Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review
Abstract
:1. Introduction
2. Introduction to ChatGPT Language Models
3. Role of ChatGPT in HF Prevention
4. Role of ChatGPT in HF Diagnosis
5. Role of ChatGPT in HF Management
6. Research
7. Limitations and Future Scope
7.1. Training Data Limitations and Validity
7.2. Accuracy and Bias
7.3. Privacy and Ethical Concerns
8. Conclusions
Funding
Conflicts of Interest
Abbreviations and Acronyms
References
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the Impact of Heart Failure in the United States. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Shah, N.D.; Shi, Q.; Morlan, B.; VanHouten, H.; Long, K.H.; Roger, V.L. Lifetime Costs of Medical Care After Heart Failure Diagnosis. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Sreenivasan, J.; Lateef, N.; Abougergi, M.S.; Greene, S.J.; Ahmad, T.; Anker, S.D.; Fonarow, G.C.; Butler, J. Trends in 30- and 90-Day Readmission Rates for Heart Failure. Circ. Heart Fail. 2021, 14, e008335. [Google Scholar] [CrossRef]
- Bergethon, K.E.; Ju, C.; DeVore, A.D.; Hardy, N.C.; Fonarow, G.C.; Yancy, C.W.; Heidenreich, P.A.; Bhatt, D.L.; Peterson, E.D.; Hernandez, A.F. Trends in 30-Day Readmission Rates for Patients Hospitalized WITH Heart Failure: Findings from the Get with the Guidelines-Heart Failure Registry. Circ. Heart Fail. 2016, 9, e002594. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- McCullough, P.A.; Mehta, H.S.; Barker, C.M.; Van Houten, J.; Mollenkopf, S.; Gunnarsson, C.; Ryan, M.; Cork, D.P. Mortality and guideline-directed medical therapy in real-world heart failure patients with reduced ejection fraction. Clin. Cardiol. 2021, 44, 1192–1198. [Google Scholar] [CrossRef]
- Ross, J.S.; Chen, J.; Lin, Z.; Curtis, J.P.; Keenan, P.S.; Normand, S.L.; Schreiner, G.; Spertus, J.A.; Vidán, M.T.; Wang, Y.; et al. Recent National Trends in Readmission Rates After Heart Failure Hospitalization. Circ. Heart Fail. 2010, 3, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Gautam, N.; Ghanta, S.N.; Clausen, A.; Saluja, P.; Sivakumar, K.; Dhar, G.; Chang, Q.; DeMazumder, D.; Rabbat, M.G.; Greene, S.J.; et al. Contemporary Applications of Machine Learning for Device Therapy in Heart Failure. JACC Heart Fail. 2022, 10, 603–622. [Google Scholar] [CrossRef]
- Khan, M.S.; Arshad, M.S.; Greene, S.J.; Van Spall, H.G.C.; Pandey, A.; Vemulapalli, S.; Perakslis, E.; Butler, J. Artificial intelligence and heart failure: A state-of-the-art review. Eur. J. Heart Fail. 2023, 25, 1507–1525. [Google Scholar] [CrossRef]
- Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.; Aras, M.A.; Jordan, C.; et al. Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation 2018, 138, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Gautam, N.; Ghanta, S.N.; Mueller, J.; Mansour, M.; Chen, Z.; Puente, C.; Ha, Y.M.; Tarun, T.; Dhar, G.; Sivakumar, K.; et al. Artificial Intelligence, Wearables and Remote Monitoring for Heart Failure: Current and Future Applications. Diagnostics 2022, 12, 2964. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.J.; Lapidaire, W.; Leeson, P. Machine Learning Augmented Echocardiography for Diastolic Function Assessment. Front. Cardiovasc. Med. 2021, 8, 711611. [Google Scholar] [CrossRef] [PubMed]
- Radford, A. Improving Language Understanding by Generative Pre-Training. 2018. Available online: https://www.google.com.sg/url?sa=t&source=web&rct=j&opi=89978449&url=https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf&ved=2ahUKEwjXhMLf0q2JAxU3avUHHcNQONcQFnoECB4QAQ&usg=AOvVaw1PUplWBVhKvvqfKLZEP7LT (accessed on 12 March 2024).
