The Utility of Contrast-Enhanced Mammography in the Evaluation of Bloody Nipple Discharge—A Multicenter Study in the Asian Population
Abstract
:1. Introduction
2. Methodology
2.1. Patient Selection
2.2. CEM Image Acquisition Protocol
2.3. CEM Image Interpretation and Analysis
2.4. Pathological Diagnosis
2.5. Data and Statistical Analysis
3. Results
3.1. Patient Demographics and Final Histology
3.2. Contrast-Enhanced Mammography Findings
3.3. Predictors of Malignancy
3.4. Optimal Size on CEM for Malignancy Detection
3.5. Multivariate Analysis of Significant Predictors
3.6. Comparing CEM with Ultrasound (US) and Full-Field Digital Mammography (FFDM)
3.6.1. BIRADS Scoring
3.6.2. Diagnostic Performance
4. Discussion
4.1. Summary of Important Results
4.2. Benefits of CEM and Clinical Applications
4.3. Lesion Conspicuity
4.4. Morphpological Characteristics
4.5. Background Parenchymal Enhancement (BPE)
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vavolizza, R.D.; Dengel, L.T. Management of Nipple Discharge. Surg. Clin. N. Am. 2022, 102, 1077–1087. [Google Scholar] [CrossRef]
- Vargas, H.I.; Romero, L.; Chlebowski, R.T. Management of bloody nipple discharge. Curr. Treat. Options Oncol. 2002, 3, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Mendelson, E.B.; Karst, I. Nipple Discharge: Current Clinical and Imaging Evaluation. Am. J. Roentgenol. 2020, 216, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Kan, W.M.; Chen, C.; Kwong, A. Implications of nipple discharge in Hong Kong Chinese women. Hong Kong Med. J. 2018, 24, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, W.B.; Zhao, Y.; Liu, X.A.; Ding, Q.; Zha, X.M.; Wang, S. Bloody nipple discharge is a predictor of breast cancer risk: A meta-analysis. Breast Cancer Res. Treat. 2012, 132, 9–14. [Google Scholar] [CrossRef]
- Montroni, I.; Santini, D.; Zucchini, G.; Fiacchi, M.; Zanotti, S.; Ugolini, G.; Manaresi, A.; Taffurelli, M. Nipple discharge: Is its significance as a risk factor for breast cancer fully understood? Observational study including 915 consecutive patients who underwent selective duct excision. Breast Cancer Res. Treat. 2010, 123, 895–900. [Google Scholar] [CrossRef]
- Stafford, A.P.; De La Cruz, L.M.; Willey, S.C. Workup and treatment of nipple discharge—A practical review. Ann. Breast Surg. 2021, 5, 22. [Google Scholar] [CrossRef]
- Bahl, M.; Baker, J.A.; Greenup, R.A.; Ghate, S.V. Diagnostic Value of Ultrasound in Female Patients With Nipple Discharge. AJR Am. J. Roentgenol. 2015, 205, 203–208. [Google Scholar] [CrossRef]
- Berger, N.; Luparia, A.; Di Leo, G.; Carbonaro, L.A.; Trimboli, R.M.; Ambrogi, F.; Sardanelli, F. Diagnostic Performance of MRI Versus Galactography in Women With Pathologic Nipple Discharge: A Systematic Review and Meta-Analysis. AJR Am. J. Roentgenol. 2017, 209, 465–471. [Google Scholar] [CrossRef]
- Baltzer, P.A.T.; Kapetas, P.; Marino, M.A.; Clauser, P. New diagnostic tools for breast cancer. Memo 2017, 10, 175–180. [Google Scholar] [CrossRef]
