Assessment of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: A 6-Month Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.2.1. Comorbidities
2.2.2. Anthropometric Data, Symptoms and Medication
2.2.3. Metabolic Syndrome
- -
- Abdominal circumference ≥ 94 cm in men and ≥80 cm in women;
- -
- Serum triglyceride value ≥ 1.7 mmol/L (150 mg/dL) or specific treatment for hypertriglyceridemia according to the clinical guidelines;
- -
- High-density lipoprotein cholesterol (HDL) cholesterol: males < 1.03 mmol/L (40 mg/dL), females < 1.3 mmol/L (50 mg/dL) (or specific treatment for hyperlipidemia according to the clinical guidelines);
- -
- Systolic blood pressure (BP) ≥ 130 mmHg and/or diastolic BP ≥ 85 mmHg or antihypertensive treatment according to the clinical guidelines;
- -
- Fasting plasma glucose ≥ 5.6 mmol/L (100 mg/dL) or diagnosis of type 2 diabetes mellitus according to the clinical guidelines.
2.2.4. Laboratory Data
2.2.5. Pulmonary Function
2.2.6. The 6 Min Walk Test (6MWT)
2.2.7. Multidisciplinary Management
2.3. Statistical Analysis
2.4. Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahnert, K.; Jörres, R.A.; Behr, J.; Welte, T. The Diagnosis and Treatment of COPD and Its Comorbidities. Dtsch. Arzteblatt Int. 2023, 120, 434–444. [Google Scholar] [CrossRef]
- Terry, P.D.; Dhand, R. The 2023 GOLD Report: Updated Guidelines for Inhaled Pharmacological Therapy in Patients with Stable COPD. Pulm. Ther. 2023, 9, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.; Fabbri, L.; Criner, G.; Martinez, F.J.; Mannino, D.; Vogelmeier, C.; Montes de Oca, M.; Papi, A.; Sin, D.D.; Han, M.K.; et al. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease: Time for Its Revision. Am. J. Respir. Crit. Care Med. 2022, 206, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Frith, P.A. Detecting COPD Using Micro-Spirometry and/or Questionnaire. Respirology 2020, 25, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K.; Agusti, A.; Celli, B.R.; Criner, G.J.; Halpin, D.M.G.; Roche, N.; Papi, A.; Stockley, R.A.; Wedzicha, J.; Vogelmeier, C.F. From GOLD 0 to Pre-COPD. Am. J. Respir. Crit. Care Med. 2021, 203, 414–423. [Google Scholar] [CrossRef]
- Haynes, J.M.; Kaminsky, D.A.; Ruppel, G.L. The Role of Pulmonary Function Testing in the Diagnosis and Management of COPD. Respir. Care 2023, 68, 889–913. [Google Scholar] [CrossRef]
- Plavec, D.; Vrbica, Ž. What Is Pre-COPD and Do We Know How to Treat It? Expert Rev. Respir. Med. 2024, 18, 349–354. [Google Scholar] [CrossRef]
- Dharmage, S.C.; Faner, R.; Agustí, A. Treatable Traits in Pre-COPD: Time to Extend the Treatable Traits Paradigm beyond Established Disease. Respirology 2024, 29, 551–562. [Google Scholar] [CrossRef]
- Divo, M.J.; Liu, C.; Polverino, F.; Castaldi, P.J.; Celli, B.R.; Tesfaigzi, Y. From Pre-COPD to COPD: A Simple, Low Cost and Easy to IMplement (SLIM) Risk Calculator. Eur. Respir. J. 2023, 62, 2300806. [Google Scholar] [CrossRef]
- Han, Y.P.; He, B.F.; Zhang, J. Research progress of chronic obstructive pulmonary disease in young people and pre-COPD. Zhonghua Yu Fang Yi Xue Za Zhi 2023, 57, 1164–1170. [Google Scholar] [CrossRef]
- Martinez, F.J.; Agusti, A.; Celli, B.R.; Han, M.K.; Allinson, J.P.; Bhatt, S.P.; Calverley, P.; Chotirmall, S.H.; Chowdhury, B.; Darken, P.; et al. Treatment Trials in Young Patients with Chronic Obstructive Pulmonary Disease and Pre-Chronic Obstructive Pulmonary Disease Patients: Time to Move Forward. Am. J. Respir. Crit. Care Med. 2022, 205, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Obling, N.; Backer, V.; Hurst, J.R.; Bodtger, U. Nasal and Systemic Inflammation in Chronic Obstructive Pulmonary Disease (COPD). Respir. Med. 2022, 195, 106774. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Yuan, L.; Wu, K.; Shen, B.; Zhu, C. Association between Systemic Immune-Inflammation Index and Chronic Obstructive Pulmonary Disease: A Population-Based Study. BMC Pulm. Med. 2023, 23, 295. [Google Scholar] [CrossRef]
- Strollo, H.C.; Nouraie, S.M.; Hoth, K.F.; Riley, C.M.; Karoleski, C.; Zhang, Y.; Hanania, N.A.; Bowler, R.P.; Bon, J.; Sciurba, F.C. Association of Systemic Inflammation with Depressive Symptoms in Individuals with COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, Y.; Shan, L.; Mou, Y.; Liu, Y.; Ma, G.; Wu, Y.; Zhu, H.; Curtis, J.L.; Cui, S.; et al. Reflections on COPD Comorbidities. Chin. Med. J. 2024, 137, 1504–1506. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Beckett, A.; Scott, J.R.; Chater, A.M.; Ferrandino, L.; Aldous, J.W.F. The Prevalence of Metabolic Syndrome and Its Components in Firefighters: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 6814. [Google Scholar] [CrossRef]
- Ansarimoghaddam, A.; Adineh, H.A.; Zareban, I.; Iranpour, S.; HosseinZadeh, A.; Kh, F. Prevalence of Metabolic Syndrome in Middle-East Countries: Meta-Analysis of Cross-Sectional Studies. Diabetes Metab. Syndr. 2018, 12, 195–201. [Google Scholar] [CrossRef]
- Li, W.; Qiu, X.; Ma, H.; Geng, Q. Incidence and Long-Term Specific Mortality Trends of Metabolic Syndrome in the United States. Front. Endocrinol. 2022, 13, 1029736. [Google Scholar] [CrossRef]