- Roumeliotis, K.I.; Tselikas, N.D. ChatGPT and Open-AI Models: A Preliminary Review. Future Internet 2023, 15, 192. [Google Scholar] [CrossRef]
- Lecler, A.; Duron, L.; Soyer, P. Revolutionizing radiology with GPT-based models: Current applications, future possibilities and limitations of ChatGPT. Diagn. Interv. Imaging 2023, 104, 269–274. [Google Scholar] [CrossRef]
- Dave, T.; Athaluri, S.A.; Singh, S. ChatGPT in medicine: An overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front. Artif. Intell. 2023, 6, 1169595. [Google Scholar] [CrossRef]
- Zaboli, A.; Brigo, F.; Sibilio, S.; Mian, M.; Turcato, G. Human intelligence versus Chat-GPT: Who performs better in correctly classifying patients in triage? Am. J. Emerg. Med. 2024, 79, 44–47. [Google Scholar] [CrossRef]
- Hasanzad, M.; Patrinos, G.; Sarhangi, N.; Sarrami, B.; Larijani, B. Using ChatGPT to Predict the Future of Personalized Medicine. Pharmacogenomics J. 2023, 23, 178–184. [Google Scholar] [CrossRef]
- ChatGPT-OpenAI. Models GPT. Available online: https://beta.openai.com/docs/models (accessed on 13 May 2024).
- ChatGPT-OpenAI. ChatGPT. Available online: https://www.openai.com/ (accessed on 7 May 2024).
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoit, J.; Jones, L. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar] [CrossRef]
- OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L. GPT-4 Technical Report. Available online: https://www.openai.com/ (accessed on 4 March 2024).
- Pathak, A. Exploring Chatgpt: An Extensive Examination of its Background, Applications, Key Challenges, Bias, Ethics, Limitations, and Future Prospects. Appl. Key Chall. Bias Ethics Limit. Future Prospect. 2023. [Google Scholar]
- Butler, J. Primary Prevention of Heart Failure. ISRN Cardiol. 2012, 2012, 982417. [Google Scholar] [CrossRef] [PubMed]
- Su, A.; Al’Aref, S.J.; Beecy, A.N.; Min, J.K.; Karas, M.G. Clinical and Socioeconomic Predictors of Heart Failure Readmissions: A Review of Contemporary Literature. Mayo Clin. Proc. 2019, 94, 1304–1320. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report from the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef] [PubMed]
- Sarraju, A.; Bruemmer, D.; Iterson, E.V.; Cho, L.; Rodriguez, F.; Laffin, L. Appropriateness of Cardiovascular Disease Prevention Recommendations Obtained from a Popular Online Chat-Based Artificial Intelligence Model. JAMA 2023, 329, 842–844. [Google Scholar] [CrossRef]
- Mishra, J. Create a Personalized Lifestyle Coach with ChatGPT-4o. Available online: https://medium.com/@makingphotoAI/create-a-personalized-lifestyle-coach-with-chatgpt-4o-73b392b3e4e2 (accessed on 15 May 2024).
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failureDeveloped by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Ahmed, A. A Propensity Matched Study of New York Heart Association Class and Natural History End Points in Heart Failure. Am. J. Cardiol. 2007, 99, 549–553. [Google Scholar] [CrossRef]
- Kassab, J.; Dahdah, J.E.; Helou, M.C.E.; Layoun, H.; Sarraju, A.; Laffin, L.J.; Cho, L.; Kapadia, S.R.; Collier, P.; Harb, S.C.; et al. Assessing the Accuracy of an Online Chat-Based Artificial Intelligence Model in Providing Recommendations on Hypertension Management in Accordance With the 2017 American College of Cardiology/American Heart Association and 2018 European Society of Cardiology/European Society of Hypertension Guidelines. Hypertension 2023, 80, e125–e127. [Google Scholar] [CrossRef]
- Harskamp, R.E.; Clercq, L.D. Performance of ChatGPT as an AI-assisted decision support tool in medicine: A proof-of-concept study for interpreting symptoms and management of common cardiac conditions (AMSTELHEART-2). Acta Cardiol. 2024, 79, 358–366. [Google Scholar] [CrossRef]
