Rare Head and Neck Cancers and Pathological Diagnosis Challenges: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Rare Head and Neck Cancers
2.1. Nasopharyngeal Carcinoma (NPC)
2.2. Salivary Gland Cancers
2.2.1. Salivary Duct Carcinoma (SDC)
2.2.2. Mucoepidermoid Carcinoma (MEC)
2.2.3. Adenoid Cystic Carcinoma (ACC)
2.2.4. Other Rare SGCs
2.2.5. Molecular Targets in SGCs
2.3. Sinonasal Carcinoma
2.4. Mucosal Melanoma
2.5. Hematolymphoid Malignancies of Head and Neck
2.6. Neuroendocrine Carcinomas (NECs)
2.7. Head and Neck Sarcomas and Other Rare Tumors
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Lubin, J.H.; Purdue, M.; Kelsey, K.; Zhang, Z.-F.; Winn, D.; Wei, Q.; Talamini, R.; Szeszenia-Dabrowska, N.; Sturgis, E.M.; Smith, E.; et al. Total exposure and exposure rate effects for alcohol and smoking and risk of head and neck cancer: A pooled analysis of case-control studies. Am. J. Epidemiol. 2009, 170, 937–947. [Google Scholar] [CrossRef]
- Chang, E.T.; Adami, H.O. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1765–1777. [Google Scholar] [CrossRef] [PubMed]
- Mork, J.; Lie, A.K.; Glattre, E.; Clark, S.; Hallmans, G.; Jellum, E.; Koskela, P.; Møller, B.; Pukkala, E.; Schiller, J.T.; et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2001, 344, 1125–1131. [Google Scholar] [CrossRef]
- Van Dijk, B.; Gatta, G.; Capocaccia, R.; Pierannunzio, D.; Strojan, P.; Licitra, L. Rare cancers of the head and neck area in Europe. Eur. J. Cancer 2012, 48, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Locati, L.D.; Herman, I.; Benazzo, M.; Bonomo, P.; Ferri, A.; Maroldi, R.; Molteni, G.; Bossi, P.; Orlandi, E. Implementing a virtual multidisciplinary clinical case discussion to manage rare and complex head and neck cancers: An expert-defined protocol proposal from the Italian Association of Head and Neck Oncology (AIOCC). Acta Otorhinolaryngol. Ital. 2023, 43, 82–84. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Head and Neck Tumours: WHO Classification of Tumours, 5th ed.; World Health Organization: Geneva, Switzerland, 2024; Volume 9, ISBN -13: 978-92-832-4514-8. [Google Scholar]
- Cavalieri, S.; Filippini, D.M.; Ottini, A.; Bergamini, C.; Resteghini, C.; Colombo, E.; Lombardo, R.; Nuzzolese, I.; Alfieri, S.; Licitra, L.; et al. Immunotherapy in head and neck squamous cell carcinoma and rare head and neck malignancies. Explor. Target. Antitumor Ther. 2021, 2, 522–542. [Google Scholar] [CrossRef]
- Badoual, C. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Oropharynx and Nasopharynx. Head. Neck Pathol. 2022, 16, 19–30. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Hsu, M.M.; Tu, S.M. Nasopharyngeal carcinoma in Taiwan. Clinical manifestations and results of therapy. Cancer 1983, 52, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Franchi, A.; Moroni, M.; Massi, D.; Paglierani, M.; Santucci, M. Sinonasal undifferentiated carcinoma, nasopharyngeal-type undifferentiated carcinoma, and keratinizing and nonkeratinizing squamous cell carcinoma express different cytokeratin patterns. Am. J. Surg. Pathol. 2002, 26, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Bossi, P.; Chan, A.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Fernandes, C.I.; Junior, A.G.; Soares, C.D.; Morais, T.M.d.L.; Amaral-Silva, G.K.D.; de Carvalho, M.G.F.; de Souza, L.L.; Pires, F.R.; dos Santos, T.C.R.B.; Pereira, D.L.; et al. Oral and oropharyngeal diffuse large B-cell lymphoma and high-grade B-cell lymphoma: A clinicopathologic and prognostic study of 69 cases. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2021, 131, 452–462.e4. [Google Scholar] [CrossRef] [PubMed]
- Taverna, F.; Alfieri, S.; Romanò, R.; Campanini, G.; Marceglia, S.; Giardina, F.; Mazzocchi, A.; Comoli, P.; Gloghini, A.; Quattrone, P.; et al. Comparing BamHI-W and CE-marked assays to detect circulating Epstein-Barr Virus (EBV) DNA of nasopharyngeal cancer patients in a non-endemic area. Oral. Oncol. 2022, 135, 106229. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-Z.; Wu, H.-J.; Lv, S.-H.; Hu, X.-F.; Liang, H.; Liu, G.-Y.; Lu, N.; Bei, W.-X.; Lv, X.; Guo, X.; et al. Assessment of Survival Model Performance Following Inclusion of Epstein-Barr Virus DNA Status in Conventional TNM Staging Groups in Epstein-Barr Virus-Related Nasopharyngeal Carcinoma. JAMA Netw. Open. 2021, 4, e2124721. [Google Scholar] [CrossRef]
- Beyaert, S.; Machiels, J.P.; Schmitz, S. Vaccine-Based Immunotherapy for Head and Neck Cancers. Cancers 2021, 13, 6041. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, S.; Li, J.; Hu, C.; Xu, M.; Li, W.; Zhou, T.; Shen, L.; Wu, H.; Lang, J.; et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2021, 22, 1162–1174. [Google Scholar] [CrossRef]
- Mai, H.-Q.; Chen, Q.-Y.; Chen, D.; Hu, C.; Yang, K.; Wen, J.; Li, J.; Shi, Y.-R.; Jin, F.; Xu, R.; et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: A multicenter randomized phase 3 trial. Nat. Med. 2021, 27, 1536–1543. [Google Scholar] [CrossRef]