- Park, S.; Han, K.; Lee, S.; Kim, Y.; Lee, Y.; Kang, M.W.; Park, S.; Kim, Y.C.; Han, S.S.; Lee, H.; et al. Smoking, Development of or Recovery from Metabolic Syndrome, and Major Adverse Cardiovascular Events: A Nationwide Population-Based Cohort Study Including 6 Million People. PLoS ONE 2021, 16, e0241623. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Wu, Q.-J.; Xia, Y.; Zhang, J.-Y.; Jiang, Y.-T.; Chang, Q.; Zhao, Y.-H. Carbohydrate Intake and Risk of Metabolic Syndrome: A Dose-Response Meta-Analysis of Observational Studies. Nutr. Metab. Cardiovasc. Dis. NMCD 2019, 29, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, M.; Forouharnejad, K.; Mirgaloyebayat, H.; Ghasemi Darestani, N.; Ghadimi, M.; Masaeli, D.; Fazeli, P.; Mohammadi, H.; Shabani, M.; Emami Ardestani, M. Correlations and Diagnostic Tools for Metabolic Syndrome (MetS) and Chronic Obstructive Pulmonary Disease (COPD). Int. J. Physiol. Pathophysiol. Pharmacol. 2022, 14, 311–315. [Google Scholar] [PubMed]
- Viglino, D.; Martin, M.; Piché, M.-E.; Brouillard, C.; Després, J.-P.; Alméras, N.; Tan, W.C.; Coats, V.; Bourbeau, J.; Pépin, J.-L.; et al. Metabolic Profiles among COPD and Controls in the CanCOLD Population-Based Cohort. PLoS ONE 2020, 15, e0231072. [Google Scholar] [CrossRef] [PubMed]
- Karsanji, U.; Evans, R.A.; Quint, J.K.; Khunti, K.; Lawson, C.A.; Petherick, E.; Greening, N.J.; Singh, S.J.; Richardson, M.; Steiner, M.C. Mortality Associated with Metabolic Syndrome in People with COPD Managed in Primary Care. ERJ Open Res. 2022, 8, 00211–02022. [Google Scholar] [CrossRef] [PubMed]
- Mariniello, D.F.; D’Agnano, V.; Cennamo, D.; Conte, S.; Quarcio, G.; Notizia, L.; Pagliaro, R.; Schiattarella, A.; Salvi, R.; Bianco, A.; et al. Comorbidities in COPD: Current and Future Treatment Challenges. J. Clin. Med. 2024, 13, 743. [Google Scholar] [CrossRef]
- Zhou, W.; Li, C.-L.; Cao, J.; Feng, J. Metabolic Syndrome Prevalence in Patients with Obstructive Sleep Apnea Syndrome and Chronic Obstructive Pulmonary Disease: Relationship with Systemic Inflammation. Clin. Respir. J. 2020, 14, 1159–1165. [Google Scholar] [CrossRef]
- Baniya, S.; Shrestha, T.M.; Pant, P.; Aacharya, R.P. Metabolic Syndrome among Stable Chronic Obstructive Pulmonary Disease Patients Visiting Outpatient Department of a Tertiary Care Centre: A Descriptive Cross-Sectional Study. JNMA J. Nepal Med. Assoc. 2023, 61, 355–358. [Google Scholar] [CrossRef]
- Naseem, S.; Baneen, U. Systemic Inflammation in Patients of Chronic Obstructive Pulmonary Disease with Metabolic Syndrome. J. Fam. Med. Prim. Care 2019, 8, 3393–3398. [Google Scholar] [CrossRef]
- Breyer, M.-K.; Spruit, M.A.; Hanson, C.K.; Franssen, F.M.E.; Vanfleteren, L.E.G.W.; Groenen, M.T.J.; Bruijnzeel, P.L.B.; Wouters, E.F.M.; Rutten, E.P.A. Prevalence of Metabolic Syndrome in COPD Patients and Its Consequences. PLoS ONE 2014, 9, e98013. [Google Scholar] [CrossRef]
- Dennett, E.J.; Janjua, S.; Stovold, E.; Harrison, S.L.; McDonnell, M.J.; Holland, A.E. Tailored or Adapted Interventions for Adults with Chronic Obstructive Pulmonary Disease and at Least One Other Long-Term Condition: A Mixed Methods Review. Cochrane Database Syst. Rev. 2021, 7, CD013384. [Google Scholar] [CrossRef]
- Choi, H.S.; Rhee, C.K.; Park, Y.B.; Yoo, K.H.; Lim, S.Y. Metabolic Syndrome in Early Chronic Obstructive Pulmonary Disease: Gender Differences and Impact on Exacerbation and Medical Costs. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 2873–2883. [Google Scholar] [CrossRef] [PubMed]
- Stolz, D.; Mkorombindo, T.; Schumann, D.M.; Agusti, A.; Ash, S.Y.; Bafadhel, M.; Bai, C.; Chalmers, J.D.; Criner, G.J.; Dharmage, S.C.; et al. Towards the Elimination of Chronic Obstructive Pulmonary Disease: A Lancet Commission. Lancet Lond. Engl. 2022, 400, 921–972. [Google Scholar] [CrossRef] [PubMed]
- Doña, E.; Reinoso-Arija, R.; Carrasco-Hernandez, L.; Doménech, A.; Dorado, A.; Lopez-Campos, J.L. Exploring Current Concepts and Challenges in the Identification and Management of Early-Stage COPD. J. Clin. Med. 2023, 12, 5293. [Google Scholar] [CrossRef] [PubMed]
- Cravo, A.; Attar, D.; Freeman, D.; Holmes, S.; Ip, L.; Singh, S.J. The Importance of Self-Management in the Context of Personalized Care in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Vanfleteren, L.E.G.W.; Fabbri, L.M. Self-Management Interventions in COPD Patients with Multimorbidity. Eur. Respir. J. 2019, 54, 1901850. [Google Scholar] [CrossRef]
- Smalley, K.R.; Aufegger, L.; Flott, K.; Mayer, E.K.; Darzi, A. Can Self-Management Programmes Change Healthcare Utilisation in COPD?: A Systematic Review and Framework Analysis. Patient Educ. Couns. 2021, 104, 50–63. [Google Scholar] [CrossRef]
- Rozenberg, D.; Maddocks, M. Looking Beyond BMI Classifications With Complementary Assessment of Body Composition in COPD. Chest 2023, 163, 1003–1004. [Google Scholar] [CrossRef]
- Wada, H.; Ikeda, A.; Maruyama, K.; Yamagishi, K.; Barnes, P.J.; Tanigawa, T.; Tamakoshi, A.; Iso, H. Low BMI and Weight Loss Aggravate COPD Mortality in Men, Findings from a Large Prospective Cohort: The JACC Study. Sci. Rep. 2021, 11, 1531. [Google Scholar] [CrossRef]
- Cruthirds, C.L.; Deutz, N.E.P.; Mizubuti, Y.G.G.; Harrykissoon, R.I.; Zachria, A.J.; Engelen, M.P.K.J. Abdominal Obesity in COPD Is Associated with Specific Metabolic and Functional Phenotypes. Nutr. Metab. 2022, 19, 79. [Google Scholar] [CrossRef]
- Kisiel, M.A.; Arnfelt, O.; Lindberg, E.; Jogi, O.; Malinovschi, A.; Johannessen, A.; Benediktsdottir, B.; Franklin, K.; Holm, M.; Real, F.G.; et al. Association between Abdominal and General Obesity and Respiratory Symptoms, Asthma and COPD. Results from the RHINE Study. Respir. Med. 2023, 211, 107213. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Han, S.; Park, G.-M.; Lee, T.Y.; Park, S.E.; Lee, H.; Kang, B.J. Intramuscular and Intermuscular Abdominal Fat Infiltration in COPD: A Propensity Score Matched Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 1989–1999. [Google Scholar] [CrossRef]
- 2024 GOLD Report. Available online: https://goldcopd.org/2024-gold-report/ (accessed on 25 August 2024).