- Hirosawa, T.; Kawamura, R.; Harada, Y.; Mizuta, K.; Tokumasu, K.; Kaji, Y.; Suzuki, T.; Shimizu, T. ChatGPT-Generated Differential Diagnosis Lists for Complex Case–Derived Clinical Vignettes: Diagnostic Accuracy Evaluation. JMIR Méd. Inform. 2023, 11, e48808. [Google Scholar] [CrossRef]
- Kanjee, Z.; Crowe, B.; Rodman, A. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA 2023, 330, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, F.; Alkagiet, S.; Tsigkriki, L.; Kleitsioti, P.; Sidiropoulos, G.; Efstratiou, D.; Askalidi, T.; Tsaousidis, A.; Siarkos, M.; Giannakopoulou, P.; et al. ChatGPT and Patients With Heart Failure. Angiology 2024. [Google Scholar] [CrossRef] [PubMed]
- Fijačko, N.; Prosen, G.; Abella, B.S.; Metličar, Š.; Štiglic, G. Can novel multimodal chatbots such as Bing Chat Enterprise, ChatGPT-4 Pro, and Google Bard correctly interpret electrocardiogram images? Resuscitation 2023, 193, 110009. [Google Scholar] [CrossRef]
- White-Williams, C.; Rossi, L.P.; Bittner, V.A.; Driscoll, A.; Durant, R.W.; Granger, B.B.; Graven, L.J.; Kitko, L.; Newlin, K.; Shirey, M.; et al. Addressing Social Determinants of Health in the Care of Patients With Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2020, 141, e841–e863. [Google Scholar] [CrossRef] [PubMed]
- Luttik, M.L.; Jaarsma, T.; Moser, D.; Sanderman, R.; Veldhuisen DJ van. The Importance and Impact of Social Support on Outcomes in Patients With Heart Failure. J. Cardiovasc. Nurs. 2005, 20, 162–169. [Google Scholar] [CrossRef]
- Kozaily, E.; Geagea, M.; Akdogan, E.R.; Atkins, J.; Elhazly, M.B. Accuracy and Consistency of Online Chat-based Artificial Intelligence Platforms in Answering Patients’ Questions About Heart Failure. medRxiv 2023. [Google Scholar] [CrossRef]
- Lyu, Q.; Tan, J.; Zapadka, M.E.; Niu, C.; Myers, K.J.; Wang, G.; Whitlow, C.T. Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: Results, limitations, and potential. Vis. Comput. Ind. Biomed. Art 2023, 6, 9. [Google Scholar] [CrossRef]
- Billingsley, H.E.; Hummel, S.L.; Carbone, S. The role of diet and nutrition in heart failure: A state-of-the-art narrative review. Prog. Cardiovasc. Dis. 2020, 63, 538–551. [Google Scholar] [CrossRef]
- Wickman, B.E.; Enkhmaa, B.; Ridberg, R.; Romero, E.; Cadeiras, M.; Meyers, F.; Steinberg, F. Dietary Management of Heart Failure: DASH Diet and Precision Nutrition Perspectives. Nutrients 2021, 13, 4424. [Google Scholar] [CrossRef]
- Al-Anezi, F.M. Exploring the use of ChatGPT as a virtual health coach for chronic disease management. Learn. Health Syst. 2024, 8, e10406. [Google Scholar] [CrossRef]
- Roosan, D.; Padua, P.; Khan, R.; Khan, H.; Verzosa, C.; Wu, Y. Effectiveness of ChatGPT in clinical pharmacy and the role of artificial intelligence in medication therapy management. J. Am. Pharm. Assoc. 2024, 64, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Al-Ashwal, F.Y.; Zawiah, M.; Gharaibeh, L.; Abu-Farha, R.; Bitar, A.N. Evaluating the Sensitivity, Specificity, and Accuracy of ChatGPT-3.5, ChatGPT-4, Bing AI, and Bard Against Conventional Drug-Drug Interactions Clinical Tools. Drug Healthc. Patient Saf. 2023, 15, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Singh, R.P. ChatGPT for healthcare services: An emerging stage for an innovative perspective. BenchCouncil Trans. Benchmarks Stand. Eval. 2023, 3, 100105. [Google Scholar] [CrossRef]
- Silva-Cardoso, J.; Juanatey, J.R.G.; Comin-Colet, J.; Sousa, J.M.; Cavalheiro, A.; Moreira, E. The Future of Telemedicine in the Management of Heart Failure Patients. Card. Fail. Rev. 2021, 7, e11. [Google Scholar] [CrossRef]
