Validation of Inter-Reader Agreement/Consistency for Quantification of Ellipsoid Zone Integrity and Sub-RPE Compartmental Features Across Retinal Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Selection
2.2. Manual Image Segmentation
2.3. Semi-Automated Segmentation—Fully Automated Initial Segmentation with Sequential Human Line-by-Line Validation
2.4. Segmentation Metrics
2.5. Statistical Analysis
3. Results
3.1. Full Cohort
3.2. Dry AMD Cohort
3.3. DME Cohort
3.4. Wet AMD Cohort
3.5. Gold Standard Manual vs. Semi-Automated Segmentation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miki, A.; Medeiros, F.A.; Weinreb, R.N.; Jain, S.; He, F.; Sharpsten, L.; Khachatryan, N.; Hammel, N.; Liebmann, J.M.; Girkin, C.A.; et al. Rates of retinal nerve fiber layer thinning in glaucoma suspect eyes. Ophthalmology 2014, 121, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Folgar, F.A.; Yuan, E.L.; Sevilla, M.B.; Chiu, S.J.; Farsiu, S.; Chew, E.Y.; Toth, C.A.; Age Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group. Drusen Volume and Retinal Pigment Epithelium Abnormal Thinning Volume Predict 2-Year Progression of Age-Related Macular Degeneration. Ophthalmology 2016, 123, 39–50.e31. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Uchida, A.; Sevgi, D.D.; Hu, M.; Reed, K.; Berliner, A.; Vitti, R.; Chu, K.; Srivastava, S.K. Retinal Fluid Volatility Associated With Interval Tolerance and Visual Outcomes in Diabetic Macular Edema in the VISTA Phase III Trial. Am. J. Ophthalmol. 2021, 224, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Boyer, D.; Schmidt-Erfurth, U.; van Lookeren Campagne, M.; Henry, E.C.; Brittain, C. The Pathophysiology of Geograhpic Atrophy Secondary to Age-Related Macular Degeneration and the Complement Pathway as a Therapeutic Target. Retina 2017, 37, 819–835. [Google Scholar] [CrossRef]
- Pasricha, M.V.; Tai, V.; Sleiman, K.; Winter, K.; Chiu, S.J.; Farsiu, S.; Stinnett, S.S.; Lad, E.M.; Wong, W.T.; Chew, E.Y.; et al. Age-Related Eye Disease Study 2 Ancillary Spectral-Domain Optical Coherence Tomography Study Group. Local Anatomic Precursors to New-Onset Geographic Atrophy in Age-Related Macular Degeneration as Defined on OCT. Ophthalmol. Retin. 2021, 5, 396–408. [Google Scholar] [CrossRef]
- Fang, L.; Yang, L.; Li, S.; Rabbani, H.; Liu, Z.; Peng, Q.; Chen, X. Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning. J. Biomed. Opt. 2017, 22, 66014. [Google Scholar] [CrossRef]
- Lee, C.S.; Tyring, A.J.; Deruyter, N.P.; Wu, Y.; Rokem, A.; Lee, A.Y. Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed. Opt. Express 2017, 8, 3440–3448. [Google Scholar] [CrossRef]
- Chiu, S.J.; Allingham, M.J.; Mettu, P.S.; Cousins, S.W.; Izatt, J.A.; Farsiu, S. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Express 2015, 6, 1172–1194. [Google Scholar] [CrossRef]
- Chiu, S.J.; Izatt, J.A.; O’Connell, R.V.; Winter, K.P.; Toth, C.A.; Farsiu, S. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Investig. Ophthalmol. Vis. Sci. 2012, 53, 53–61. [Google Scholar] [CrossRef]
- Shi, F.; Chen, X.; Zhao, H.; Zhu, W.; Xiang, D.; Gao, E.; Sonka, M.; Chen, H. Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments. IEEE Trans. Med. Imaging 2015, 34, 441–452. [Google Scholar] [CrossRef]
