Takeda, T.; Goto, E.; Tanaka, K. Accuracy and reliability of the self-inflating bulb to verify tracheal intubation in out-of-hospital cardiac arrest patients. Anesthesiology 2000, 93, 1432–1436. [Google Scholar] [CrossRef]
- MacLeod, B.A.; Heller, M.B.; Gerard, J.; Yealy, D.M.; Menegazzi, J.J. Verification of endotracheal tube placement with colorimetric end-tidal CO2 detection. Ann. Emerg. Med. 1991, 20, 267–270. [Google Scholar] [CrossRef]
- Park, S.H.; Hwang, S.Y.; Lee, G.; Park, J.E.; Kim, T.; Shin, T.G.; Sim, M.S.; Jo, I.J.; Kim, S.; Yoon, H. Are loose-fitting powered air-purifying respirators safe during chest compression? A simulation study. Am. J. Emerg. Med. 2021, 44, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Buonsenso, D.; Pata, D.; Chiaretti, A. COVID-19 outbreak: Less stethoscope, more ultrasound. Lancet Respir. Med. 2020, 8, e27. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Jo, I.J.; Lee, G.; Park, J.E.; Kim, T.; Lee, S.U.; Hwang, S.Y.; Shin, T.G.; Kim, K.; Shim, J.S.; et al. Point-of-care ultrasound compression of the carotid artery for pulse determination in cardiopulmonary resuscitation. Resuscitation 2022, 179, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Emergency Ultrasound Guidelines. Ann. Emerg. Med. 2009, 53, 550–570. [CrossRef] [PubMed]
- Nguyen, A.P.; Saadat, S.; Nguyen, M.T.; Desai, M.D.; Rowland, J.W.; Fox, J.C. Utilization of point-of-care ultrasound among graduates of a 4-year longitudinal medical school ultrasound curriculum. Clin. Exp. Emerg. Med. 2023, 10, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Zechner, P.M.; Breitkreutz, R. Ultrasound instead of capnometry for confirming tracheal tube placement in an emergency? Resuscitation 2011, 82, 1259–1261. [Google Scholar] [CrossRef]
- Chenkin, J.; McCartney, C.J.; Jelic, T.; Romano, M.; Heslop, C.; Bandiera, G. Defining the learning curve of point-of-care ultrasound for confirming endotracheal tube placement by emergency physicians. Crit. Ultrasound J. 2015, 7, 14. [Google Scholar] [CrossRef]
- Ramsingh, D.; Frank, E.; Haughton, R.; Schilling, J.; Gimenez, K.M.; Banh, E.; Rinehart, J.; Cannesson, M. Auscultation versus Point-of-care Ultrasound to Determine Endotracheal versus Bronchial Intubation: A Diagnostic Accuracy Study. Anesthesiology 2016, 124, 1012–1020. [Google Scholar] [CrossRef]
- Panchal, A.R.; Bartos, J.A.; Cabañas, J.G.; Donnino, M.W.; Drennan, I.R.; Hirsch, K.G.; Kudenchuk, P.J.; Kurz, M.C.; Lavonas, E.J.; Morley, P.T.; et al. Part 3: Adult Basic and Advanced Life Support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2020, 142, S366–S468. [Google Scholar] [CrossRef]
- Noh, J.K.; Cho, Y.S.; Kim, H.J. Comparison of Airway Ultrasonography and Continuous Waveform Capnography to Confirm Endotracheal Tube Placement in Cardiac Arrest Patients: Prospective Observational Study. J. Korean Soc. Emerg. Med. 2012, 23, 618–623. [Google Scholar] [CrossRef]
- Soar, J.; Berg, K.M.; Andersen, L.W.; Böttiger, B.W.; Cacciola, S.; Callaway, C.W.; Couper, K.; Cronberg, T.; D’Arrigo, S.; Deakin, C.D.; et al. Adult Advanced Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2020, 156, A80–A119. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, M.; Alerhand, S.; Long, B. Point-of-Care Ultrasound for Intubation Confirmation of COVID-19 Patients. West. J. Emerg. Med. 2020, 21, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Blaivas, M. Ultrasound, tracheal intubation and cardiopulmonary resuscitation: Isn’t there enough to do during a cardiac arrest? Resuscitation 2013, 84, 1641–1642. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.; Tozer, J.; Vitto, M.; Evans, D. Ability of Critical Care Medics to Confirm Endotracheal Tube Placement by Ultrasound. Prehosp. Disaster Med. 2020, 35, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Yin, W.; Kang, Y. Application of Critical Care Ultrasound in Patients With COVID-19: Our Experience and Perspective. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.Y.; Kang, C.; Jeong, W.; Park, J.S.; You, Y.; Ahn, H.J.; Min, J.H.; Hwang, T.; Kwon, O.; Kim, S.W. Efficacy of cardiopulmonary resuscitation performance while wearing a powered air-purifying respirator. Am. J. Emerg. Med. 2022, 51, 22–25. [Google Scholar] [CrossRef]