- Alanzi, T.M. Impact of ChatGPT on Teleconsultants in Healthcare: Perceptions of Healthcare Experts in Saudi Arabia. J. Multidiscip. Healthc. 2023, 16, 2309–2321. [Google Scholar] [CrossRef]
- Averbuch, T.; Sullivan, K.; Sauer, A.; Mamas, M.A.; Voors, A.A.; Gale, C.P.; Metra, M.; Ravindra, N.; Van Spall, H.G.C. Applications of artificial intelligence and machine learning in heart failure. Eur. Heart J.—Digit. Health 2022, 3, 311–322. [Google Scholar] [CrossRef]
- Koh, S.J.Q.; Sim, D.K.L.; Neo, S.H.S. Letter to the Editor: Educating Patients With Advanced Heart Failure Through Chat Generative Pretrained Transformer and Natural-Language Artificial Intelligence: Is Now the Time for It? J. Palliat. Med. 2023, 26, 893–895. [Google Scholar] [CrossRef]
- Agasthi, P.; Smith, S.D.; Murphy, K.M.; Golafshar, M.A.; Mookadam, F.; Anand, S.; Rosenthal, J.L.; Hardaway, B.W.; DeValeria, P.; Arsanjani, R. Artificial Intelligence Helps Predict 5-year Mortality and Graft Failure in Patients Undergoing Orthotopic Heart Transplantation. J. Heart Lung Transpl. 2020, 39, S142. [Google Scholar] [CrossRef]
- Clark, S.C. Can ChatGPT transform cardiac surgery and heart transplantation? J. Cardiothorac. Surg. 2024, 19, 108. [Google Scholar] [CrossRef]
- Rawashdeh, B.; Kim, J.; AlRyalat, S.A.; Prasad, R.; Cooper, M. ChatGPT and Artificial Intelligence in Transplantation Research: Is It Always Correct? Cureus 2023, 15, e42150. [Google Scholar] [CrossRef]
- Fivecoat, H.C.; Sayers, S.L.; Riegel, B. Social support predicts self-care confidence in patients with heart failure. Eur. J. Cardiovasc. Nurs. 2018, 17, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Graven, L.J.; Grant, J.S. Social support and self-care behaviors in individuals with heart failure: An integrative review. Int. J. Nurs. Stud. 2014, 51, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Elyoseph, Z.; Hadar-Shoval, D.; Asraf, K.; Lvovsky, M. ChatGPT outperforms humans in emotional awareness evaluations. Front. Psychol. 2023, 14, 1199058. [Google Scholar] [CrossRef] [PubMed]
- Reading, R. Closing the gap in a generation: Health equity through action on the social determinants of health. Child Care Health Dev. 2009, 35, 285–286. [Google Scholar] [CrossRef]
- Zhang, D.T.; Onyebeke, C.; Nahid, M.; Balkan, L.; Musse, M.; Pinheiro, L.C.; Sterling, M.R.; Durant, R.W.; Brown, T.M.; Levitan, E.B.; et al. Social Determinants of Health and Cardiologist Involvement in the Care of Adults Hospitalized for Heart Failure. JAMA Netw. Open 2023, 6, e2344070. [Google Scholar] [CrossRef]
- Bharmal, N.; Derose, K.P.; Felician, M.; Weden, M.M. Understanding the Upstream Social Determinants of Health; RAND: Santa Monica, CA, USA, 2015; pp. 1–18. [Google Scholar]
- Gehlert, S.; Sohmer, D.; Sacks, T.; Mininger, C.; McClintock, M.; Olopade, O. Targeting Health Disparities: A Model Linking Upstream Determinants to Downstream Interventions. Health Aff. 2017, 27, 339–349. [Google Scholar] [CrossRef]
- Ong, J.C.L.; Seng, B.J.J.; Law, J.Z.F.; Low, L.L.; Kwa, A.L.H.; Giacomini, K.M.; Ting, D.S.W. Artificial intelligence, ChatGPT, and other large language models for social determinants of health: Current state and future directions. Cell Rep. Med. 2024, 5, 101356. [Google Scholar] [CrossRef]
- Billioux, A.; Verlander, K.; Anthony, S.; Alley, D. Standardized Screening for Health-Related Social Needs in Clinical Settings: The Accountable Health Communities Screening Tool. NAM Perspect. 2017. [Google Scholar] [CrossRef]
- Carroll, N.W.; Jones, A.; Burkard, T.; Lulias, C.; Severson, K.; Posa, T. Improving Risk Stratification Using AI and Social Determinants of Health. Am. J. Manag. Care 2022, 28, 582–587. [Google Scholar] [CrossRef]