- Skalova, A.; Hyrcza, M.D. Proceedings of the North American Society of Head and Neck Pathology Companion Meeting, New Orleans, LA, March 12, 2023: Classification of Salivary Gland Tumors: Remaining Controversial Issues? Head Neck Pathol. 2023, 17, 285–291. [Google Scholar] [CrossRef]
- Skálová, A.; Hyrcza, M.D.; Leivo, I. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Salivary Glands. Head Neck Pathol. 2022, 16, 40–53. [Google Scholar] [CrossRef]
- Boukheris, H.; Curtis, R.E.; Land, C.E.; Dores, G.M. Incidence of carcinoma of the major salivary glands according to the WHO classification, 1992 to 2006: A population-based study in the United States. Cancer Epidemiol Biomark. Prev. 2009, 18, 2899–2906. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.H.; Batsakis, J.G.; McClatchey, K.D. Postirradiation malignant salivary gland tumor. Arch. Otolaryngol. 1976, 102, 699–701. [Google Scholar] [CrossRef] [PubMed]
- Boukheris, H.; Ron, E.; Dores, G.M.; Stovall, M.; Smith, S.A.; Curtis, R.E. Risk of radiation-related salivary gland carcinomas among survivors of Hodgkin lymphoma: A population-based analysis. Cancer 2008, 113, 3153–3159. [Google Scholar] [CrossRef] [PubMed]
- Horn-Ross, P.L.; Ljung, B.M.; Morrow, M. Environmental factors and the risk of salivary gland cancer. Epidemiology 1997, 8, 414–419. [Google Scholar] [CrossRef]
- Schwarz-Furlan, S.; Brase, C.; Stockmann, P.; Furlan, I.; Hartmann, A. Hereditary head and neck tumors. Pathologe 2010, 31, 477–484. [Google Scholar] [CrossRef]
- van Herpen, C.; Poorten, V.V.; Skalova, A.; Terhaard, C.; Maroldi, R.; van Engen, A.; Baujat, B.; Locati, L.; Jensen, A.; Smeele, L.; et al. Salivary gland cancer: ESMO-European Reference Network on Rare Adult Solid Cancers (EURACAN) Clinical Practice Guideline for diagnosis, treatment and follow-up. ESMO Open 2022, 7, 100602. [Google Scholar] [CrossRef]
- Mayer, M.; Wolber, P.; Prinz, J.; Jansen, L.; Esser, J.; Shabli, S.; Quaas, A.; Klußmann, J.P.; Sharma, S.J.; Nachtsheim, L.; et al. The extent of androgen receptor and HER2 expression allows for targeted therapy in most cases of salivary duct carcinoma: Analysis of clinical and histopathological data in a tertiary care center. Eur. Arch. Otorhinolaryngol. 2024, 281, 3779–3789. [Google Scholar] [CrossRef]
- Di Palma, S.; Simpson, R.H.W.; Marchiò, C.; Skálová, A.; Ungari, M.; Sandison, A.; Whitaker, S.; Parry, S.; Reis-Filho, J.S. Salivary duct carcinomas can be classified into luminal androgen receptor-positive, HER2 and basal-like phenotypes. Histopathology 2012, 61, 629–643. [Google Scholar] [CrossRef]
- Dalin, M.G.; Watson, P.A.; Ho, A.L.; Morris, L.G.T. Androgen Receptor Signaling in Salivary Gland Cancer. Cancers 2017, 9, 17. [Google Scholar] [CrossRef]
- van Boxtel, W.; Locati, L.; Grunsven, A.v.E.-V.; Bergamini, C.; Jonker, M.; Fiets, E.; Cavalieri, S.; Tooten, S.; Bos, E.; Quattrone, P.; et al. Adjuvant androgen deprivation therapy for poor-risk, androgen receptor-positive salivary duct carcinoma. Eur. J. Cancer 2019, 110, 62–70. [Google Scholar] [CrossRef]
- Williams, L.; Thompson, L.D.; Seethala, R.R.; Weinreb, I.; Assaad, A.M.; Tuluc, M.; Din, N.U.; Purgina, B.; Lai, C.; Griffith, C.C.; et al. Salivary duct carcinoma: The predominance of apocrine morphology, prevalence of histologic variants, and androgen receptor expression. Am. J. Surg. Pathol. 2015, 39, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, P.A.; Blanck, C.; Eneroth, C.M. Mucoepidermoid carcinoma of the parotid gland. Cancer 1968, 22, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Batsakis, J.G.; Chinn, E.; Regezi, J.A.; Repola, D.A. The pathology of head and neck tumors: Salivary glands, part 2. Head Neck Surg. 1978, 1, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Goode, R.K.; Auclair, P.L.; Ellis, G.L. Mucoepidermoid carcinoma of the major salivary glands: Clinical and histopathologic analysis of 234 cases with evaluation of grading criteria. Cancer 1998, 82, 1217–1224. [Google Scholar] [CrossRef]
- Brandwein, M.S.; Ivanov, K.; Wallace, D.I.; Hille, J.J.; Wang, B.; Fahmy, A.; Bodian, C.; Urken, M.L.; Gnepp, D.R.; Huvos, A.; et al. Mucoepidermoid carcinoma: A clinicopathologic study of 80 patients with special reference to histological grading. Am. J. Surg. Pathol. 2001, 25, 835–845. [Google Scholar] [CrossRef]
- Katabi, N.; Ghossein, R.; Ali, S.; Dogan, S.; Klimstra, D.; Ganly, I. Prognostic features in mucoepidermoid carcinoma of major salivary glands with emphasis on tumour histologic grading. Histopathology 2014, 65, 793–804. [Google Scholar] [CrossRef]
- Cipriani, N.A.; Lusardi, J.J.; McElherne, J.P.; Pearson, A.T.; Olivas, A.D.; Fitzpatrick, C.P.; Lingen, M.W.D.; Blair, E.A. Mucoepidermoid Carcinoma: A Comparison of Histologic Grading Systems and Relationship to MAML2 Rearrangement and Prognosis. Am. J. Surg. Pathol. 2019, 43, 885–897. [Google Scholar] [CrossRef]
- Xu, B.; Alzumaili, B.; Furlan, K.C.; Martinez, G.H.M.; Cohen, M.; Ganly, I.; Ghossein, R.A.; Katabi, N. Critical Appraisal of Histologic Grading for Mucoepidermoid Carcinoma of Salivary Gland: Is an Objective Prognostic 2-tiered Grading System Possible? Am. J. Surg. Pathol. 2023, 47, 1219–1229. [Google Scholar] [CrossRef]