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Developed with the Special Contribution of: European Association for Cardiovascular Prevention & Rehabilitation; Authors/Task Force Members; Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.-R.; Wiklund, O.; Agewall, S.; Alegria, E.; et al. ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.-A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes The Task Force for the Diagnosis and Management of Chronic Coronary Syndromes of the European Society of Cardiology (ESC). Russ. J. Cardiol. 2020, 25, 119–180. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in Collaboration with the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Sunjaya, A.; Poulos, L.; Reddel, H.; Jenkins, C. Qualitative Validation of the Modified Medical Research Council (mMRC) Dyspnoea Scale as a Patient-Reported Measure of Breathlessness Severity. Respir. Med. 2022, 203, 106984. [Google Scholar] [CrossRef]
- Borg, G.; Hassmén, P.; Lagerström, M. Perceived Exertion Related to Heart Rate and Blood Lactate during Arm and Leg Exercise. Eur. J. Appl. Physiol. 1987, 56, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Gil, H.-I.; Zo, S.; Jones, P.W.; Kim, B.-G.; Kang, N.; Choi, Y.; Cho, H.K.; Kang, D.; Cho, J.; Park, H.Y.; et al. Clinical Characteristics of COPD Patients According to COPD Assessment Test (CAT) Score Level: Cross-Sectional Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Marietta von Siemens, S.; Alter, P.; Lutter, J.I.; Kauczor, H.-U.; Jobst, B.; Bals, R.; Trudzinski, F.C.; Söhler, S.; Behr, J.; Watz, H.; et al. CAT Score Single Item Analysis in Patients with COPD: Results from COSYCONET. Respir. Med. 2019, 159, 105810. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS Technical Standard on Interpretive Strategies for Routine Lung Function Tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur. Respir. J. 2023, 61, 2300239. [Google Scholar] [CrossRef]
- Agarwala, P.; Salzman, S.H. Six-Minute Walk Test: Clinical Role, Technique, Coding, and Reimbursement. Chest 2020, 157, 603–611. [Google Scholar] [CrossRef]
- ATS Statement. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Fekete, M.; Szollosi, G.; Tarantini, S.; Lehoczki, A.; Nemeth, A.N.; Bodola, C.; Varga, L.; Varga, J.T. Metabolic Syndrome in Patients with COPD: Causes and Pathophysiological Consequences. Physiol. Int. 2022, 109, 90–105. [Google Scholar] [CrossRef]
- Keeratichananont, W.; Kaenmuang, P.; Geater, S.L.; Manoret, P.; Thanapattaraborisuth, B. Prevalence, Associated Factors, and Clinical Consequences of Metabolic Syndrome in Chronic Obstructive Pulmonary Disease Patients: A 5-Year Prospective Observational Study. Ther. Adv. Respir. Dis. 2023, 17, 17534666231167342. [Google Scholar] [CrossRef]
- Piazzolla, G.; Castrovilli, A.; Liotino, V.; Vulpi, M.R.; Fanelli, M.; Mazzocca, A.; Candigliota, M.; Berardi, E.; Resta, O.; Sabbà, C.; et al. Metabolic Syndrome and Chronic Obstructive Pulmonary Disease (COPD): The Interplay among Smoking, Insulin Resistance and Vitamin D. PLoS ONE 2017, 12, e0186708. [Google Scholar] [CrossRef]
- Sahoo, K.C.; Subhankar, S.; Mohanta, P.C.; Jagaty, S.K.; Dutta, P.; Pothal, S. Prevalence of Metabolic Syndrome in Chronic Obstructive Pulmonary Disease and Its Correlation with Severity of Disease. J. Fam. Med. Prim. Care 2022, 11, 2094–2098. [Google Scholar] [CrossRef] [PubMed]
- Vujic, T.; Nagorni, O.; Maric, G.; Popovic, L.; Jankovic, J. Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: Frequency and Relationship with Systemic Inflammation. Hippokratia 2016, 20, 110–114. [Google Scholar] [PubMed]
- Minas, M.; Kostikas, K.; Papaioannou, A.I.; Mystridou, P.; Karetsi, E.; Georgoulias, P.; Liakos, N.; Pournaras, S.; Gourgoulianis, K.I. The Association of Metabolic Syndrome with Adipose Tissue Hormones and Insulin Resistance in Patients with COPD without Co-Morbidities. COPD 2011, 8, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Larson, J.L. The Relationship between Physical Activity and Metabolic Syndrome in People with Chronic Obstructive Pulmonary Disease. J. Cardiovasc. Nurs. 2014, 29, 499–507. [Google Scholar] [CrossRef]
- Kim, J.; Yoo, J.Y.; Kim, H.S. Metabolic Syndrome in South Korean Patients with Chronic Obstructive Pulmonary Disease: A Focus on Gender Differences. Asian Nurs. Res. 2019, 13, 137–146. [Google Scholar] [CrossRef]
- Bermudez, G.; Jasul, G.; David-Wang, A.; Jimeno, C.; Magallanes, J.; Macalalad-Josue, A.A. Association of Metabolic Syndrome with the Severity of Airflow Obstruction in Patients with Chronic Obstructive Pulmonary Disease. J. ASEAN Fed. Endocr. Soc. 2018, 33, 181–187. [Google Scholar] [CrossRef]