- Shaban-Nejad, A.; Michalowski, M.; Buckeridge, D.L. Health intelligence: How artificial intelligence transforms population and personalized health. NPJ Digit. Med. 2018, 1, 53. [Google Scholar] [CrossRef]
- Guevara, M.; Chen, S.; Thomas, S.; Chaunzwa, T.L.; Franco, I.; Kann, B.H.; Moningi, S.; Qian, J.M.; Goldstein, M.; Harper, S.; et al. Large language models to identify social determinants of health in electronic health records. NPJ Digit. Med. 2024, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the Feasibility of ChatGPT in Healthcare: An Analysis of Multiple Clinical and Research Scenarios. J. Méd. Syst. 2023, 47, 33. [Google Scholar] [CrossRef]
- Wang, S.; Scells, H.; Koopman, B.; Zuccon, G. Can ChatGPT Write a Good Boolean Query for Systematic Review Literature Search? arXiv 2023, arXiv:2302.03495. [Google Scholar]
- Teperikidis, E.; Boulmpou, A.; Potoupni, V.; Kundu, S.; Singh, B.; Papadopoulos, C. Does the long-term administration of proton pump inhibitors increase the risk of adverse cardiovascular outcomes? A ChatGPT powered umbrella review. Acta Cardiol. 2023, 78, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Marchandot, B.; Matsushita, K.; Carmona, A.; Trimaille, A.; Morel, O. ChatGPT: The next frontier in academic writing for cardiologists or a pandora’s box of ethical dilemmas. Eur. Heart J. Open 2023, 3, oead007. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, Y.; Higaki, A.; Yamaguchi, O. ChatGPT’s ability to classify virtual reality studies in cardiology. Eur. Heart J.-Digit. Health 2023, 4, 141–142. [Google Scholar] [CrossRef]
- Olander, J.; Olander, J. ChatGPT ECG Analyst. OpenAI. Available online: https://openai.com (accessed on 5 May 2024).
- Caruccio, L.; Cirillo, S.; Polese, G.; Solimando, G.; Sundaramurthy, S.; Tortora, G. Can ChatGPT provide intelligent diagnoses? A comparative study between predictive models and ChatGPT to define a new medical diagnostic bot. Expert Syst. Appl. 2024, 235, 121186. [Google Scholar] [CrossRef]
- Zhao, A.; Wu, Y. Future implications of ChatGPT in pharmaceutical industry: Drug discovery and development. Front. Pharmacol. 2023, 14, 1194216. [Google Scholar] [CrossRef]
- Funk, P.F.; Hoch, C.C.; Knoedler, S.; Knoedler, L.; Cotofana, S.; Sofo, G.; Bashiri Dezfouli, A.; Wollenberg, B.; Guntinas-Lichius, O.; Alfertshofer, M. ChatGPT’s Response Consistency: A Study on Repeated Queries of Medical Examination Questions. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 657–668. [Google Scholar] [CrossRef]
- Kamulegeya, L.; Bwanika, J.; Okello, M.; Rusoke, D.; Nassiwa, F.; Lubega, W.; Musinguzi, D.; Börve, A. Using artificial intelligence on dermatology conditions in Uganda: A case for diversity in training data sets for machine learning. Afr. Health Sci. 2023, 23, 753–763. [Google Scholar] [CrossRef]
- Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of Hallucination in Natural Language Generation. ACM Comput. Surv. 2023, 55, 1–38. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, Y.; Gao, X.; Jia, K.; Pan, J.; Bi, Y.; Dai, Y.; Sun, J.; Wang, M.; Wang, H. Retrieval-Augmented Generation for Large Language Models: A Survey. arXiv 2023, arXiv:2312.10997. [Google Scholar] [CrossRef]
- Wu, S.; Xiong, Y.; Cui, Y.; Wu, H.; Chen, C.; Yuan, Y.; Huang, L.; Liu, X.; Kuo, T.-W.; Guan, N. Retrieval-Augmented Generation for Natural Language Processing: A Survey. arXiv 2024, arXiv:2407.13193. [Google Scholar]
- Bhattacharyya, M.; Miller, V.M.; Bhattacharyya, D.; Miller, L.E. High Rates of Fabricated and Inaccurate References in ChatGPT-Generated Medical Content. Cureus 2023, 15, e39238. [Google Scholar] [CrossRef] [PubMed]