- Papadas, T.; Chorianopoulos, D.; Mastronikolis, N. Nasopharyngeal adenoid cystic carcinoma: A rare nasopharyngeal tumor. Eur. Rev. Med. Pharmacol. Sci. 2007, 11, 55–57. [Google Scholar]
- Skalova, A.; Leivo, I.; Hellquist, H.; Agaimy, A.; Simpson, R.H.; Stenman, G.D.; Poorten, V.M.V.; Bishop, J.A.; Franchi, A.; Hernandez-Prera, J.C.; et al. High-grade Transformation/Dedifferentiation in Salivary Gland Carcinomas: Occurrence Across Subtypes and Clinical Significance. Adv. Anat. Pathol. 2021, 28, 107–118. [Google Scholar] [CrossRef]
- Verma, A.; Seethala, R.R.; Wang, H. High-Grade Transformation and Carcinosarcoma. Arch Pathol Lab Med. 2024. [Google Scholar] [CrossRef]
- Bishop, J.A.; Sajed, D.P.; Weinreb, I.; Dickson, B.C.; Bilodeau, E.A.; Agaimy, A.; Franchi, A.; Khurram, S.A.; Da Forno, P.; Robledo, J.; et al. Microsecretory Adenocarcinoma of Salivary Glands: An Expanded Series of 24 Cases. Head Neck Pathol. 2021, 15, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Ide, F.; Kikuchi, K.; Kusama, K. Microcystic adnexal (sclerosing sweat duct) carcinoma of intraoral minor salivary gland origin: An. extracutaneous adnexal neoplasm? Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2011, 112, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Rooper, L.M.; Bishop, J.A. Soft Tissue Special Issue: Adamantinoma-Like Ewing Sarcoma of the Head and Neck: A Practical Review of a Challenging Emerging Entity. Head Neck Pathol. 2020, 14, 59–69. [Google Scholar] [CrossRef]
- Skálová, A.; Stenman, G.; Simpson, R.H.; Hellquist, H.; Slouka, D.; Svoboda, T.; Bishop, J.A.; Hunt, J.L.; Nibu, K.-I.; Rinaldo, A.; et al. The Role of Molecular Testing in the Differential Diagnosis of Salivary Gland Carcinomas. Am. J. Surg. Pathol. 2018, 42, e11–e27. [Google Scholar] [CrossRef] [PubMed]
- Toper, M.H.; Sarioglu, S. Molecular Pathology of Salivary Gland Neoplasms: Diagnostic, Prognostic, and Predictive Perspective. Adv. Anat. Pathol. 2021, 28, 81–93. [Google Scholar] [CrossRef]
- Van Herpen, C.M.L.; Uijen, M.; Van Ruitenbeek, N.; Driessen, C.M.L.; Gotthardt, M.; Nagarajah, J. 177 Lu-PSMA radioligand therapy for patients with recurrent/metastatic (R/M) salivary gland cancer (SGC): A phase II pilot study. JCO 2023, 41 (Suppl. S16), 6099. [Google Scholar] [CrossRef]
- Filippini, D.M.; Pagani, R.; Tober, N.; Lorini, L.; Riefolo, M.; Molinari, G.; Burato, A.; Alfieri, S.; Bossi, P.; Presutti, L. HER2-targeted therapies for salivary gland cancers. Oral. Oncol. 2024, 148, 106612. [Google Scholar] [CrossRef]
- Falchook, G.S.; Lippman, S.M.; Bastida, C.C.; Kurzrock, R. Human epidermal receptor 2-amplified salivary duct carcinoma: Regression with dual human epidermal receptor 2 inhibition and anti-vascular endothelial growth factor combination treatment. Head Neck 2014, 36, E25–E27. [Google Scholar] [CrossRef]
- Kadowaki, S.; Yatabe, Y.; Hirakawa, H.; Komori, A.; Kondoh, C.; Hasegawa, Y.; Muro, K. Complete Response to Trastuzumab-Based Chemotherapy in a Patient with Human Epidermal Growth Factor Receptor-2-Positive Metastatic Salivary Duct Carcinoma ex Pleomorphic Adenoma. Case Rep. Oncol. 2013, 6, 450–455. [Google Scholar] [CrossRef]
- Kinoshita, I.; Kano, S.; Honma, Y.; Kiyota, N.; Tahara, M.; Takahashi, S.; Ito, Y.; Hatanaka, Y.; Matsuno, Y.; Dosaka-Akita, H. 849O Phase II study of trastuzumab deruxtecan in patients with HER2-positive recurrent/metastatic salivary gland cancer: Results from the MYTHOS trial. Ann. Oncol. 2024, 35, S613–S614. [Google Scholar] [CrossRef]
- Locati, L.D.; Perrone, F.; Cortelazzi, B.; Vullo, S.L.; Bossi, P.; Dagrada, G.; Quattrone, P.; Bergamini, C.; Potepan, P.; Civelli, E.; et al. Clinical activity of androgen deprivation therapy in patients with metastatic/relapsed androgen receptor-positive salivary gland cancers. Head Neck 2016, 38, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Steuer, C.E.; Hanna, G.J.; Viswanathan, K.; Bates, J.E.; Kaka, A.S.; Schmitt, N.C.; Ho, A.L.; Saba, N.F. The evolving landscape of salivary gland tumors. CA Cancer J. Clin. 2023, 73, 597–619. [Google Scholar] [CrossRef]
- Youlden, D.R.; Cramb, S.M.; Peters, S.; Porceddu, S.V.; Møller, H.; Fritschi, L.; Baade, P.D. International comparisons of the incidence and mortality of sinonasal cancer. Cancer Epidemiol. 2013, 37, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.H.; Reh, D.D. Incidence and survival in patients with sinonasal cancer: A historical analysis of population-based data. Head Neck 2012, 34, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Mirghani, H.; Mortuaire, G.; Armas, G.L.; Hartl, D.; Aupérin, A.; El Bedoui, S.; Chevalier, D.; Lefebvre, J.L. Sinonasal cancer: Analysis of oncological failures in 156 consecutive cases. Head Neck 2014, 36, 667–674. [Google Scholar] [CrossRef]
- Baněčková, M.; Cox, D. Top 10 Basaloid Neoplasms of the Sinonasal Tract. Head Neck Pathol. 2023, 17, 16–32. [Google Scholar] [CrossRef]