- Sun, K.; Liu, J.; Ning, G. Active Smoking and Risk of Metabolic Syndrome: A Meta-Analysis of Prospective Studies. PLoS ONE 2012, 7, e47791. [Google Scholar] [CrossRef]
- Cena, H.; Fonte, M.L.; Turconi, G. Relationship between Smoking and Metabolic Syndrome. Nutr. Rev. 2011, 69, 745–753. [Google Scholar] [CrossRef]
- Golpe, R.; Martín-Robles, I.; Sanjuán-López, P.; Pérez-de-Llano, L.; González-Juanatey, C.; López-Campos, J.L.; Arellano-Orden, E. Differences in Systemic Inflammation between Cigarette and Biomass Smoke-Induced COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2639–2646. [Google Scholar] [CrossRef]
- Cao, C.; Wang, R.; Wang, J.; Bunjhoo, H.; Xu, Y.; Xiong, W. Body Mass Index and Mortality in Chronic Obstructive Pulmonary Disease: A Meta-Analysis. PLoS ONE 2012, 7, e43892. [Google Scholar] [CrossRef]
- Prescott, E.; Almdal, T.; Mikkelsen, K.L.; Tofteng, C.L.; Vestbo, J.; Lange, P. Prognostic Value of Weight Change in Chronic Obstructive Pulmonary Disease: Results from the Copenhagen City Heart Study. Eur. Respir. J. 2002, 20, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Benslimane, A.; Garcia-Larsen, V.; El Kinany, K.; Alaoui Chrifi, A.; Hatime, Z.; Benjelloun, M.C.; El Biaze, M.; Nejjari, C.; El Rhazi, K. Association between Obesity and Chronic Obstructive Pulmonary Disease in Moroccan Adults: Evidence from the BOLD Study. SAGE Open Med. 2021, 9, 20503121211031428. [Google Scholar] [CrossRef] [PubMed]
- Leone, N.; Courbon, D.; Thomas, F.; Bean, K.; Jégo, B.; Leynaert, B.; Guize, L.; Zureik, M. Lung Function Impairment and Metabolic Syndrome: The Critical Role of Abdominal Obesity. Am. J. Respir. Crit. Care Med. 2009, 179, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Duffy, S.; Barnett, S.; Civic, B.; Mamary, A.J.; Criner, G.J. Risk of Death by Comorbidity Prompting Rehospitalization Following the Initial COPD Hospitalization. Chronic Obstr. Pulm. Dis. Miami Fla 2015, 2, 17–22. [Google Scholar] [CrossRef]
- Behrens, G.; Matthews, C.E.; Moore, S.C.; Hollenbeck, A.R.; Leitzmann, M.F. Body Size and Physical Activity in Relation to Incidence of Chronic Obstructive Pulmonary Disease. CMAJ Can. Med. Assoc. J. J. Assoc. Medicale Can. 2014, 186, E457–E469. [Google Scholar] [CrossRef]
- Abston, E.; Comellas, A.; Reed, R.M.; Kim, V.; Wise, R.A.; Brower, R.; Fortis, S.; Beichel, R.; Bhatt, S.; Zabner, J.; et al. Higher BMI Is Associated with Higher Expiratory Airflow Normalised for Lung Volume (FEF25-75/FVC) in COPD. BMJ Open Respir. Res. 2017, 4, e000231. [Google Scholar] [CrossRef]
- Raghavan, D.; Varkey, A.; Bartter, T. Chronic Obstructive Pulmonary Disease: The Impact of Gender. Curr. Opin. Pulm. Med. 2017, 23, 117–123. [Google Scholar] [CrossRef]
- Hou, Q.; Guan, Y.; Yu, W.; Liu, X.; Wu, L.; Xiao, M.; Lü, Y. Associations between Obesity and Cognitive Impairment in the Chinese Elderly: An Observational Study. Clin. Interv. Aging 2019, 14, 367–373. [Google Scholar] [CrossRef]
- Wielscher, M.; Amaral, A.F.S.; van der Plaat, D.; Wain, L.V.; Sebert, S.; Mosen-Ansorena, D.; Auvinen, J.; Herzig, K.-H.; Dehghan, A.; Jarvis, D.L.; et al. Genetic Correlation and Causal Relationships between Cardio-Metabolic Traits and Lung Function Impairment. Genome Med. 2021, 13, 104. [Google Scholar] [CrossRef]
- Holtjer, J.C.S.; Bloemsma, L.D.; Beijers, R.J.H.C.G.; Cornelissen, M.E.B.; Hilvering, B.; Houweling, L.; Vermeulen, R.C.H.; Downward, G.S.; Maitland-Van der Zee, A.-H. Identifying Risk Factors for COPD and Adult-Onset Asthma: An Umbrella Review. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2023, 32, 230009. [Google Scholar] [CrossRef]
- McDonald, M.-L.N.; Wouters, E.F.M.; Rutten, E.; Casaburi, R.; Rennard, S.I.; Lomas, D.A.; Bamman, M.; Celli, B.; Agusti, A.; Tal-Singer, R.; et al. It’s More than Low BMI: Prevalence of Cachexia and Associated Mortality in COPD. Respir. Res. 2019, 20, 100. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, S.; Teixeira, P.J.Z.; Silva, F.M. Association of Reduced BMI, Length of Hospital Stay, Mortality, and Malnutrition Diagnosis in Patients with Acute Exacerbation COPD: A Secondary Analysis of a Cohort Study. JPEN J. Parenter. Enteral Nutr. 2023, 47, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Shin, S.H.; Kim, H.; Im, Y.; Cho, J.; Kang, D.; Park, H.Y. Longitudinal BMI Change and Outcomes in Chronic Obstructive Pulmonary Disease: A Nationwide Population-Based Cohort Study. Respir. Res. 2024, 25, 150. [Google Scholar] [CrossRef]