- Escobar, P.F.; Crowe, J.P.; Matsunaga, T.; Mokbel, K. The clinical applications of mammary ductoscopy. Am. J. Surg. 2006, 191, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Balci, F.L.; Feldman, S.M. Exploring breast with therapeutic ductoscopy. Gland Surg. 2014, 3, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Clauser, P.; Baltzer, P.A.T.; Kapetas, P.; Hoernig, M.; Weber, M.; Leone, F.; Bernathova, M.; Helbich, T.H. Low-Dose, Contrast-Enhanced Mammography Compared to Contrast-Enhanced Breast MRI: A Feasibility Study. J. Magn. Reson. Imaging 2020, 52, 589–595. [Google Scholar] [CrossRef]
- Fallenberg, E.M.; Schmitzberger, F.F.; Amer, H.; Ingold-Heppner, B.; Balleyguier, C.; Diekmann, F.; Engelken, F.; Mann, R.M.; Renz, D.M.; Bick, U.; et al. Contrast-enhanced spectral mammography vs. mammography and MRI—Clinical performance in a multi-reader evaluation. Eur. Radiol. 2017, 27, 2752–2764. [Google Scholar] [CrossRef]
- Jochelson, M.S.; Dershaw, D.D.; Sung, J.S.; Heerdt, A.S.; Thornton, C.; Moskowitz, C.S.; Ferrara, J.; Morris, E.A. Bilateral contrast-enhanced dual-energy digital mammography: Feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology 2013, 266, 743–751. [Google Scholar] [CrossRef]
- Sumkin, J.H.; Berg, W.A.; Carter, G.J.; Bandos, A.I.; Chough, D.M.; Ganott, M.A.; Hakim, C.M.; Kelly, A.E.; Zuley, M.L.; Houshmand, G.; et al. Diagnostic Performance of MRI, Molecular Breast Imaging, and Contrast-enhanced Mammography in Women with Newly Diagnosed Breast Cancer. Radiology 2019, 293, 531–540. [Google Scholar] [CrossRef]
- Li, L.; Roth, R.; Germaine, P.; Ren, S.; Lee, M.; Hunter, K.; Tinney, E.; Liao, L. Contrast-enhanced spectral mammography (CESM) versus breast magnetic resonance imaging (MRI): A retrospective comparison in 66 breast lesions. Diagn. Interv. Imaging 2017, 98, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Fakhry, S.; Abdel Rahman, R.W.; Shaalan, H.S.; Hassan, M.H.I.; Tealab, S.H.; Sayed, S.B. The added role of contrast-enhanced spectral mammography in the evaluation of pathological nipple discharge. Egypt. J. Radiol. Nucl. Med. 2022, 53, 87. [Google Scholar] [CrossRef]
- Leong, S.P.; Shen, Z.Z.; Liu, T.J.; Agarwal, G.; Tajima, T.; Paik, N.S.; Sandelin, K.; Derossis, A.; Cody, H.; Foulkes, W.D. Is breast cancer the same disease in Asian and Western countries? World J. Surg. 2010, 34, 2308–2324. [Google Scholar] [CrossRef]
- del Carmen, M.G.; Halpern, E.F.; Kopans, D.B.; Moy, B.; Moore, R.H.; Goss, P.E.; Hughes, K.S. Mammographic breast density and race. AJR Am. J. Roentgenol. 2007, 188, 1147–1150. [Google Scholar] [CrossRef]
- Chan, D. Data Analysis and Modeling Longitudinal Processes. Group Organ. Manag. 2003, 28, 341–365. [Google Scholar] [CrossRef]
- Galen, R.S. Predictive Value and Efficiency of Laboratory Testing. Pediatr. Clin. N. Am. 1980, 27, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef]