- Gravel, J.; D’Amours-Gravel, M.; Osmanlliu, E. Learning to Fake It: Limited Responses and Fabricated References Provided by ChatGPT for Medical Questions. Mayo Clin. Proc. Digit. Health 2023, 1, 226–234. [Google Scholar] [CrossRef]
- Walters, W.H.; Wilder, E.I. Fabrication and errors in the bibliographic citations generated by ChatGPT. Sci. Rep. 2023, 13, 14045. [Google Scholar] [CrossRef]
- Cath, C. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Phil. Trans. R. Soc. A 2018, 376, 20180080. [Google Scholar] [CrossRef]
- Naik, N.; Hameed, B.M.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022, 9, 862322. [Google Scholar] [CrossRef]
- Zielinski, C.; Winker, M.; Aggarwal, R.; Ferris, L.; Heinemann, M.; Lapeña, J.F., Jr.; Pai, S.A.; Ing, E.; Citrome, L.; Alam, M. Generative AI, and Scholarly Manuscripts: WAME Recommendations on Chatbots and Generative Artificial Intelligence in Relation to Scholarly Publications. Open Access Maced. J. Med. Sci. 2023, 11, 263–265. [Google Scholar] [CrossRef]
- Terms of Use. OpenAI. Available online: https://openai.com/policies/terms-of-use (accessed on 14 May 2024).
- Ford, E.; Oswald, M.; Hassan, L.; Bozentko, K.; Nenadic, G.; Cassell, J. Should free-text data in electronic medical records be shared for research? A citizens’ jury study in the UK. J. Méd. Ethics 2020, 46, 367–377. [Google Scholar] [CrossRef]
- Su, Z.; McDonnell, D.; Bentley, B.L.; He, J.; Shi, F.; Cheshmehzangi, A.; Ahmad, J.; Jia, P. Addressing Biodisaster X Threats With Artificial Intelligence and 6G Technologies: Literature Review and Critical Insights. J. Méd. Internet Res. 2021, 23, e26109. [Google Scholar] [CrossRef] [PubMed]
- Emam, K.E.; Jonker, E.; Arbuckle, L.; Malin, B. A Systematic Review of Re-Identification Attacks on Health Data. PLoS ONE 2011, 6, e28071. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, S.; Yang, H.; Guo, J.; Wu, Y.; Liu, J. Ethical Considerations of Using ChatGPT in Health Care. J. Méd. Internet Res. 2023, 25, e48009. [Google Scholar] [CrossRef]
- Balasubramaniam, N.; Kauppinen, M.; Rannisto, A.; Hiekkanen, K.; Kujala, S. Transparency and explainability of AI systems: From ethical guidelines to requirements. Inf. Softw. Technol. 2023, 159, 107197. [Google Scholar] [CrossRef]
- Wachter, S.; Mittelstadt, B.; Floridi, L. Transparent, explainable, and accountable AI for robotics. Sci. Robot. 2017, 2, eaan6080. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Nov, O.; Singh, N.; Mann, D. Putting ChatGPT’s Medical Advice to the (Turing) Test: Survey Study. JMIR Méd. Educ. 2023, 9, e46939. [Google Scholar] [CrossRef] [PubMed]
- Budd, J. Burnout Related to Electronic Health Record Use in Primary Care. J. Prim. Care Community Health 2023, 14, 21501319231166921. [Google Scholar] [CrossRef]
- Sahni, N.R.; Carrus, B.; Cutler, D.M. Administrative Simplification and the Potential for Saving a Quarter-Trillion Dollars in Health Care. JAMA 2021, 326, 1677–1678. [Google Scholar] [CrossRef]
- Coiera, E.; Liu, S. Evidence synthesis, digital scribes, and translational challenges for artificial intelligence in healthcare. Cell Rep. Med. 2022, 3, 100860. [Google Scholar] [CrossRef]
- Lenert, L.A.; Lane, S.; Wehbe, R. Could an artificial intelligence approach to prior authorization be more human? J. Am. Méd. Inf. Assoc. JAMIA 2023, 30, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Diaz, N. Epic to Integrate Microsoft’s Generative AI into EHRs. Becker’s HEALTH IT. Available online: https://www.beckershospitalreview.com/ehrs/epic-to-integrate-microsofts-generative-ai-into-ehrs.html (accessed on 12 March 2024).