- De Brandt, J.; Beijers, R.J.H.C.G.; Chiles, J.; Maddocks, M.; McDonald, M.-L.N.; Schols, A.M.W.J.; Nyberg, A. Update on the Etiology, Assessment, and Management of COPD Cachexia: Considerations for the Clinician. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 2957–2976. [Google Scholar] [CrossRef]
- Kirsch, F.; Schramm, A.; Kurz, C.; Schwarzkopf, L.; Lutter, J.I.; Huber, M.; Leidl, R. Effect of BMI on Health Care Expenditures Stratified by COPD GOLD Severity Grades: Results from the LQ-DMP Study. Respir. Med. 2020, 175, 106194. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Yang, F.; Jing, M.; Zhong, X.; Wang, Y.; Liu, Y.; Ming, W.; Li, H.; Zhao, T.; et al. Risk Factors of Sarcopenia in COPD Patients: A Meta-Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2024, 19, 1613–1622. [Google Scholar] [CrossRef]
- Jaitovich, A.; Barreiro, E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am. J. Respir. Crit. Care Med. 2018, 198, 175–186. [Google Scholar] [CrossRef]
- Tang, X.; Lei, J.; Li, W.; Peng, Y.; Wang, C.; Huang, K.; Yang, T. The Relationship Between BMI and Lung Function in Populations with Different Characteristics: A Cross-Sectional Study Based on the Enjoying Breathing Program in China. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 2677–2692. [Google Scholar] [CrossRef]
- Liwsrisakun, C.; Pothirat, C.; Chaiwong, W.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T.; Limsukon, A.; Tajarernmuang, P.; Phetsuk, N. Exercise Performance as a Predictor for Balance Impairment in COPD Patients. Med. Kaunas Lith. 2019, 55, 171. [Google Scholar] [CrossRef] [PubMed]
- Iwakura, M.; Wakasa, M.; Okura, K.; Kawagoshi, A.; Sugawara, K.; Takahashi, H.; Shioya, T. Functionally Relevant Threshold of Inspiratory Muscle Strength in Patients with Chronic Obstructive Pulmonary Disease. Respir. Med. 2021, 188, 106625. [Google Scholar] [CrossRef]
- Kahnert, K.; Alter, P.; Welte, T.; Huber, R.M.; Behr, J.; Biertz, F.; Watz, H.; Bals, R.; Vogelmeier, C.F.; Jörres, R.A. Uric Acid, Lung Function, Physical Capacity and Exacerbation Frequency in Patients with COPD: A Multi-Dimensional Approach. Respir. Res. 2018, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Son, D.-H.; Lee, H.S.; Lee, Y.-J.; Lee, J.-H.; Han, J.-H. Comparison of Triglyceride-Glucose Index and HOMA-IR for Predicting Prevalence and Incidence of Metabolic Syndrome. Nutr. Metab. Cardiovasc. Dis. NMCD 2022, 32, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-L.; Wang, C.-C.; Wu, L.-W.; Kao, T.-W.; Chan, J.Y.-H.; Chen, Y.-J.; Yang, Y.-H.; Chang, Y.-W.; Peng, T.-C. Relationship between Lung Function and Metabolic Syndrome. PLoS ONE 2014, 9, e108989. [Google Scholar] [CrossRef] [PubMed]
- da-Silva, C.A.C.; Leite, A.L.; Moreira, J.A.; Abreu, D.D.C.; de Abreu Oliveira, P.E.; Nunes, D.P.; Magalhães, M.I.S.; Silva, J.B.N.F. Association of Dyslipidemia, Hypertension and Overweight/Obesity with Work Shift and Duration of Employment among Police Officers in a Small Town in Northeastern Brazil. Rev. Bras. Med. Trab. Publicacao Of. Assoc. Nac. Med. Trab.—ANAMT 2019, 17, 537–544. [Google Scholar] [CrossRef]
- Wang, F.; Tian, D.; Zhao, Y.; Li, J.; Chen, X.; Zhang, Y. High-Density Lipoprotein Cholesterol: A Component of the Metabolic Syndrome with a New Role in Lung Function. Evid.-Based Complement. Altern. Med. ECAM 2021, 2021, 6615595. [Google Scholar] [CrossRef]
- Ameen, N.M.; El Deen Mohamed, R.S.; El Mageed, N.I.A.; El Wahab, M.H.A. The Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease. Egypt. J. Chest Dis. Tuberc. 2016, 65, 593–596. [Google Scholar] [CrossRef]
- McFarlane, S.I. Bone Metabolism and the Cardiometabolic Syndrome: Pathophysiologic Insights. J. Cardiometab. Syndr. 2006, 1, 53–57. [Google Scholar] [CrossRef]
- Mekov, E.; Slavova, Y.; Tsakova, A.; Genova, M.; Kostadinov, D.; Minchev, D.; Marinova, D. Metabolic Syndrome in Hospitalized Patients with Chronic Obstructive Pulmonary Disease. PeerJ 2015, 3, e1068. [Google Scholar] [CrossRef]
- Kim, E.; Oh, S.W. Gender Differences in the Association of Occupation with Metabolic Syndrome in Korean Adults. Korean J. Obes. 2012, 21, 108–114. [Google Scholar] [CrossRef]
- Myong, J.-P.; Kim, H.-R.; Jung-Choi, K.; Baker, D.; Choi, B. Disparities of Metabolic Syndrome Prevalence by Age, Gender and Occupation among Korean Adult Workers. Ind. Health 2012, 50, 115–122. [Google Scholar] [CrossRef]
- Priyadharshini, N.; Renusha, R.C.; Reshma, S.; Sindhuri Sai, M.; Koushik Muthu, R.M.; Rajanandh, M.G. Prevalence of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: An Observational Study in South Indians. Diabetes Metab. Syndr. 2020, 14, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Wouters, E.F.M. Obesity and Metabolic Abnormalities in Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. S5), S389–S394. [Google Scholar] [CrossRef]