- Lewis, J.S.; Westra, W.H.; Thompson, L.D.R.; Barnes, L.; Cardesa, A.; Hunt, J.L.; Williams, M.D.; Slootweg, P.J.; Triantafyllou, A.; Woolgar, J.A.; et al. The sinonasal tract: Another potential “hot spot” for carcinomas with transcriptionally-active human papillomavirus. Head Neck Pathol. 2014, 8, 241–249. [Google Scholar] [CrossRef]
- Bishop, J.A.; Guo, T.W.; Smith, D.F.; Wang, H.; Ogawa, T.; Pai, S.I.; Westra, W.H. Human papillomavirus-related carcinomas of the sinonasal tract. Am. J. Surg. Pathol. 2013, 37, 185–192. [Google Scholar] [CrossRef]
- El-Mofty, S.K.; Lu, D.W. Prevalence of high-risk human papillomavirus DNA in nonkeratinizing (cylindrical cell) carcinoma of the sinonasal tract: A distinct clinicopathologic and molecular disease entity. Am. J. Surg. Pathol. 2005, 29, 1367–1372. [Google Scholar] [CrossRef]
- Alos, L.; Moyano, S.; Nadal, A.; Alobid, I.; Blanch, J.L.; Ayala, E.; Lloveras, B.; Quint, W.; Cardesa, A.; Ordi, J. Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer 2009, 115, 2701–2709. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, A.; Wenig, B.M. Sinonasal undifferentiated carcinoma: Clinical and pathologic features and a discussion on classification, cellular differentiation, and differential diagnosis. Adv. Anat. Pathol. 2005, 12, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Wenig, B.M. Undifferentiated malignant neoplasms of the sinonasal tract. Arch. Pathol. Lab. Med. 2009, 133, 699–712. [Google Scholar] [CrossRef]
- Franchi, A.; Palomba, A.; Cardesa, A. Current diagnostic strategies for undifferentiated tumours of the nasal cavities and paranasal sinuses. Histopathology 2011, 59, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Dogan, S.; Chute, D.J.; Xu, B.; Ptashkin, R.N.; Chandramohan, R.; Casanova-Murphy, J.; Nafa, K.; Bishop, J.A.; Chiosea, S.I.; Stelow, E.B.; et al. Frequent IDH2 R172 mutations in undifferentiated and poorly-differentiated sinonasal carcinomas. J. Pathol. 2017, 242, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Carosi, F.; Broseghini, E.; Fabbri, L.; Corradi, G.; Gili, R.; Forte, V.; Roncarati, R.; Filippini, D.M.; Ferracin, M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers 2024, 16, 2752. [Google Scholar] [CrossRef]
- Mito, J.K.; Bishop, J.A.; Sadow, P.M.; Stelow, E.B.; Faquin, W.C.; Mills, S.E.; Krane, J.F.; French, C.A.; Fletcher, C.D.; Hornick, J.L.; et al. Immunohistochemical Detection and Molecular Characterization of IDH-mutant Sinonasal Undifferentiated Carcinomas. Am. J. Surg. Pathol. 2018, 42, 1067–1075. [Google Scholar] [CrossRef]
- Chambers, K.J.; Lehmann, A.E.; Remenschneider, A.; Dedmon, M.; Meier, J.; Gray, S.T.; Lin, D.T. Incidence and survival patterns of sinonasal undifferentiated carcinoma in the United States. J. Neurol. Surg. B Skull Base 2015, 76, 94–100. [Google Scholar] [CrossRef]
- Thompson, L.D.R.; Bishop, J.A. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Nasal Cavity, Paranasal Sinuses and Skull Base. Head Neck Pathol. 2022, 16, 1–18. [Google Scholar] [CrossRef]
- Rodarte, A.I.; Parikh, A.S.; Gadkaree, S.K.; Lehmann, A.E.; Faquin, W.C.; Holbrook, E.H.; Lin, D.T. Human Papillomavirus Related Multiphenotypic Sinonasal Carcinoma: Report of a Case with Early and Progressive Metastatic Disease. J. Neurol. Surg. Rep. 2019, 80, e41–e43. [Google Scholar] [CrossRef]
- Stelow, E.B.; Mills, S.E.; Jo, V.Y.; Carlson, D.L. Adenocarcinoma of the upper aerodigestive tract. Adv. Anat. Pathol. 2010, 17, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Slootweg, P.J.; Ferlito, A.; Cardesa, A.; Thompson, L.D.R.; Hunt, J.L.; Strojan, P.; Takes, R.P.; Triantafyllou, A.; Woolgar, J.A.; Rinaldo, A.; et al. Sinonasal tumors: A clinicopathologic update of selected tumors. Eur. Arch. Otorhinolaryngol. 2013, 270, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.E.; Mitchell, C.M.; Strait, K.M.; Lathan, C.S.; Stelow, E.B.; Lüer, S.C.; Muhammed, S.; Evans, A.G.; Sholl, L.M.; Rosai, J.; et al. Clinicopathologic features and long-term outcomes of NUT midline carcinoma. Clin. Cancer Res. 2012, 18, 5773–5779. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Napolitano, M.; Venturelli, M.; Molinaro, E.; Toss, A. NUT midline carcinoma of the head and neck: Current perspectives. Onco Targets Ther. 2019, 12, 3235–3244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- García-Marín, R.; Reda, S.; Riobello, C.; Cabal, V.N.; Suárez-Fernández, L.; Vivanco, B.; López, F.; Llorente, J.L.; Hermsen, M.A. CD8+ Tumour-Infiltrating Lymphocytes and Tumour Microenvironment Immune Types as Biomarkers for Immunotherapy in Sinonasal Intestinal-Type Adenocarcinoma. Vaccines 2020, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Riobello, C.; Vivanco, B.; Reda, S.; López-Hernández, A.; García-Inclán, C.; Potes-Ares, S.; Cabal, V.N.; López, F.; Llorente, J.L.; Hermsen, M.A. Programmed death ligand-1 expression as immunotherapeutic target in sinonasal cancer. Head Neck 2018, 40, 818–827. [Google Scholar] [CrossRef]