- Roy, A.G.; Conjeti, S.; Karri, S.P.K.; Sheet, D.; Katouzian, A.; Wachinger, C.; Navab, N. ReLayNet: Retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 2017, 8, 3627–3642. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Heisler, M.; Lee, S.; Ding, G.W.; Navajas, E.; Sarunic, M.V.; Beg, M.F. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Med. Image Anal. 2019, 54, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Tong, Y.; Yu, Y.; Xing, Y.; Chen, C.; Shen, Y. Deep Learning-Based Automated Classification of Multi-Categorical Abnormalities From Optical Coherence Tomography Images. Transl. Vis. Sci. Technol. 2018, 7, 41. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Varga, B.; Somfai, G.M.; Lee, W.H.; Smiddy, W.E.; DeBuc, D.C. Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region. PLoS ONE 2015, 10, e0133908. [Google Scholar] [CrossRef]
- Garvin, M.K.; Abramoff, M.D.; Wu, X.; Russell, S.R.; Burns, T.L.; Sonka, M. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imaging 2009, 28, 1436–1447. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, H.; Zhao, H.; Tian, B.; Wang, L.; Shi, F.; Xiang, D.; Luo, X.; Gao, E.; Zhang, L.; et al. Automatic Three-dimensional Detection of Photoreceptor Ellipsoid Zone Disruption Caused by Trauma in the OCT. Sci. Rep. 2016, 6, 25433. [Google Scholar] [CrossRef]
- Wang, Z.; Camino, A.; Zhang, M.; Wang, J.; Hwang, T.S.; Wilson, D.J.; Huang, D.; Li, D.; Jia, Y. Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography. Biomed. Opt. Express 2017, 8, 5384–5398. [Google Scholar] [CrossRef]
- Itoh, Y.; Vasanji, A.; Ehlers, J.P. Volumetric ellipsoid zone mapping for enhanced visualisation of outer retinal integrity with optical coherence tomography. Br. J. Ophthalmol. 2016, 100, 295–299. [Google Scholar] [CrossRef]
- Loo, J.; Fang, L.; Cunefare, D.; Jaffe, G.J.; Farsiu, S. Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2. Biomed. Opt. Express 2018, 9, 2681–2698. [Google Scholar] [CrossRef]
- Sousa, J.A.; Paiva, A.; Silva, A.; Almeida, J.D.; Braz Junior, G.; Diniz, J.O.; Figueredo, W.K.; Gattass, M. Automatic segmentation of retinal layers in OCT images with intermediate age-related macular degeneration using U-Net and DexiNed. PLoS ONE 2021, 16, e0251591. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Dice, L. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Venhuizen, F.G.; van Ginneken, B.; Liefers, B.; van Grinsven, M.; Fauser, S.; Hoyng, C.; Theelen, T.; Sanchez, C.I. Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomed. Opt. Express 2017, 8, 3292–3316. [Google Scholar] [CrossRef]
- Schlegl, T.; Waldstein, S.M.; Bogunovic, H.; Endstrasser, F.; Sadeghipour, A.; Philip, A.M.; Podkowinski, D.; Gerendas, B.S.; Langs, G.; Schmidt-Erfurth, U. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology 2018, 125, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Venhuizen, F.G.; van Ginneken, B.; Liefers, B.; van Asten, F.; Schreur, V.; Fauser, S.; Hoyng, C.; Theelen, T.; Sanchez, C.I. Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomed. Opt. Express 2018, 9, 1545–1569. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Uchida, A.; Hu, M.; Figueiredo, N.; Kaiser, P.K.; Heier, J.S.; Brown, D.M.; Boyer, D.S.; Do, D.V.; Gibson, A.; et al. Higher-Order Assessment of OCT in Diabetic Macular Edema from the VISTA Study: Ellipsoid Zone Dynamics and the Retinal Fluid Index. Ophthalmol. Retin. 2019, 3, 1056–1066. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Patel, N.; Kaiser, P.K.; Heier, J.S.; Brown, D.M.; Meng, X.; Reese, J.; Lunasco, L.; Le, T.K.; Hu, M.; et al. The Association of Fluid Volatility With Subretinal Hyperreflective Material and Ellipsoid Zone Integrity in Neovascular AMD. Investig. Ophthalmol. Vis. Sci. 2022, 63, 17. [Google Scholar] [CrossRef]