- Diaz, N. Can ChatGPT Get Rid of Healthcare’s $1 Trillion Administrative Burden Cost? Becker’s HEALTH IT. Available online: https://www.beckershospitalreview.com/healthcare-information-technology/can-chatgpt-get-rid-of-healthcares-1-trillion-administrative-burden-cost.html (accessed on 12 March 2024).
- Borgman, C.L. The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1059–1078. [Google Scholar] [CrossRef]
- Tellam, R.L.; Rushton, P.; Schuerman, P.; Pala, I.; Anane, D. The primary reasons behind data sharing, its wider benefits and how to cope with the realities of commercial data. BMC Genom. 2015, 16, 626. [Google Scholar] [CrossRef] [PubMed]
- Studer, R.; Sartini, C.; Suzart-Woischnik, K.; Agrawal, R.; Natani, H.; Gill, S.K.; Wirta, S.B.; Asselbergs, F.W.; Dobson, R.; Denaxas, S.; et al. Identification and Mapping Real-World Data Sources for Heart Failure, Acute Coronary Syndrome, and Atrial Fibrillation. Cardiology 2022, 147, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Rivera, S.C.; Moher, D.; Calvert, M.J.; Denniston, A.K.; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. Lancet Digit. Health 2020, 2, e537–e548. [Google Scholar] [CrossRef]
- Rivera, S.C.; Liu, X.; Chan, A.W.; Denniston, A.K.; Calvert, M.J.; SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Lancet Digit. Health 2020, 2, e549–e560. [Google Scholar] [CrossRef]
Year | AI Model (Dataset) | Estimated Parameters | Additional Value |
---|---|---|---|
2018 | GPT-1 (BookCorpus). | 117 million. | Made a significant shift in how Large Language Models were built. |
2019 | GPT-2 (WebText). | 1.5 billion. | Generated longer and more coherent data text that was difficult to distinguish from human text. Zero-Shot learning capability: generated appropriate responses for text that was not trained. |
2020 | GPT-3 (Extended WebText). | 175 billion. | Generated high-quality natural language loner text with high coherence and realism. Enhanced Zero-Shot learning capabilities. Few-Short learning: generated appropriate answers to text with limited examples. Multi-task learning: ability to perform multiple tasks simultaneously. Real-world applications and greater versatility: chatbot development, language translation, content generation, and code generation. Reduction in training biases: increased diversity in training data and advanced model architecture limited some of the biases present in previous models. |
2023 | GPT-4. | 1.73 trillion. | Generated a large multimodal language model capable of understanding and generating responses to text and images. Best performing GPT model on factuality, steerability, and staying within the boundaries. Reduction in hallucination bias: GPT-4 generated more reliable and accurate responses with reduced occurrence of hallucinations. Better handling of nuanced instructions: GPT-4 performs better with nuanced and complex instruction, understanding more subtle aspects of prompts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanta, S.N.; Al’Aref, S.J.; Lala-Trinidade, A.; Nadkarni, G.N.; Ganatra, S.; Dani, S.S.; Mehta, J.L. Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review. Diagnostics 2024, 14, 2393. https://doi.org/10.3390/diagnostics14212393
Ghanta SN, Al’Aref SJ, Lala-Trinidade A, Nadkarni GN, Ganatra S, Dani SS, Mehta JL. Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review. Diagnostics. 2024; 14(21):2393. https://doi.org/10.3390/diagnostics14212393
Chicago/Turabian StyleGhanta, Sai Nikhila, Subhi J. Al’Aref, Anuradha Lala-Trinidade, Girish N. Nadkarni, Sarju Ganatra, Sourbha S. Dani, and Jawahar L. Mehta. 2024. "Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review" Diagnostics 14, no. 21: 2393. https://doi.org/10.3390/diagnostics14212393
APA StyleGhanta, S. N., Al’Aref, S. J., Lala-Trinidade, A., Nadkarni, G. N., Ganatra, S., Dani, S. S., & Mehta, J. L. (2024). Applications of ChatGPT in Heart Failure Prevention, Diagnosis, Management, and Research: A Narrative Review. Diagnostics, 14(21), 2393. https://doi.org/10.3390/diagnostics14212393