- Potter, T.; Cronin, J.N.; Kua, J.; Nurmi, E.; Wong, D.J.N.; Ahmad, I.; Cook, T.M.; El-Boghdadly, K. Aerosol precautions and airway complications: A national prospective multicentre cohort study. Anaesthesia 2022, 78, 23–35. [Google Scholar] [CrossRef]
- Avery, P.; McAleer, S.; Rawlinson, D.; Gill, S.; Lockey, D. Maintaining Prehospital Intubation Success with COVID-19 Personal Protective Precautions. Prehosp. Disaster Med. 2022, 37, 783–787. [Google Scholar] [CrossRef]
- Granell, M.; Sanchis, N.; Delgado, C.; Lozano, M.; Pinho, M.; Sandoval, C.; Romero, C.S.; Aldecoa, C.; Cata, J.P.; Neira, J.; et al. Airway Management of Patients with Suspected or Confirmed COVID-19: Survey Results from Physicians from 19 Countries in Latin America. J. Clin. Med. 2022, 11, 4731. [Google Scholar] [CrossRef]
Characteristics | Descriptives (n = 33) | Characteristics | Descriptives (n = 33) |
---|---|---|---|
General Characteristics | Respiratory | 11 (34%) | |
Sex (male) | 24 (73%) | Non-traumatic bleeding | 2 (6%) |
Age (years) | 70 ± 15 | Unknown | 10 (30%) |
BMI (kg/m2) | 23 ± 3 | ROSC | |
Underlying Diseases | No ROSC | 22 (67%) | |
Hypertension | 17 (52%) | ROSC, death < 24 h | 10 (30%) |
Diabetes mellitus | 21 (67%) | ROSC, death > 24 h | 1 (3%) |
Cardiac diseases | 26 (79%) | Intubation Evaluation | |
Chronic lung diseases | 27 (82%) | Type of laryngoscopy | |
Chronic liver diseases | 29 (88%) | Direct laryngoscopy | 1 (3%) |
Chronic renal diseases | 28 (85%) | Video laryngoscopy | 32 (97%) |
Cerebral vascular accident | 28 (85%) | O2 therapy before intubation | |
Malignancy | 28 (85%) | LMA | 6 (18%) |
COVID-19 positive | 1 (3%) | BVM | 25 (76%) |
Characteristics of CPR | ET tube | 2 (6%) | |
Type of cardiac arrest | Difficult airway anticipated | ||
OHCA | 32 (97%) | POGO | 100 (75–100) |
IHCA | 1 (3%) | GOG | |
No-flow time (min) | 8 (0–19) | 1 | 29 (88%) |
Low-flow time (min) | 29 (22–36) | 2 | 4 (12%) |
ACLS time (min) | 21 ± 8 | 3, 4 | 0 |
Cause of cardiac arrest | First pass success | 29 (88%) | |
Traumatic | 3 (9%) | Tube depth (cm) | 23 (23–25) |
Cardiogenic | 7 (21%) | Complication | 0 |
TTUS | Capnography | |
---|---|---|
Tracheal intubation (n = 31) | 31 | 30 |
Esophageal intubation (n = 2) | 2 | 3 |
Time spent to confirm tube placement, (s) (median, IQR) * | 12 (8–22) | 45 (37–59) |
Sensitivity, % (95% CI) | 100 (88.8–100) | 96.8 (83.3–99.9) |
Specificity, % (95% CI) | 100 (15.8–100) | 100 (15.8–100) |
PPV, % (95% CI) | 100 | 100 |
NPV, % (95% CI) | 100 | 66.7 (22.5–93.2) |
Accuracy, % (95% CI) | 100 (89.4–100) | 97.0 (84.2–99.9) |
McNemar test (p-value) | N/A | 0.317 |
Kappa | 1.00 (1.00–1.00) | 0.78 (0.38–1.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eun, S.; Yoon, H.; Kang, S.Y.; Jo, I.J.; Heo, S.; Chang, H.; Lee, G.; Park, J.E.; Kim, T.; Lee, S.U.; et al. Real-Time Tracheal Ultrasound vs. Capnography for Intubation Confirmation during CPR Wearing a Powered Air-Purifying Respirator in COVID-19 Era. Diagnostics 2024, 14, 225. https://doi.org/10.3390/diagnostics14020225
Eun S, Yoon H, Kang SY, Jo IJ, Heo S, Chang H, Lee G, Park JE, Kim T, Lee SU, et al. Real-Time Tracheal Ultrasound vs. Capnography for Intubation Confirmation during CPR Wearing a Powered Air-Purifying Respirator in COVID-19 Era. Diagnostics. 2024; 14(2):225. https://doi.org/10.3390/diagnostics14020225
Chicago/Turabian StyleEun, Seungwan, Hee Yoon, Soo Yeon Kang, Ik Joon Jo, Sejin Heo, Hansol Chang, Guntak Lee, Jong Eun Park, Taerim Kim, Se Uk Lee, and et al. 2024. "Real-Time Tracheal Ultrasound vs. Capnography for Intubation Confirmation during CPR Wearing a Powered Air-Purifying Respirator in COVID-19 Era" Diagnostics 14, no. 2: 225. https://doi.org/10.3390/diagnostics14020225
APA StyleEun, S., Yoon, H., Kang, S. Y., Jo, I. J., Heo, S., Chang, H., Lee, G., Park, J. E., Kim, T., Lee, S. U., Hwang, S. Y., & Baek, S. -Y. (2024). Real-Time Tracheal Ultrasound vs. Capnography for Intubation Confirmation during CPR Wearing a Powered Air-Purifying Respirator in COVID-19 Era. Diagnostics, 14(2), 225. https://doi.org/10.3390/diagnostics14020225