Elastographic Assessment of Atherosclerotic Plaques and Determination of Vascular Risk in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
- ∘
- Maximum acoustic power;
- ∘
- About 60–75% gain;
- ∘
- Off persistence;
- ∘
- The area of interest and the standard scan of the bifurcation against the Mannheim consensus;
- ∘
- The maximum stiffness of the elastogram correlating with the red color and values up to 200 kPa;
- ∘
- The minimum value being that of blood, which was used to compare the soft structures in blue color (0 kPa);
- ∘
- Frequency of SWE frames at 1 Hz;
- ∘
- Processing power and frames per second: 10 frames per second.
- ∘
- Morphology: It was evaluated using real-time B scanning or duplex scanning, taking into account characteristics such as echogenicity (density), which distinguishes the following types of changes: (1) anechoic plaques—standardized to blood; (2) isoechoic—standardized, relative to the mastoid muscle; (3) hyperechoic—standardized, relative to the bone.
- ∘
- Surface: The classification included (1) smooth (regular)—the cIMT complex is continuous and without irregularities; (2) uneven (irregular)—cIMT is interrupted and uneven; (3) hollow—showing more than 2 mm of concavity; (4) ulcerated—the surface is uneven, hollow, with an effusion of lipid substances and blood [26,27].
- ∘
- Type 1: Plaques of this type are uniformly echolucent (black), with less than 15% of the plaque area occupied by colored areas, i.e., no more than 25 pixels from the gray scale. If the fibrous cap is not visible, the plaque can only be detected using color, power Doppler, and B flow.
- ∘
- Type 2: Mainly echotransparent, with the colored areas occupying 15% to 50% of the area of the plaque.
- ∘
- Type 3: Mainly echogenic, with colored areas occupying 50% to 85% of the plaque area.
- ∘
- Type 4 and 5: Uniformly echogenic, with stained areas occupying more than 85% of the plaque area.
2.4. Statistical Methods
3. Results
3.1. Two-Dimensional Point Shear Wave Elastography (2D-SWE) of Atherosclerotic Plaques in Patients with RA and Healthy Controls
3.2. Evaluation of the Diagnostic Capability of 2D-SWE in Differentiating Between Severe (Types 3, 4, and 5) and Moderate (Types 1 and 2) Atherosclerotic Plaques
3.3. SCORE2-OP in Patients with RA and Healthy Controls
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sigrist, R.; Liau, J.; Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound elastography: Review of techniques and clinical applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Gennisson, J.L.; Deffieux, T.; Fink, M.; Tanter, M. Ultrasound elastography: Principles and techniques. Diagn. Interv. Imaging 2013, 94, 487–495. [Google Scholar] [CrossRef] [PubMed]
- ShShiina, T.; Nightingale, K.R.; Palmeri, M.L.; Hall, T.J.; Bamber, J.C.; Barr, R.G.; Castera, L.; Choi, B.I.; Chou, Y.-H.; Cosgrove, D.; et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: Basic principles and terminology. Ultrasound Med. Biol. 2015, 41, 1126–1147. [Google Scholar] [CrossRef] [PubMed]
- Kamaya, A.; Machtaler, S.; Safari Sanjani, S.; Nikoozadeh, A.; Graham Sommer, F.; Pierre Khuri-Yakub, B.T.; Willmann, J.K.; Desser, T.S. New technologies in clinical ultrasound. Semin. Roentgenol. 2013, 48, 214–223. [Google Scholar] [CrossRef]