- Dogra, M.; Jaggi, S.; Aggarwal, D.; Gupta, S.; Saini, V.; Kaur, J. Role of Interleukin-6 and Insulin Resistance as Screening Markers for Metabolic Syndrome in Patients of Chronic Obstructive Pulmonary Disease: A Hospital-Based Cross-Sectional Study. Monaldi Arch. Chest Dis. Arch. Monaldi Mal. Torace 2021, 92. [Google Scholar] [CrossRef]
- Fabbri, L.M.; Rabe, K.F. From COPD to Chronic Systemic Inflammatory Syndrome? Lancet Lond. Engl. 2007, 370, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Shabalala, S.C.; Dludla, P.V.; Mabasa, L.; Kappo, A.P.; Basson, A.K.; Pheiffer, C.; Johnson, R. The Effect of Adiponectin in the Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Potential Role of Polyphenols in the Modulation of Adiponectin Signaling. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 131, 110785. [Google Scholar] [CrossRef]
- Rotundo, L.; Persaud, A.; Feurdean, M.; Ahlawat, S.; Kim, H.-S. The Association of Leptin with Severity of Non-Alcoholic Fatty Liver Disease: A Population-Based Study. Clin. Mol. Hepatol. 2018, 24, 392–401. [Google Scholar] [CrossRef]
- Whitehead, J.P.; Richards, A.A.; Hickman, I.J.; Macdonald, G.A.; Prins, J.B. Adiponectin—A Key Adipokine in the Metabolic Syndrome. Diabetes Obes. Metab. 2006, 8, 264–280. [Google Scholar] [CrossRef]
- Lam, K.-B.H.; Jordan, R.E.; Jiang, C.Q.; Thomas, G.N.; Miller, M.R.; Zhang, W.S.; Lam, T.H.; Cheng, K.K.; Adab, P. Airflow Obstruction and Metabolic Syndrome: The Guangzhou Biobank Cohort Study. Eur. Respir. J. 2010, 35, 317–323. [Google Scholar] [CrossRef]
- Bourbeau, J.; Julien, M.; Maltais, F.; Rouleau, M.; Beaupré, A.; Bégin, R.; Renzi, P.; Nault, D.; Borycki, E.; Schwartzman, K.; et al. Reduction of Hospital Utilization in Patients with Chronic Obstructive Pulmonary Disease: A Disease-Specific Self-Management Intervention. Arch. Intern. Med. 2003, 163, 585–591. [Google Scholar] [CrossRef]
- Effing, T.W.; Vercoulen, J.H.; Bourbeau, J.; Trappenburg, J.; Lenferink, A.; Cafarella, P.; Coultas, D.; Meek, P.; van der Valk, P.; Bischoff, E.W.M.A.; et al. Definition of a COPD Self-Management Intervention: International Expert Group Consensus. Eur. Respir. J. 2016, 48, 46–54. [Google Scholar] [CrossRef]
- Newham, J.J.; Presseau, J.; Heslop-Marshall, K.; Russell, S.; Ogunbayo, O.J.; Netts, P.; Hanratty, B.; Kaner, E. Features of Self-Management Interventions for People with COPD Associated with Improved Health-Related Quality of Life and Reduced Emergency Department Visits: A Systematic Review and Meta-Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1705–1720. [Google Scholar] [CrossRef] [PubMed]
- Dineen-Griffin, S.; Garcia-Cardenas, V.; Williams, K.; Benrimoj, S.I. Helping Patients Help Themselves: A Systematic Review of Self-Management Support Strategies in Primary Health Care Practice. PLoS ONE 2019, 14, e0220116. [Google Scholar] [CrossRef] [PubMed]
- Yadav, U.N.; Lloyd, J.; Hosseinzadeh, H.; Baral, K.P.; Harris, M.F. Do Chronic Obstructive Pulmonary Diseases (COPD) Self-Management Interventions Consider Health Literacy and Patient Activation? A Systematic Review. J. Clin. Med. 2020, 9, 646. [Google Scholar] [CrossRef] [PubMed]
Parameters | Total (Mean ± SD) | COPD with MetS (n = 67) n (%) or Mean ± SD | COPD Without MetS (n = 33) n (%) or Mean ±SD | p-Value |
---|---|---|---|---|
Age, years | 67.02 ± 9.303 | 66.22 ± 8.528 | 68.64 ± 10.665 | 0.155 |
Gender | 0.105 | |||
Male | 68 (68.0) | 42 (62.7) | 26 (78.8) | |
Female | 32 (32.0) | 25 (37.3) | 7 (21.2) | |
BMI, kg/m2 | 30.63 ± 6.842 | 32.57 ± 6.635 | 26.68 ± 5.488 | <0.001 |
BMI ≥ 25 kg/m2 | 79 (79.0) | 62 (92.5) | 17 (51.5) | <0.001 |
Abdominal circumference, cm | 107.16 ± 14.673 | 110.93 ± 13.120 | 99.52 ± 14.871 | <0.001 |
Smoking status | 0.412 | |||
Never smoker | 26 (26.0) | 20 (29.9) | 6 (18.2) | |
Current smoker | 25 (25.0) | 15 (22.4) | 10 (30.3) | |
Former smoker | 49 (49.0) | 32 (47.8) | 17 (51.5) | |
Smoking history, pack-years | 22.64 ± 20.244 | 21.28 ± 21.471 | 25.39 ± 17.477 | 0.196 |
GOLD classification | <0.001 | |||
1 (mild) | 1 (1.0) | 1 (1.5) | - | |
2 (moderate) | 54 (54.0) | 35 (52.2) | 19 (57.6) | |
3 (severe) | 33 (33.0) | 29 (43.3) | 4 (12.1) | |
4 (very severe) | 12 (12.0) | 2 (3.0) | 10 (30.3) | |
FEV1, % (mean ± SD) | 54.65 ± 15.459 | 56.69 ± 12.218 | 50.50 ± 20.121 | 0.411 |
FVC, % (mean ± SD) | 67.77 ± 13.792 | 70.07 ± 10.966 | 63.11 ± 17.521 | 0.119 |
FEV1/FVC ratio (mean ± SD) | 60.25 ± 10.048 | 61.18 ± 8.457 | 58.35 ± 12.621 | 0.681 |