- Kar, S.S.; Cetin, H.; Lunasco, L.; Le, T.K.; Zahid, R.; Meng, X.; Srivastava, S.K.; Madabhushi, A.; Ehlers, J.P. OCT-Derived Radiomic Features Predict Anti-VEGF Response and Durability in Neovascular Age-Related Macular Degeneration. Ophthalmol. Sci. 2022, 2, 100171. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Zahid, R.; Kaiser, P.K.; Heier, J.S.; Brown, D.M.; Meng, X.; Reese, J.; Le, T.K.; Lunasco, L.; Hu, M.; et al. Longitudinal Assessment of Ellipsoid Zone Integrity, Subretinal Hyperreflective Material, and Subretinal Pigment Epithelium Disease in Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2021, 5, 1204–1213. [Google Scholar] [CrossRef]
- Yordi, S.; Cakir, Y.; Kalra, G.; Cetin, H.; Hu, M.; Abraham, J.; Reese, J.; Srivastava, S.K.; Ehlers, J.P. Ellipsoid Zone Integrity and Visual Function in Dry Age-Related Macular Degeneration. J. Pers. Med. 2024, 14, 543. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Bogunovic, H.; Sadeghipour, A.; Schlegl, T.; Langs, G.; Gerendas, B.S.; Osborne, A.; Waldstein, S.M. Machine Learning to Analyze the Prognostic Value of Current Imaging Biomarkers in Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2018, 2, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; McConville, C.; Yordi, S.; Cetin, H.; Cakir, Y.; Kalra, G.; Amine, R.; Whitney, J.; Whitmore, V.; Bonnay, M.; et al. Correlation Between Blue Fundus Autofluorescence and SD-OCT Measurements of Geographic Atrophy in Dry Age-Related Macular Degeneration. Am. J. Ophthalmol. 2024, 266, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Lunasco, L.M.; Yordi, S.; Cetin, H.; Le, T.K.; Sarici, K.; Kaiser, P.K.; Khanani, A.M.; Talcott, K.E.; Hu, J.; et al. Compartmental Exudative Dynamics in Neovascular Age-Related Macular Degeneration: Volumetric Outcomes and Impact of Volatility in a Phase III Clinical Trial. Ophthalmol. Retin. 2024, 8, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Kalra, G.; Cetin, H.; Whitney, J.; Yordi, S.; Cakir, Y.; McConville, C.; Whitmore, V.; Bonnay, M.; Lunasco, L.; Sassine, A.; et al. Machine Learning-Based Automated Detection and Quantification of Geographic Atrophy and Hypertransmission Defects Using Spectral Domain Optical Coherence Tomography. J. Pers. Med. 2022, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Loo, J.; Clemons, T.E.; Chew, E.Y.; Friedlander, M.; Jaffe, G.J.; Farsiu, S. Beyond Performance Metrics: Automatic Deep Learning Retinal OCT Analysis Reproduces Clinical Trial Outcome. Ophthalmology 2020, 127, 793–801. [Google Scholar] [CrossRef]
- Whitney, J.; Sevgi, D.D.; Srivastava, S.K.; Ehlers, J.P. Multi-resolution Deep Learning Convolutional Networks for Improvements in OCT Retinal Layer Segmentation [abtract]. Investig. Ophthalmol. Vis. Sci. 2021, 62, 215. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention-MICCAI; Navab, N., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Peng, C.; Zhang, X.; Yu, G.; Luo, G.; Sun, J. Large kernel matters—Improve semantic segmentation by global convolutional network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4353–4361. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163, Erratum in J. Chiropr. Med. 2017, 16, 346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass correlation—A discussion and demonstration of basic features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef]