- Quan, H.; Yan, L.; Wang, S.; Wang, S. Clinical relevance and significance of programmed death-ligand 1 expression, tumor-infiltrating lymphocytes, and p16 status in sinonasal squamous cell carcinoma. Cancer Manag. Res. 2019, 11, 4335–4345. [Google Scholar] [CrossRef]
- Martínez, J.G.; Pérez-Escuredo, J.; López, F.; Suárez, C.; Álvarez-Marcos, C.; Llorente, J.L.; Hermsen, M.A. Microsatellite instability analysis of sinonasal carcinomas. Otolaryngol. Head Neck Surg. 2009, 140, 55–60. [Google Scholar] [CrossRef]
- De Cecco, L.; Serafini, M.S.; Facco, C.; Granata, R.; Orlandi, E.; Fallai, C.; Licitra, L.; Marchesi, E.; Perrone, F.; Pilotti, S.; et al. A functional gene expression analysis in epithelial sinonasal cancer: Biology and clinical relevance behind three histological subtypes. Oral. Oncol. 2019, 90, 94–101. [Google Scholar] [CrossRef]
- Villanueva-Fernández, E.; Hermsen, M.A.; Suárez-Fernández, L.; Vivanco, B.; Franchi, A.; García-Marín, R.; Cabal, V.N.; Codina-Martínez, H.; Lorenzo-Guerra, S.L.; Llorente, J.L.; et al. Biomarkers for Immunotherapy in Poorly Differentiated Sinonasal Tumors. Biomedicines 2022, 10, 2205. [Google Scholar] [CrossRef]
- Denaro, N.; Merlano, M.; Numico, G.; Garrone, O.; Bossi, P. Complete response to immunotherapy in sinonasal undifferentiated carcinoma. Tumori 2021, 107, NP101–NP104. [Google Scholar] [CrossRef] [PubMed]
- Hoke, A.T.; Takahashi, Y.; Padget, M.R.; Gomez, J.; Amit, M.; Burks, J.; Bell, D.; Xie, T.; Soon-Shiong, P.; Hodge, J.W.; et al. Targeting sinonasal undifferentiated carcinoma with a combinatory immunotherapy approach. Transl. Oncol. 2024, 44, 101943. [Google Scholar] [CrossRef] [PubMed]
- Trinh, J.Q.; Acosta, C.; Easwar, A.; Galamaga, R.; Tan, A. Durable and dramatic response to checkpoint inhibition combined with COX-2 inhibitor celecoxib in a patient with p16+ metastatic sinonasal undifferentiated carcinoma: A case study. Cancer Rep. 2024, 7, e1915. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, S.; Azad, S.; Thakur, B.; Acharya, S. Nasopharyngeal melanoma: An unusual entity. J. Oral. Maxillofac. Pathol. 2021, 25 (Suppl. S1), S1–S3. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.R.; Mehnert, J.M. Mucosal Melanoma: Epidemiology, Biology and Treatment. Cancer Treat. Res. 2016, 167, 295–320. [Google Scholar] [CrossRef]
- Sergi, M.C.; Filoni, E.; Triggiano, G.; Cazzato, G.; Internò, V.; Porta, C.; Tucci, M. Mucosal Melanoma: Epidemiology, Clinical Features, and Treatment. Curr. Oncol. Rep. 2023, 25, 1247–1258. [Google Scholar] [CrossRef]
- Paolino, G.; Didona, D.; Macrì, G.; Calvieri, S.; Mercuri, S.R. Nasopharyngeal Melanoma. In Noncutaneous Melanoma; Scott, J.F., Gerstenblith, M.R., Eds.; Codon Publications: Singapore, 2018. Available online: http://www.ncbi.nlm.nih.gov/books/NBK506987/ (accessed on 24 September 2024).
- Smith, M.H.; Bhattacharyya, I.; Cohen, D.M.; Islam, N.M.; Fitzpatrick, S.G.; Montague, L.J.; Damm, D.D.; Fowler, C.B. Melanoma of the Oral Cavity: An Analysis of 46 New Cases with Emphasis on Clinical and Histopathologic Characteristics. Head Neck Pathol. 2016, 10, 298–305. [Google Scholar] [CrossRef]
- Hovander, D.; Allen, J.; Oda, D.; Moshiri, A.S. PRAME immunohistochemistry is useful in the diagnosis of oral malignant melanoma. Oral. Oncol. 2022, 124, 105500. [Google Scholar] [CrossRef]
- Ricci, C.; Altavilla, M.V.; Corti, B.; Pasquini, E.; Presutti, L.; Baietti, A.M.; Amorosa, L.; Balbi, T.; Baldovini, C.; Ambrosi, F.; et al. PRAME Expression in Mucosal Melanoma of the Head and Neck Region. Am. J. Surg. Pathol. 2023, 47, 599–610. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Accorona, R.; Botti, G.; Farina, D.; Fossati, P.; Gatta, G.; Gogas, H.; Lombardi, D.; Maroldi, R.; Nicolai, P.; et al. Mucosal melanoma of the head and neck. Crit. Rev. Oncol. Hematol. 2017, 112, 136–152. [Google Scholar] [CrossRef]
- Nenclares, P.; Harrington, K.J. Management of Head and Neck Mucosal Melanoma. Oral. Maxillofac. Surg. Clin. N. Am. 2022, 34, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Curtin, J.A.; Busam, K.; Pinkel, D.; Bastian, B.C. Somatic activation of KIT in distinct subtypes of melanoma. J. Clin. Oncol. 2006, 24, 4340–4346. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Antonescu, C.R.; Wolchok, J.D.; Chapman, P.B.; Roman, R.-A.; Teitcher, J.; Panageas, K.S.; Busam, K.J.; Chmielowski, B.; Lutzky, J.; et al. KIT as a therapeutic target in metastatic melanoma. JAMA 2011, 305, 2327–2334. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Robert, C.; Ribas, A.; Hodi, F.S.; Walpole, E.; Daud, A.; Arance, A.S.; Brown, E.; Hoeller, C.; Mortier, L.; et al. Antitumour activity of pembrolizumab in advanced mucosal melanoma: A post-hoc analysis of KEYNOTE-001, 002, 006. Br. J. Cancer 2018, 119, 670–674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’angelo, S.P.; Larkin, J.; Sosman, J.A.; Lebbé, C.; Brady, B.; Neyns, B.; Schmidt, H.; Hassel, J.C.; Hodi, F.S.; Lorigan, P.; et al. Efficacy and Safety of Nivolumab Alone or in Combination With Ipilimumab in Patients With Mucosal Melanoma: A Pooled Analysis. J. Clin. Oncol. 