- Hristov, B.; Andonov, V.; Doykov, D.; Doykova, K.; Valova, S.; Nacheva-Georgieva, E.; Uchikov, P.; Kostov, G.; Doykov, M.; Tilkian, E. Evaluation of liver stiffness measurement by means of 2D-SWE for the diagnosis of esophageal varices. Diagnostics 2023, 18, 356. [Google Scholar] [CrossRef]
- Karalilova, R.; Doykova, K.; Batalov, Z.; Doykov, D.; Batalov, A. Spleen elastography in patients with systemic sclerosis. Rheumat. Inter. 2021, 41, 633–641. [Google Scholar] [CrossRef]
- Barr, R.G.; Ferraioli, G.; Palmeri, M.L.; Goodman, Z.D.; Garcia-Tsao, G.; Rubin, J.; Garra, B.; Myers, R.P.; Wilson, S.R.; Rubens, D.; et al. Elastography assessment of liver fibrosis: Society of radiologists in ultrasound consensus conference statement. Radiology 2015, 276, 845–861. [Google Scholar] [CrossRef]
- Ramnarine, K.V.; Garrard, J.W.; Kanber, B.; Nduwayo, S.; Hartshorne, T.C.; Robinson, T.G. Shear wave elastography imaging of carotid plaques: Feasible, reproducible and of clinical potential. Cardiovasc. Ultrasound 2014, 12, 49. [Google Scholar] [CrossRef]
- De Zordo, T.; Fink, C.; Feuchtner, G.; Smekal, V.; Reindl, M.; Klauser, A. Real-time sonoelastography findings in healthy Achilles tendons. AJR Am. J. Roentgenol. 2009, 193, 134–138. [Google Scholar] [CrossRef]
- Iagnocco, A.; Kaloudi, O.; Perella, C.; Bandinelli, F.; Riccieri, V.; Vasile, M.; Porta, F.; Valesini, G.; Matucci-Cerinic, M. Ultrasound elastography assessment of skin involvement in systemic sclerosis: Lights and shadows. J. Rheumatol. 2010, 37, 1688–1691. [Google Scholar] [CrossRef]
- Aaramaa, H.-K.; Mars, N.; Helminen, M.; Kerola, A.M.; Palomäki, A.; Eklund, K.K.; Gracia-Tabuenca, J.; Sinisalo, J.; Gen, F.; Isomäki, P. Risk of cardiovascular comorbidities before and after the onset of rheumatic diseases. Semin. Arthritis Rheum. 2024, 65, 152382. [Google Scholar] [CrossRef] [PubMed]
- Raadsen, R.; Hansildaar, R.; Pouw, C.L.; Hooijberg, F.; Boekel, L.; Wolbink, J.G.; van Kuijk, A.; Nurmohamed, M. Cardiovascular disease risk in patients with inflammatory arthritis nowadays still substantially elevated. RMD Open 2023, 9, e003485. [Google Scholar] [CrossRef] [PubMed]
- Crombag, G.A.J.C.; Aizaz, M.; Schreuder, F.H.B.M.; Benali, F.; van Dam-Nolen, D.H.K.; Liem, M.I.; Lucci, C.; van der Steen, A.F.; Daemen, M.J.A.P.; Mess, W.H.; et al. Proximal region of carotid atherosclerotic plaque shows more intraplaque hemorrhage: The plaque at risk study. Am. J. Neuroradiol. 2022, 43, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Mura, M.; Schiava, N.D.; Long, A.; Chirico, E.; Pialoux, V.; Millon, A. Carotid intraplaque haemorrhage: Pathogenesis, histological classification, imaging methods and clinical value. Ann. Transl. Med. 2020, 8, 1273. [Google Scholar] [CrossRef]
- Sakamoto, A.; Suwa, K.; Kawakami, R.; Finn, A.; Maekawa, Y.; Virmani, R.; Finn, A. Significance of intra-plaque hemorrhage for the development of high-risk vulnerable plaque: Current understanding from basic to clinical points of view. Int. J. Mol. Sci. 2023, 24, 13298. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, G.; Filice, C.; Castera, L.; Choi, B.I.; Sporea, I.; Wilson, S.R.; Cosgrove, D.; Dietrich, C.F.; Amy, D.; Bamber, J.C.; et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: Liver. Ultrasound Med. Biol. 2015, 41, 1161–1179. [Google Scholar] [CrossRef]