IL-8, pg/mL | 148.02 ± 143.419 | 138.84 ± 130.043 | 168.21 ± 170.406 | 0.589 |
TNF-alpha, pg/mL | 16.84 ± 2.084 | 16.95 ± 2.479 | 16.614 ± 0.627 | 0.689 |
IL-6, pg/mL | 4.28 ± 53.928 | 6.82 ± 62.685 | 1.33 ± 26.153 | 0.897 |
IL-1β, pg/mL | 20.59 ± 88.310 | 30.79 ± 103.981 | 1.85 ± 24.089 | 0.060 |
Fasting glucose, mg/dL | 111.40 ± 27.611 | 115.35 ± 28.653 | 103.39 ± 23.802 | 0.004 |
TG, mg/dL | 132.12 ± 62.746 | 144.47 ± 66.898 | 107.04 ± 44.519 | 0.003 |
HDL cholesterol, mg/dL | 57.80 ± 15.101 | 57.03 ± 15.416 | 59.37 ± 14.543 | 0.468 |
LDL cholesterol, mg/dL | 119.35 ± 35.030 | 122.39 ± 35.853 | 113.16 ± 32.959 | 0.217 |
SpO2, % | 84.367 ± 6.6543 | 84.105 ± 6.7374 | 85.100 ± 6.5285 | 0.478 |
Short-acting BD | 92 (92.0) | 63 (94.0) | 29 (87.9) | 0.434 |
Long-acting BD | 95 (95.0) | 63 (94.0) | 32 (97.0) | 1.000 |
Inhaled CS | 48 (48.0) | 34 (50.7) | 14 (42.4) | 0.433 |
Statins | 57 (57.0) | 44 (65.7) | 13 (39.4) | 0.013 |
Other hypolipidemic drugs | 23 (23.0) | 22 (32.8) | 1 (3.0) | 0.001 |
Oral hypoglycemic drugs | 43 (43.0) | 36 (53.7) | 7 (21.2) | 0.002 |
Insulin | 7 (7.0) | 6 (9.0) | 1 (3.0) | 0.420 |
Blood pressure lowering drugs | 81 (81.0) | 57 (85.1) | 24 (72.7) | 0.139 |
Beta-blockers | 47 (47.0) | 34 (50.7) | 13 (39.4) | 0.285 |
Psychiatric drugs | 25 (25.0) | 18 (26.9) | 7 (21.2) | 0.539 |
Total n = 100 | Men | Women | |||||
---|---|---|---|---|---|---|---|
COPD with MetS (n = 42) | COPD Without MetS (n = 26) | p | COPD with MetS (n = 25) | COPD Without MetS (n = 7) | p | ||
Diabetes, n (%) | 49 (49.0) | 27 (64.3) | 6 (23.1) | 0.001 | 15 (60.0) | 1 (14.3) | 0.033 |
Dyslipidemia, n (%) | 69 (69.0) | 33 (78.6) | 9 (34.6) | <0.001 | 24 (96.0) | 3 (42.9) | <0.001 |
Hypertension, n (%) | 85 (85.0) | 40 (95.2) | 16 (61.5) | <0.001 | 23 (92.0) | 6 (85.7) | 0.536 |
Atrial fibrillation, n (%) | 12 (12.0) | 4 (9.5) | 2 (7.7) | 1.000 | 3 (12.0) | 3 (42.9) | 0.101 |
Chronic coronary syndrome, n (%) | 64 (64.0) | 31 (73.8) | 11 (42.3) | 0.012 | 18 (72.0) | 4 (57.1) | 0.454 |
Heart failure, n (%) | 57 (57.0) | 30 (71.4) | 11 (42.3) | 0.023 | 12 (48.0) | 4 (57.1) | 0.669 |
Peripheral vascular disease, n (%) | 31 (31.0) | 20 (47.6) | 5 (19.2) | 0.022 | 5 (20.0) | 1 (14.3) | 0.732 |
Sleep apnea, n (%) | 49 (49.0) | 27 (64.3) | 5 (19.2) | <0.001 | 14 (56.0) | 3 (42.9) | 0.538 |
Depression, n (%) | 50 (50.0) | 22 (52.4) | 11 (42.3) | 0.462 | 13 (52.0) | 4 (57.1) | 0.810 |
Anxiety, n (%) | 39 (39.0) | 20 (47.6) | 7 (26.9) | 0.127 | 9 (36.0) | 3 (42.9) | 0.740 |
Pulmonary hypertension, n (%) | 25 (25.0) | 13 (31.0) | 3 (11.5) | 0.083 | 7 (28.0) | 2 (28.6) | 0.976 |
Oxygen users, n (%) | 18 (18.0) | 5 (11.9) | 9 (34.6) | 0.033 | 4 (16.0) | - | 0.258 |
Total (n = 100) | COPD with MetS (n = 67) | COPD Without MetS (n = 33) | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Follow-Up | p | Baseline | Follow-Up | p | Baseline | Follow-Up | p | |
BMI, kg/m2 (mean ± SD) | |||||||||
Total | 30.63 ± 6.842 | 30.48 ± 6.703 | 0.469 | 32.57 ± 6.635 | 32.24 ± 6.514 | 0.254 | 26.68 ± 5.488 | 26.91 ± 5.642 | 0.602 |
Men | 29.54 ± 5.851 | 29.47 ± 5.805 | 0.691 | 31.65 ± 5.476 | 31.35 ± 5.523 | 0.372 | 26.15 ± 4.811 | 26.43 ± 4.975 | 0.492 |
Women | 32.93 ± 8.214 | 32.62 ± 7.980 | 0.555 | 34.12 ± 8.113 | 31.35 ± 5.523 | 0.523 | 28.68 ± 7.635 | 28.66 ± 7.879 | 1.000 |
Weight, kg (mean ± SD) | |||||||||
Total | 85.69 ± 8.212 | 85.42 ± 18.164 | 0.562 | 90.21 ± 16.894 | 89.48 ± 16.911 | 0.231 | 76.52 ± 17.548 | 77.18 ± 18.067 | 0.328 |
Men | 87.93 ± 18.073 | 87.59 ± 17.740 | 0.541 | 94.36 ± 15.389 | 93.26 ± 15.166 | 0.130 | 77.54 ± 17.473 | 78.42 ± 18.023 | 0.297 |
Women | 80.94 ± 17.861 | 80.81 ± 18.471 | 0.887 | 83.24 ± 17.309 | 83.12 ± 18.065 | 0.915 | 72.71 ± 18.679 | 72.57 ± 18.867 | 0.846 |
Abdominal circumference, cm (mean ± SD) | |||||||||
Total | 107.16 ± 14.673 | 105.80 ± 14.649 | 0.039 | 110.93 ± 13.120 | 108.91 ± 13.588 | 0.010 | 99.52 ± 14.871 | 99.48 ± 14.892 | 0.980 |
Men | 108.21 ± 14.377 | 106.49 ± 13.85 | 0.070 | 113.48 ± 11.458 | 110.57 ± 11.972 | 0.016 | 99.69 ± 14.718 | 99.88 ± 14.342 | 0.900 |
Women | 104.94 ± 15.276 | 104.34 ± 16.356 | 0.189 | 106.64 ± 14.784 | 106.12 ± 15.81 | 0.312 | 98.86 ± 16.618 | 98.00 ± 17.954 | 0.418 |
FEV1, % (mean ± SD) | |||||||||
Total | 54.65 ± 15.459 | 56.07 ± 14.933 | 0.001 | 56.69 ± 12.218 | 58.54 ± 12.418 | 0.001 | 50.50 ± 20.121 | 51.04 ± 18.246 | 0.213 |
Men | 51.29 ± 16.154 | 53.11 ± 15.659 | 0.001 | 54.24 ± 11.82 | 56.35 ± 12.151 | 0.004 | 46.52 ± 20.782 | 47.87 ± 19.203 | 0.060 |
Women | 61.8 ± 11.029 | 62.35 ± 11.053 | 0.445 | 60.82 ± 11.983 | 62.22 ± 12.223 | 0.170 | 65.29 ± 5.992 | 62.83 ± 5.771 | 0.345 |