- Bonett, D.G. Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 2002, 21, 1331–1335. [Google Scholar] [CrossRef]
Metrics | Description |
---|---|
Retinal (ILM-RPE) Thickness | Mean thickness between the ILM and RPE |
EZ-RPE Thickness | Mean thickness between the EZ and RPE |
RPE-BM Thickness | Mean thickness between the RPE and BM |
Manual | Semi-Automated | |||
---|---|---|---|---|
Reader 1 | Reader 2 | Reader 1 | Reader 2 | |
ILM-RPE | ||||
Agreement | 0.998 | 0.999 | 0.996 | 0.995 |
Consistency | 0.998 | 0.999 | 0.996 | 0.995 |
EZ-RPE | ||||
Agreement | 0.984 | 0.968 | 0.979 | 0.965 |
Consistency | 0.986 | 0.970 | 0.979 | 0.965 |
RPE-BM | ||||
Agreement | 0.997 | 0.989 | 0.992 | 0.983 |
Consistency | 0.997 | 0.990 | 0.992 | 0.983 |
Manual | Semi-Automated | |||
---|---|---|---|---|
Reader 1 | Reader 2 | Reader 1 | Reader 2 | |
Dry AMD Layer Metric ICCs | ||||
ILM-RPE | ||||
Agreement | 0.996 | 0.995 | 0.998 | 0.999 |
Consistency | 0.996 | 0.995 | 0.998 | 0.999 |
EZ-RPE | ||||
Agreement | 0.977 | 0.967 | 0.979 | 0.988 |
Consistency | 0.977 | 0.967 | 0.979 | 0.988 |
RPE-BM | ||||
Agreement | 0.987 | 0.944 | 0.980 | 0.991 |
Consistency | 0.987 | 0.950 | 0.985 | 0.991 |
Manual | Semi-Automated | |||
---|---|---|---|---|
Reader 1 | Reader 2 | Reader 1 | Reader 2 | |
DME Layer Metric ICCs | ||||
ILM-RPE | ||||
Agreement | 0.998 | 0.999 | 1.000 | 1.000 |
Consistency | 0.998 | 0.999 | 1.000 | 1.000 |
EZ-RPE | ||||
Agreement | 0.842 | 0.876 | 0.968 | 0.955 |
Consistency | 0.865 | 0.905 | 0.969 | 0.957 |
RPE-BM | ||||
Agreement | 0.521 | 0.107 | 0.907 | 0.924 |
Consistency | 0.726 | 0.108 | 0.909 | 0.925 |
Manual | Semi-Automated | |||
---|---|---|---|---|
Reader 1 | Reader 2 | Reader 1 | Reader 2 | |
Wet AMD Layer Metric ICCs | ||||
ILM-RPE | ||||
Agreement | 0.996 | 0.995 | 0.985 | 0.980 |
Consistency | 0.997 | 0.997 | 0.985 | 0.980 |
EZ-RPE | ||||
Agreement | 0.986 | 0.963 | 0.972 | 0.953 |
Consistency | 0.987 | 0.968 | 0.972 | 0.953 |
RPE-BM | ||||
Agreement | 0.997 | 0.988 | 0.990 | 0.978 |
Consistency | 0.997 | 0.991 | 0.990 | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, J.; Whitney, J.; Cetin, H.; Le, T.; Cardwell, N.; Srivasatava, S.K.; Ehlers, J.P. Validation of Inter-Reader Agreement/Consistency for Quantification of Ellipsoid Zone Integrity and Sub-RPE Compartmental Features Across Retinal Diseases. Diagnostics 2024, 14, 2395. https://doi.org/10.3390/diagnostics14212395
Bell J, Whitney J, Cetin H, Le T, Cardwell N, Srivasatava SK, Ehlers JP. Validation of Inter-Reader Agreement/Consistency for Quantification of Ellipsoid Zone Integrity and Sub-RPE Compartmental Features Across Retinal Diseases. Diagnostics. 2024; 14(21):2395. https://doi.org/10.3390/diagnostics14212395
Chicago/Turabian StyleBell, Jordan, Jon Whitney, Hasan Cetin, Thuy Le, Nicole Cardwell, Sunil K. Srivasatava, and Justis P. Ehlers. 2024. "Validation of Inter-Reader Agreement/Consistency for Quantification of Ellipsoid Zone Integrity and Sub-RPE Compartmental Features Across Retinal Diseases" Diagnostics 14, no. 21: 2395. https://doi.org/10.3390/diagnostics14212395
APA StyleBell, J., Whitney, J., Cetin, H., Le, T., Cardwell, N., Srivasatava, S. K., & Ehlers, J. P. (2024). Validation of Inter-Reader Agreement/Consistency for Quantification of Ellipsoid Zone Integrity and Sub-RPE Compartmental Features Across Retinal Diseases. Diagnostics, 14(21), 2395. https://doi.org/10.3390/diagnostics14212395