2017, 35, 226–235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, X.; Sheng, X.; Chi, Z.; Si, L.; Cui, C.; Kong, Y.; Tang, B.; Mao, L.; Wang, X.; Lian, B.; et al. Randomized Phase II Study of Bevacizumab in Combination With Carboplatin Plus Paclitaxel in Patients With Previously Untreated Advanced Mucosal Melanoma. J. Clin. Oncol. 2021, 39, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Fang, M.; Chen, Y.; Wei, X.; Cao, J.; Lin, J.; Zhang, P.; Chen, L.; Cao, X.; Chen, Y.; et al. Atezolizumab plus Bevacizumab in Patients with Unresectable or Metastatic Mucosal Melanoma: A Multicenter, Open-Label, Single-Arm Phase II Study. Clin. Cancer Res. 2022, 28, 4642–4648. [Google Scholar] [CrossRef] [PubMed]
- Ferry, J.A. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Hematolymphoid Proliferations and Neoplasia. Head Neck Pathol. 2022, 16, 101–109. [Google Scholar] [CrossRef]
- Etemad-Moghadam, S.; Tirgary, F.; Keshavarz, S.; Alaeddini, M. Head and neck non-Hodgkin’s lymphoma: A 20-year demographic study of 381 cases. Int. J. Oral. Maxillofac. Surg. 2010, 39, 869–872. [Google Scholar] [CrossRef]
- Vega, F.; Lin, P.; Medeiros, L.J. Extranodal lymphomas of the head and neck. Ann. Diagn. Pathol. 2005, 9, 340–350. [Google Scholar] [CrossRef]
- Thompson, L.D. Diffuse large B-cell lymphoma of the nasopharynx. Ear Nose Throat J. 2012, 91, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Zapater, E.; Bagán, J.V.; Carbonell, F.; Basterra, J. Malignant lymphoma of the head and neck. Oral. Dis. 2010, 16, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Tse, E.; Kwong, Y.L. NK/T-cell lymphomas. Best Pract. Res. Clin. Haematol. 2019, 32, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Tse, E.; Kwong, Y.L. The diagnosis and management of NK/T-cell lymphomas. J. Hematol. Oncol. 2017, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Romero, C.; Bologna-Molina, R.; de Almeida, O.P.; Santos-Silva, A.R.; Prado-Ribeiro, A.C.; Brandao, T.B.; Carlos, R. Extranodal NK/T cell lymphoma, nasal type: An updated overview. Crit. Rev. Oncol. Hematol. 2021, 159, 103237. [Google Scholar] [CrossRef] [PubMed]
- Mete, O.; Wenig, B.M. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Overview of the 2022 WHO Classification of Head and Neck Neuroendocrine Neoplasms. Head Neck Pathol. 2022, 16, 123–142. [Google Scholar] [CrossRef]
- Ohmoto, A.; Sato, Y.; Asaka, R.; Fukuda, N.; Wang, X.; Urasaki, T.; Hayashi, N.; Sato, Y.; Nakano, K.; Yunokawa, M.; et al. Clinicopathological and genomic features in patients with head and neck neuroendocrine carcinoma. Mod. Pathol. 2021, 34, 1979–1989. [Google Scholar] [CrossRef]
- Filippini, D.M.; Abeshi, A.; Tober, N.; Marchese, P.V.; Andrini, E.; Lamberti, G.; Agosti, R.; Molinari, G.; Fermi, M.; Presutti, L. Calcitonin-secreting neuroendocrine tumor of the larynx, a diagnostic challenge of a rare neoplasm: A case report and literature review. AME Case Rep. 2024, 8, 21. [Google Scholar] [CrossRef]
- Farchoukh, L.; Pantanowitz, L.; Xing, J.; Monaco, S.E. Azzopardi Phenomenon Associated with Small Cell Carcinoma. Diagn. Cytopathol. 2019, 47, 837–838. [Google Scholar] [CrossRef]
- Alos, L.; Hakim, S.; Larque, A.-B.; de la Oliva, J.; Rodriguez-Carunchio, L.; Caballero, M.; Nadal, A.; Marti, C.; Guimera, N.; Fernandez-Figueras, M.-T.; et al. p16 overexpression in high-grade neuroendocrine carcinomas of the head and neck: Potential diagnostic pitfall with HPV-related carcinomas. Virchows Arch. 2016, 469, 277–284. [Google Scholar] [CrossRef]
- Bal, M.; Sharma, A.; Rane, S.U.; Mittal, N.; Chaukar, D.; Prabhash, K.; Patil, A. Neuroendocrine Neoplasms of the Larynx: A Clinicopathologic Analysis of 27 Neuroendocrine Tumors and Neuroendocrine Carcinomas. Head Neck Pathol. 2022, 16, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Dogukan, F.M.; Yilmaz Ozguven, B.; Dogukan, R.; Kabukcuoglu, F. Comparison of Monitor-Image and Printout-Image Methods in Ki-67 Scoring of Gastroenteropancreatic Neuroendocrine Tumors. Endocr. Pathol. 2019, 30, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Uccella, S.; La Rosa, S.; Metovic, J.; Marchiori, D.; Scoazec, J.-Y.; Volante, M.; Mete, O.; Papotti, M. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites. Endocr. Pathol. 2021, 32, 192–210. [Google Scholar] [CrossRef]
- Vitzthum, L.K.; Brown, L.C.; Rooney, J.W.; Foote, R.L. Head and Neck Soft Tissue Sarcomas Treated with Radiation Therapy. Rare Tumors 2016, 8, 6165. [Google Scholar] [CrossRef] [PubMed]
- Kraus, D.H.; Dubner, S.; Harrison, L.B.; Strong, E.W.; Hajdu, S.I.; Kher, U.; Begg, C.; Brennan, M.F. Prognostic factors for recurrence and survival in head and neck soft tissue sarcomas. Cancer 1994, 74, 697–702. [Google Scholar] [CrossRef]
- Stavrakas, M.; Nixon, I.; Andi, K.; Oakley, R.; Jeannon, J.P.; Lyons, A.; McGurk, M.; Urbano, T.G.; Thavaraj, S.; Simo, R. Head and neck sarcomas: Clinical and histopathological presentation, treatment modalities, and outcomes. J. Laryngol. Otol. 2016, 130, 850–859. [Google Scholar] [CrossRef]