- Heywang, S.H.; Wolf, A.; Pruss, E.; Hilbertz, T.; Eiermann, W.; Permanetter, W. MR imaging of the breast with Gd-DTPA: Use and limitations. Radiology 1989, 171, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Rudnicki, W.; Heinze, S.; Niemiec, J.; Kojs, Z.; Sas-Korczynska, B.; Hendrick, E.; Luczynska, E. Correlation between quantitative assessment of contrast enhancement in contrast-enhanced spectral mammography (CESM) and histopathology-preliminary results. Eur. Radiol. 2019, 29, 6220–6226. [Google Scholar] [CrossRef]
- Hambly, N.M.; Liberman, L.; Dershaw, D.D.; Brennan, S.; Morris, E.A. Background parenchymal enhancement on baseline screening breast MRI: Impact on biopsy rate and short-interval follow-up. AJR Am. J. Roentgenol. 2011, 196, 218–224. [Google Scholar] [CrossRef]
- Dontchos, B.N.; Rahbar, H.; Partridge, S.C.; Korde, L.A.; Lam, D.L.; Scheel, J.R.; Peacock, S.; Lehman, C.D. Are Qualitative Assessments of Background Parenchymal Enhancement, Amount of Fibroglandular Tissue on MR Images, and Mammographic Density Associated with Breast Cancer Risk? Radiology 2015, 276, 371–380. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Age (years) | |
Mean ± SD | 51.7 ± 10.8 years |
Range | 29 to 71 |
Breast composition | |
Almost entirely fatty | 0 (0.0%) |
Scattered densities | 10 (17.2%) |
Heterogeneously dense | 36 (62.1%) |
Extremely dense | 12 (20.7%) |
Malignancy (n = 29) | |
Ductal carcinoma in situ | 16 (55.2%) |
Invasive ductal carcinoma | 11 (37.8%) |
Others (e.g., invasive mucinous carcinoma, metaplastic carcinoma) | 2 (6.9%) |
Benign disease (n = 29) | |
Papilloma | 12 (41.4%) |
Fibrocystic change | 6 (20.7%) |
Atypia (e.g., atypical ductal hyperplasia, flat epithelial atypia) | 3 (10.3%) |
Fibroadenoma | 2 (6.9%) |
Mastitis | 2 (6.9%) |
No biopsy (negative or benign imaging features, stable on follow-up) | 4 (13.8%) |
CEM Features | Malignant | Benign | p-Value | ||
---|---|---|---|---|---|
Count | % | Count | % | ||
BPE level (n = 58) | |||||
Minimal | 14 | 24.1 | 7 | 12.1 | 0.018 |
Mild | 9 | 15.5 | 5 | 8.6 | |
Moderate | 5 | 8.6 | 9 | 15.5 | |
Marked | 1 | 1.7 | 8 | 13.8 | |
Location of lesion (n = 58) | |||||
No lesion detected | 0 | 0.0 | 3 | 5.2 | 0.353 |
Subareolar | 19 | 32.8 | 18 | 31.0 | |
Peripheral | 10 | 17.2 | 8 | 13.8 | |
Presence of enhancement (n = 58) | |||||
Non-enhancing | 0 | 0.0 | 11 | 19.0 | <0.001 |
Enhancing | 29 | 50.0 | 18 | 31.0 | |
Extent of enhancement (n = 47) | |||||
Partial | 6 | 12.8 | 5 | 10.6 | 0.726 |
Complete/beyond | 23 | 48.9 | 13 | 27.7 | |
Internal enhancement characteristics (n = 47) | |||||
Homogenous | 6 | 12.8 | 2 | 4.3 | 0.692 |
Heterogenous or clumped | 23 | 48.9 | 16 | 34.0 | |
Lesion conspicuity (n = 47) | |||||
Low | 6 | 12.8 | 11 | 23.4 | <0.001 |
High or moderate | 23 | 48.9 | 7 | 14.9 | |
Size of enhancing lesion on CEM (n = 47) | |||||
<1.50 cm | 8 | 17.0 | 14 | 29.8 | <0.001 |
≥1.50 cm | 21 | 44.7 | 4 | 8.5 | |
<1.75 cm | 9 | 19.1 | 15 | 31.9 | <0.001 |
≥1.75 cm | 20 | 42.6 | 3 | 6.4 | |
Shape of enhancing masses on CEM (n = 22) | |||||
Round/oval | 0 | 0.0 | 6 | 27.3 | 0.003 |
Irregular | 12 | 54.5 | 4 | 18.2 | |
Margins of enhancing masses on CEM (n = 22) | |||||