- Bamber, J.; Cosgrove, D.; Dietrich, C.F.; Fromageau, J.; Bojunga, J.; Calliada, F.; Cantisani, V.; Correas, J.-M.; D’Onofrio, M.; Drakonaki, E.E.; et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Medizin. 2013, 34, 169–184. [Google Scholar] [CrossRef]
- Drosos, G.C.; Vedder, D.; Houben, E.; Boekel, L.; Atzeni, F.; Badreh, S.; Boumpas, D.T.; Brodin, N.; Bruce, I.N.; González-Gay, M.; et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 2022, 81, 768–779. [Google Scholar] [CrossRef]
- Garra, B.S. Elastography: History, principles, and technique comparison. Abdom. Imaging 2015, 40, 680–697. [Google Scholar] [CrossRef]
- Bauer, D.J.; De Silvestri, A.; Maiocchi, L.; Raimondi, A.; Mare, R.; Mandorfer, M.; Sporea, I.; Müllner-Bucsics, T.; Ferraioli, G.; Reiberger, T. Understanding confounding factors allows for accurate interpretation of liver stiffness measurements by ElastQ, a novel 2D shear wave elastography technique. Ultraschall Med. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Ting, C.E.; Yeong, C.H.; Ng, K.H.; Abdulla, B.J.; Ting, H.E. Accuracy of tissue elasticity measurement using shear wave ultrasound elastography: A comparative phantom study. In World Congress on Medical Physics and Biomedical Engineering; Springer International Publishing: Toronto, ON, Canada, 2015; pp. 252–255. [Google Scholar] [CrossRef]
- Pruijssen, J.; de Korte, G.; Voss, I.; van Hansen, H. Vascular shear wave elastography in atherosclerotic arteries: A systematic review. Ultrasound Med. Biol. 2020, 46, 2145–2163. [Google Scholar] [CrossRef] [PubMed]
- Altahhan, K.N.; Wang, Y.; Sobh, N.; Insana, M.F. Indentation measurements to validate dynamic elasticity imaging methods. Ultrason. Imaging 2016, 38, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.J.; Lim, S.T.; A Kinsella, J.; Tierney, S.; Egan, B.; Feeley, T.M.; Dooley, C.; Kelly, J.; Murphy, S.M.; A Walsh, R.; et al. Simultaneous assessment of plaque morphology, cerebral micro-embolic signal status and platelet biomarkers in patients with recently symptomatic and asymptomatic carotid stenosis. J. Cereb. Blood Flow Metab. 2020, 40, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, B.; Ewertsen, C.; Carlsen, J.; Nielsen, M.B. Ultrasound vascular elastography as a tool for assessing atherosclerotic plaques. Ultrasound Int. Open 2016, 2, 106–112. [Google Scholar] [CrossRef]
- Sultan, S.R.; Khayat, M.; Almutairi, B.; Marzouq, A.; Albngali, A.; Abdeen, R. B-mode ultrasound characteristics of carotid plaques in symptomatic and asymptomatic patients with low-grade stenosis. PLoS ONE 2023, 18, e0291450. [Google Scholar] [CrossRef]
- Casadei, A.; Floreani, M.; Catalini, R.; Serra, C.; Assanti, A.P.; Conci, P. Sonographic characteristics of carotid artery plaques: Implications for follow-up planning? J. Ultrasound 2012, 15, 151–157. [Google Scholar] [CrossRef]
- European Society of Cardiology. SCORE2-OP risk prediction algorithms: Estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur. Heart J. 2021, 42, 2455–2467. [Google Scholar] [CrossRef]
- Takimura, H.; Hirano, K.; Muramatsu, T.; Tsukahara, R.; Ito, Y.; Sakai, T.; Ishimori, H.; Nakano, M.; Yamawaki, M.; Araki, M.; et al. Vascular elastography: A novel method to characterize occluded lower limb arteries prior to endovascular therapy. J. Endovasc. Ther. 2014, 21, 654–666. [Google Scholar] [CrossRef]