- Eeles, R.; Fisher, C.; A’Hern, R.; Robinson, M.; Rhys-Evans, P.; Henk, J.; Archer, D.; Harmer, C. Head and neck sarcomas: Prognostic factors and implications for treatment. Br. J. Cancer 1993, 68, 201–207. [Google Scholar] [CrossRef]
- Colville, R.J.; Charlton, F.; Kelly, C.G.; Nicoll, J.J.; McLean, N.R. Multidisciplinary management of head and neck sarcomas. Head Neck 2005, 27, 814–824. [Google Scholar] [CrossRef]
- Zhan, S.; Shapiro, D.N.; Helman, L.J. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J. Clin. Investig. 1994, 94, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Sun, M.; Jiang, Y.; Zhang, T.; Sun, W.; Wang, H.; Yin, F.; Wang, Z.; Sang, W.; Xu, J.; et al. Anlotinib, a novel small molecular tyrosine kinase inhibitor, suppresses growth and metastasis via dual blockade of VEGFR2 and MET in osteosarcoma. Int. J. Cancer 2019, 145, 979–993. [Google Scholar] [CrossRef]
- Tian, Z.; Niu, X.; Yao, W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front. Oncol. 2020, 10, 1642. [Google Scholar] [CrossRef]
- Lou, J.; Jiang, L.; Dai, X.; Wang, H.; Yang, J.; Guo, L.; Fang, M.; Wang, S. Radiation-Induced Sarcoma of the Head and Neck Following Radiotherapy for Nasopharyngeal Carcinoma: A Single Institutional Experience and Literature Review. Front. Oncol. 2020, 10, 526360. [Google Scholar] [CrossRef]
- Snow, A.; Ring, A.; Struycken, L.; Mack, W.; Koç, M.; Lang, J.E. Incidence of radiation induced sarcoma attributable to radiotherapy in adults: A retrospective cohort study in the SEER cancer registries across 17 primary tumor sites. Cancer Epidemiol. 2021, 70, 101857. [Google Scholar] [CrossRef] [PubMed]
- Goy, E.; Tomezak, M.; Facchin, C.; Martin, N.; Bouchaert, E.; Benoit, J.; de Schutter, C.; Nassour, J.; Saas, L.; Drullion, C.; et al. The out-of-field dose in radiation therapy induces delayed tumorigenesis by senescence evasion. eLife 2022, 11, e67190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhao, L.; Zhu, Y.-J.; Qiu, B.; Guo, S.-P.; Li, Y.; Liu, Q.; Liu, M.-Z.; Xi, M. Prognosis of Fibrosarcoma in Patients With and Without a History of Radiation for Nasopharyngeal Carcinoma. Ann. Surg. Oncol. 2017, 24, 434–440. [Google Scholar] [CrossRef]
- Hong, D.-C.; Yang, J.; Sun, C.; Liu, Y.-T.; Shen, L.-J.; Xu, B.-S.; Que, Y.; Xia, X.; Zhang, X. Genomic Profiling of Radiation-Induced Sarcomas Reveals the Immunologic Characteristics and Its Response to Immune Checkpoint Blockade. Clin. Cancer Res. 2023, 29, 2869–2884. [Google Scholar] [CrossRef]
- Villegas, K.M.; Paparella, M.L. Malignant odontogenic tumors. A report of a series of 30 cases and review of the literature. Oral. Oncol. 2022, 134, 106068. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, E.A.; Collins, B.M. Odontogenic Cysts and Neoplasms. Surg. Pathol. Clin. 2017, 10, 177–222. [Google Scholar] [CrossRef]
- Cox, D.P.; Daniels, T.; Jordan, R.C.K. Solitary fibrous tumor of the head and neck. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2010, 110, 79–84. [Google Scholar] [CrossRef]
- Tariq, M.U.; Alsulaiman, A.; Kashif, A.; Keshk, E.; Alhassani, S.H.; Alkhudaidi, H. Solitary Fibrous Tumor of Head and Neck Region: A Series of Three Cases at an Uncommon Location With a Review of the Literature. Cureus 2024, 16, e58213. [Google Scholar] [CrossRef]
Tumor Type | Incidence * (×100.000/year) | Subtype | Histopathological Features | IHC/ Molecular Features | Prognostic Impact of Histological Type |
---|---|---|---|---|---|
NPC | 0.11 | Non-keratinizing SCC | Variety of architectural patterns (solid sheets, irregular islands, trabeculae, and isolated discohesive cells); varying numbers of lymphocytes and plasma cells. | EBV-positive. | Unclear |
Keratinizing SCC | EBV-positive (mostly in non-endemic areas). | ||||
Basaloid SCC | EBV-positive (mostly in non-endemic areas). | ||||
SGC | 0.96 | SDC | Complex architecture with cribriforming glands and a Roman-bridge pattern. | Expression of AR, HER-2 expression/amplification, PIK3CA, p53, and HRAS mutations, PTEN expression loss, and RET-NCOA4 fusion. | Poor prognosis |
MEC | Cystic and solid areas. Presence of mucin-producing cells, intermediate cells, and squamoid cells in different proportions with intracytoplasmic PAS staining. No significant keratinization. | MAML2 rearrangement; HER2 expression/amplification. | Poor prognosis if high-grade features are present; better prognosis if MAML-2 rearrangement is detected | ||
ACC | Ductal cells and myoepithelial cells; presence of perineural invasion. Mixture of different growth patterns (tubular, cribriform, solid). | MYB-NFIB and MYBL1-NFIB gene fusions; PSMA expression. | More aggressive if high-grade transformation; poor prognosis if solid pattern is prevalent | ||
Sinonasal carcinoma | 0.45 | Non-keratinizing SCC | Ribbon- or garland-like patterns; central necrotic areas and tumor cells arranged perpendicularly to the tumor–stroma interface. | HPV-positive in variants (basaloid, papillary, adenosquamous). MSI and PD-L1 positivity can be present. | Better prognosis |