Circumscribed | 0 | 0.0 | 6 | 27.3 | 0.003 |
Irregular or Spiculated | 12 | 54.5 | 4 | 18.2 | |
Distribution of NMEs on CEM (n = 25) | |||||
Segmental or linear | 14 | 56.0 | 0 | 0.0 | <0.001 |
Others (e.g., focal, diffuse, regional) | 3 | 12.0 | 8 | 32.0 |
Predictors | Unadjusted O.R. (95% C.I.) | p-Value | Adjusted O.R. (95% C.I.) | p-Value |
---|---|---|---|---|
BPE | ||||
Minimal | 16.0 (1.7–154.6) | 0.017 | 19.0 (0.2–1588.8) | 0.192 |
Mild | 14.4 (1.4–150.8) | 0.026 | 5.6 (0.1–395.6) | 0.431 |
Moderate | 4.4 (0.4–46.5) | 0.213 | 18.8 (0.2–1441.3) | - |
Marked * | 1.0 | 0.043 | 1 | 0.517 |
High/moderate lesion conspicuity | 10.6 (3.0–33.8) | <0.001 | 1.3 (0.1–18.0) | 0.839 |
Size of enhancing lesion ≥ 1.50 cm ** | 16.4 (4.3–62.2) | <0.001 | 22.5 (1.5–343.8) | 0.025 |
Malignant morphology | 84.4 (14.2–501.5) | <0.001 | 120.1 (8.9–1618.7) | <0.001 |
Imaging Modality and BIRADS | Malignant | Benign | p-Value | ||
---|---|---|---|---|---|
Count | % | Count | % | ||
Full-field digital mammography (FFDM) | |||||
BIRADS ≤ 3 | 12 | 20.7 | 20 | 34.5 | 0.035 |
BIRADS 4 or 5 | 17 | 29.3 | 9 | 15.5 | |
Ultrasound (US) | |||||
BIRADS ≤ 3 | 6 | 10.3 | 12 | 20.7 | 0.089 |
BIRADS 4 or 5 | 23 | 39.7 | 17 | 29.3 | |
Combined US + FFDM | |||||
BIRADS ≤ 3 | 3 | 5.2 | 10 | 17.2 | 0.028 |
BIRADS 4 or 5 | 26 | 44.8 | 19 | 32.8 | |
Contrast-enhanced mammogram (CEM) | |||||
BIRADS ≤ 3 | 0 | 0.0 | 18 | 31.0 | <0.001 |
BIRADS 4 or 5 | 29 | 50.0 | 11 | 19.0 |
Area Under Curve (AUC) | Sensitivity | Specificity | NPV | PPV | Diagnostic Accuracy | |
---|---|---|---|---|---|---|
MMG | 0.638 | 58.6 | 69.0 | 62.5 | 65.4 | 63.8 |
US | 0.603 | 79.3 | 41.4 | 66.7 | 57.5 | 60.3 |
MMG + US | 0.621 | 89.7 | 34.5 | 76.9 | 57.8 | 62.1 |
CEM | 0.810 | 100 | 62.1 | 100 | 72.5 | 81.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, A.-H.J.; Goh, Y.; Quek, S.T.; Pillay, P.G.; Lee, H.-S.; Chou, C.-P. The Utility of Contrast-Enhanced Mammography in the Evaluation of Bloody Nipple Discharge—A Multicenter Study in the Asian Population. Diagnostics 2024, 14, 2297. https://doi.org/10.3390/diagnostics14202297
Ong A-HJ, Goh Y, Quek ST, Pillay PG, Lee H-S, Chou C-P. The Utility of Contrast-Enhanced Mammography in the Evaluation of Bloody Nipple Discharge—A Multicenter Study in the Asian Population. Diagnostics. 2024; 14(20):2297. https://doi.org/10.3390/diagnostics14202297
Chicago/Turabian StyleOng, Ann-Hui Jamie, Yonggeng Goh, Swee Tian Quek, Premilla Gopinathan Pillay, Herng-Sheng Lee, and Chen-Pin Chou. 2024. "The Utility of Contrast-Enhanced Mammography in the Evaluation of Bloody Nipple Discharge—A Multicenter Study in the Asian Population" Diagnostics 14, no. 20: 2297. https://doi.org/10.3390/diagnostics14202297
APA StyleOng, A. -H. J., Goh, Y., Quek, S. T., Pillay, P. G., Lee, H. -S., & Chou, C. -P. (2024). The Utility of Contrast-Enhanced Mammography in the Evaluation of Bloody Nipple Discharge—A Multicenter Study in the Asian Population. Diagnostics, 14(20), 2297. https://doi.org/10.3390/diagnostics14202297