- de Korte, C.; Carlier, S.; Mastik, F.; Doyley, M.; van der Steen, A.; Serruys, P.; Bom, N. Morphological and mechanical information of coronary arteries obtained with intravascular elastography: Feasibility study in vivo. Eur. Heart J. 2002, 23, 405–413. [Google Scholar] [CrossRef]
- Maurice, R.L.; Soulez, G.; Girox, M.-F.; Cloutier, G. Noninvasive vascular elastography for carotid artery characterization on subjects without previous history of atherosclerosis. Med. Phys. 2008, 35, 3436–3443. [Google Scholar] [CrossRef]
- Bechlioulis, A.; Naka, K.K.; Kalantaridou, S.N.; Kaponis, A.; Papanikolaou, O.; Vezyraki, P.; Kolettis, T.M.; Vlahos, A.P.; Gartzonika, K.; Mavridis, A.; et al. Increased vascular inflammation in early menopausal women is associated with hot flush severity. J. Clin. Endocrinol. Metab. 2012, 97, 760–764. [Google Scholar] [CrossRef]
- Keshavarz-Motamed, Z.; Saijo, Y.; Majdouline, Y.; Riou, L.; Ohayon, J.; Cloutier, G. Coronary artery atherectomy reduces plaque shear strains: An endovascular elastography imaging study. Atherosclerosis 2014, 235, 140–149. [Google Scholar] [CrossRef]
Variables | RA Group (n = 24) | Healthy Controls (n = 26) | p-Value |
---|---|---|---|
Age | |||
| 56.17 (7.07) | 56.62 (6.26) | 0.813 t |
Sex, n (%) | |||
| 17 (70.80%) | 19 (73.10%) | |
| 7 (29.20%) | 7 (26.90%) | 1.000 f |
BMI | |||
| 29.83 (3.90) | 29.25 (5.46) | 0.671 t |
Smoking, n (%) | |||
| 10 (41.70%) | 7 (26.90%) | 0.373 f |
| 14 (58.30%) | 19 (73.10%) | |
Degree of stenosis, n (%) | <0.001 χ2 | ||
| 5 (20.80%) | 14 (53.80%) | |
| 4 (16.70%) | 12 (46.20%) | |
| 7 (29.20%) | 0 (7.70%) | |
| 5 (20.80%) | 0 (7.70%) | |
| 3 (12.50%) | 0 (3.80%) | |
Atherosclerotic plaques, n (%) | <0.001 χ2 | ||
| 1 (4.20%) | 16 (61.50%) | |
| 5 (20.80%) | 12 (38.50%) | |
| 7 (29.20%) | 0 (0.00%) | |
| 10 (41.70%) | 0 (0.00%) | |
| 1 (4.20%) | 0 (0.00%) | |
DAS28 | |||
| 2.98 (0.60) | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, V.; Popova-Belova, S.; Geneva-Popova, M.; Karalilova, R.; Batalov, Z.; Batalov, K.; Doykov, M.; Mitkova-Hristova, V. Elastographic Assessment of Atherosclerotic Plaques and Determination of Vascular Risk in Patients with Rheumatoid Arthritis. Diagnostics 2024, 14, 2426. https://doi.org/10.3390/diagnostics14212426
Popova V, Popova-Belova S, Geneva-Popova M, Karalilova R, Batalov Z, Batalov K, Doykov M, Mitkova-Hristova V. Elastographic Assessment of Atherosclerotic Plaques and Determination of Vascular Risk in Patients with Rheumatoid Arthritis. Diagnostics. 2024; 14(21):2426. https://doi.org/10.3390/diagnostics14212426
Chicago/Turabian StylePopova, Velichka, Stanislava Popova-Belova, Mariela Geneva-Popova, Rositsa Karalilova, Zguro Batalov, Konstantin Batalov, Mladen Doykov, and Vesela Mitkova-Hristova. 2024. "Elastographic Assessment of Atherosclerotic Plaques and Determination of Vascular Risk in Patients with Rheumatoid Arthritis" Diagnostics 14, no. 21: 2426. https://doi.org/10.3390/diagnostics14212426
APA StylePopova, V., Popova-Belova, S., Geneva-Popova, M., Karalilova, R., Batalov, Z., Batalov, K., Doykov, M., & Mitkova-Hristova, V. (2024). Elastographic Assessment of Atherosclerotic Plaques and Determination of Vascular Risk in Patients with Rheumatoid Arthritis. Diagnostics, 14(21), 2426. https://doi.org/10.3390/diagnostics14212426