Keratinizing SCC | Irregular nests and cords of keratinizing cells with desmoplastic stromal reaction. | Unclear | |||
SNUC | High-grade, undifferentiated cells; diagnosis of exclusion. | HPV- and EBV-negative. IDH1/2 mutations. | Poor prognosis | ||
ITAC | Columnar cells with interspersed goblet cells, forming papillae and glands. Paneth cells and endocrine cells present. | IHC-positive for CK20, CDX2, MUC2, and villin; KRAS and BRAF mutations. TP53 mutations. | Poor prognosis (grade 3) | ||
SNAC | Various architectural patterns, divided into low and high grade. | CK7 expression; lack of CDX2 and MUC2 expression. | NA | ||
NUT | Undifferentiated carcinoma or poorly differentiated squamous cell carcinoma; sheets of cells with moderately large, round to oval nuclei. Abrupt foci of keratinization. | NUT gene rearrangement; p63, p40, and cytokeratin positivity; CD34 is often expressed, and occasionally, neuroendocrine markers, p16, and TTF1 may also be present. | Poor prognosis | ||
Mucosal melanoma | 0.15 | Epithelioid tumor cells: amphophilic hyaline cytoplasm and atypical nuclei with a high nucleus-to-cytoplasm (N/C) ratio, with solid sheet-like or nested growth patterns. Spindled tumor cells: intersecting fascicles. | HMB45, tyrosinase, melan-A, MITF, and SOX10 differently expressed. KIT mutations/amplifications; NRAS and BRAF mutations. | NA | |
NEC | NA | Large-cell NEC | Nested, organoid, or trabecular growth with peripheral palisading, rosette formation, and central comedonecrosis. | Rare EBV positivity. | Poor prognosis |
Small-cell NEC | Tumor cells are smaller than the diameter of 3 lymphocytes. Sheet-like and nested growth, with occasional trabeculae and rosettes. Azzopardi phenomenon is common. | AE1/AE3 and CAM5.2 expression, chromogranin-A and/or synaptophysin positivity. p16 positivity. | Poor prognosis | ||
Head and neck sarcoma | 0.26 | Rhabdomyosarcomas | Alveolar type. | PAX3-FOXO1 or PAX7-FOXO1 fusion. | Poor prognosis |
Embryonal type. | IGF2 pathway alterations. | Better prognosis | |||
Osteosarcomas | Highly atypical cells producing neoplastic osteoid. | PDGFRs, VEGFRs, and RET mutations. | Poor response to conventional chemotherapy | ||
Radiation-induced sarcomas | Higher immune cell infiltration than sporadic sarcomas. | Higher immune cell infiltrations and MSI rate than sporadic sarcomas. | Poor prognosis | ||
Ameloblastoma | Common types include follicular type and plexiform type. Others: acanthomatous, granular, basaloid, and desmoplastic. | BRAF, FGFR2 or RAS gene mutations. | Benign behavior | ||
Ameloblastic carcinoma | Loss of the organized stratification of basal cells, stratum intermedium, and stellate reticulum. | SOX2 gene alterations. | Variable prognosis | ||
Clear cell odontogenic carcinoma | Acid–Schiff-positive clear cells, polygonal in shape and embedded in fibrous stroma. | p53 and high-molecular-weight cytokeratin positivity. | Fair prognosis | ||
Solitary fibrous tumor | Plump spindle cells in a collagenous background, low cell atypia, and low mitotic activity. | CD34 antigen and STAT6 expression. | Indolent tumor | ||
Primary head and neck hematological malignancies | DLBCL | Positive reaction with pan-B-cell markers, particularly for follicular center cell-derived cells (CD45RB, CD20, CD79a, bcl-6, CD10, vimentin, and p63). | Poor prognosis | ||
ENKTL | Zonal necrosis. Polymorphous infiltration of neoplastic cells mixed with inflammatory cells; pseudoepitheliomatous hyperplasia of the overlying squamous epithelium. | CD20-, sCD3-, CD4-, CD5-, and CD8-negative; CD56- and cCD3-positive. TIA1, granzyme B, and perforin expression. EBV-positive. | Poor prognosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippini, D.M.; Carosi, F.; Querzoli, G.; Fermi, M.; Ricciotti, I.; Molteni, G.; Presutti, L.; Foschini, M.P.; Locati, L.D. Rare Head and Neck Cancers and Pathological Diagnosis Challenges: A Comprehensive Literature Review. Diagnostics 2024, 14, 2365. https://doi.org/10.3390/diagnostics14212365
Filippini DM, Carosi F, Querzoli G, Fermi M, Ricciotti I, Molteni G, Presutti L, Foschini MP, Locati LD. Rare Head and Neck Cancers and Pathological Diagnosis Challenges: A Comprehensive Literature Review. Diagnostics. 2024; 14(21):2365. https://doi.org/10.3390/diagnostics14212365
Chicago/Turabian StyleFilippini, Daria Maria, Francesca Carosi, Giulia Querzoli, Matteo Fermi, Ilaria Ricciotti, Gabriele Molteni, Livio Presutti, Maria Pia Foschini, and Laura Deborah Locati. 2024. "Rare Head and Neck Cancers and Pathological Diagnosis Challenges: A Comprehensive Literature Review" Diagnostics 14, no. 21: 2365. https://doi.org/10.3390/diagnostics14212365
APA StyleFilippini, D. M., Carosi, F., Querzoli, G., Fermi, M., Ricciotti, I., Molteni, G., Presutti, L., Foschini, M. P., & Locati, L. D. (2024). Rare Head and Neck Cancers and Pathological Diagnosis Challenges: A Comprehensive Literature Review. Diagnostics, 14(21), 2365. https://doi.org/10.3390/diagnostics14212365