FVC, % (mean ± SD) | |||||||||
Total | 67.77 ± 13.792 | 68.51 ± 13.485 | 0.463 | 70.07 ± 10.966 | 70.69 ± 11.155 | 0.850 | 63.11 ± 17.521 | 64.11 ± 16.613 | 0.318 |
Men | 64.77 ± 14.404 | 65.59 ± 13.964 | 0.699 | 67.87 ± 10.634 | 67.96 ± 10.61 | 0.492 | 59.76 ± 18.12 | 61.76 ± 17.698 | 0.196 |
Women | 74.16 ± 9.856 | 74.73 ± 10.036 | 0.462 | 73.76 ± 10.719 | 75.26 ± 10.729 | 0.326 | 75.57 ± 6.268 | 72.81 ± 7.383 | 0.753 |
FEV1/FVC ratio (mean ± SD) | |||||||||
Total | 60.25 ± 10.048 | 61.58 ± 9.532 | 0.001 | 61.18 ± 8.457 | 62.41 ± 8.576 | 0.008 | 58.35 ± 12.621 | 59.88 ± 11.179 | 0.031 |
Men | 58.33 ± 10.581 | 59.67 ± 9.927 | 0.010 | 59.64 ± 8.279 | 60.73 ± 8.525 | 0.062 | 56.22 ± 13.420 | 57.97 ± 11.832 | 0.062 |
Women | 64.32 ± 7.436 | 65.63 ± 7.232 | 0.019 | 63.77 ± 8.275 | 65.24 ± 8.05 | 0.051 | 66.29 ± 2.446 | 67.00 ± 2.859 | 0.204 |
mMRC dyspnea scale, n (%) | |||||||||
≤2 | |||||||||
Total | 29 (29.0) | 60 (60.0) | <0.001 | 20 (29.9) | 42 (62.7) | <0.001 | 9 (27.3) | 18 (54.5) | 0.004 |
Men | 16 (23.5) | 40 (58.8) | <0.001 | 9 (21.4) | 25 (59.5) | <0.001 | 7 (26.9) | 15 (57.7) | 0.008 |
Women | 13 (40.6) | 20 (62.5) | 0.065 | 11 (44.0) | 17 (68.0) | 0.109 | 2 (28.6) | 3 (42.9) | 1.000 |
>2 | |||||||||
Total | 71 (71.0) | 40 (40.0) | <0.001 | 47 (70.1) | 25 (37.3) | <0.001 | 24 (72.7) | 15 (45.5) | <0.001 |
Men | 52 (76.5) | 28 (41.2) | <0.001 | 33 (78.6) | 17 (40.5) | <0.001 | 19 (73.1) | 11 (42.3) | <0.001 |
Women | 19 (59.4) | 12 (37.5) | 0.081 | 14 (56.0) | 8 (32.0) | . | 5 (71.4) | 4 (57.1) | 0.042 |
CAT score, n (%) | |||||||||
≤10 | |||||||||
Total | 3 (3.0) | 5 (5.0) | 0.625 | 2 (3.0) | 4 (6.0) | 0.625 | 1 (3.0) | 1 (3.0) | 1.000 |
Men | 1 (1.5) | 1 (1.5) | 1.000 | - | - | - | 1 (3.8) | 1 (3.8) | 1.000 |
Women | 2 (6.3) | 4 (12.5) | 0.625 | 2 (8.0) | 4 (16.0) | 0.625 | - | - | - |
>10 | |||||||||
Total | 97 (97.0) | 95 (95.0) | 0.772 | 65 (97.0) | 63 (94.0) | 0.982 | 32 (97.0) | 32 (97.0) | 0.158 |
Men | 67 (98.5) | 67 (98.5) | 1.000 | 42 (100.0) | 42 (100.0) | 1.000 | 25 (96.2) | 25 (96.2) | 0.158 |
Women | 30 (93.8) | 28 (87.5) | 0.601 | 23 (92.0) | 21 (84.0) | 0.189 | 7 (100.0) | 7 (100.0) | 1.000 |
6 MWD, m (mean ± SD) | |||||||||
Total | 220.76 ± 167.231 | 262.01 ± 122.633 | 0.003 | 215.50 ± 163.246 | 251.54 ± 118.605 | 0.049 | 231.43 ± 177.147 | 282.96 ± 130.146 | 0.016 |
Men | 230.41 ± 173.533 | 270.34 ± 130.765 | 0.007 | 224.19 ± 166.834 | 258.53 ± 123.463 | 0.068 | 240.47 ± 186.782 | 288.33 ± 142.368 | 0.039 |
Women | 200.24 ± 153.583 | 244.36 ± 103.553 | 0.203 | 200.91 ± 159.319 | 240.35 ± 112.583 | 0.365 | 197.86 ± 142.591 | 260.40 ± 61.080 | 0.345 |
6 MWD, % pred (mean ± SD) | |||||||||
Total | 40.53 ± 32.418 | 48.45 ± 26.365 | 0.005 | 39.09 ± 31.517 | 45.94 ± 25.533 | 0.053 | 43.47 ± 34.486 | 53.48 ± 27.781 | 0.019 |
Men | 41.78 ± 32.95 | 49.24 ± 26.746 | 0.017 | 40.84 ± 31.811 | 47.43 ± 24.996 | 0.137 | 43.29 ± 35.301 | 52.01 ± 29.634 | 0.050 |
Women | 37.89 ± 31.608 | 46.79 ± 26.001 | 0.149 | 36.15 ± 31.441 | 43.58 ± 26.850 | 0.268 | 44.11 ± 33.911 | 59.64 ± 19.335 | 0.225 |
Glucose, mg/dL (mean ± SD) | |||||||||
Total | 111.40 ± 27.611 | 103.9 ± 23.973 | 0.001 | 115.34 ± 28.653 | 105.49 ± 22.09 | 0.001 | 103.39 ± 23.802 | 100.66 ± 27.484 | 0.654 |
Men | 111.53 ± 27.999 | 104.68 ± 24.05 | 0.040 | 117.39 ± 33.256 | 108.90 ± 26.737 | 0.048 | 102.07 ± 11.680 | 97.85 ± 17.301 | 0.420 |
Women | 111.13 ± 27.205 | 102.24 ± 24.105 | 0.008 | 111.91 ± 18.678 | 99.77 ± 8.139 | 0.001 | 108.33 ± 49.162 | 111.09 ± 51.190 | 0.499 |
LDL-C, mg/dL, (mean ± SD) | |||||||||
Total | 119.35 ± 35.030 | 110.12 ± 31.172 | 0.002 | 122.39 ± 35.853 | 113.31 ± 34.187 | 0.013 | 113.16 ± 32.959 | 103.63 ± 23.040 | 0.059 |
Men | 115.99 ± 34.847 | 108.43 ± 32.171 | 0.026 | 118.61 ± 38.460 | 111.80 ± 36.573 | 0.163 | 111.74 ± 28.252 | 102.98 ± 23.023 | 0.065 |
Women | 126.49 ± 34.884 | 113.70 ± 29.098 | 0.030 | 128.74 ± 30.675 | 115.85 ± 30.303 | 0.040 | 118.44 ± 49.262 | 106.04 ± 24.778 | 0.398 |
HDL-C, mg/dL (mean ± SD) | |||||||||
Total | 57.80 ± 15.101 | 59.43 ± 12.363 | 0.204 | 57.03 ± 15.416 | 59.06 ± 12.031 | 0.238 | 59.37 ± 14.543 | 60.18 ± 13.170 | 0.645 |
Men | 56.83 ± 14.700 | 57.82 ± 12.138 | 0.504 | 55.85 ± 14.096 | 57.41 ± 10.824 | 0.436 | 58.42 ± 15.780 | 58.47 ± 14.212 | 0.983 |
Women | 59.86 ± 15.961 | 62.86 ± 12.322 | 0.240 | 59.01 ± 17.538 | 61.83 ± 13.608 | 0.382 | 62.89 ± 8.498 | 66.54 ± 4.855 | 0.163 |
TG, mg/dL (mean ± SD) | |||||||||
Total | 132.12 ± 62.746 | 127.77 ± 54.703 | 0.732 | 144.47 ± 66.898 | 139.63 ± 58.267 | 0.987 | 107.04 ± 44.519 | 103.69 ± 36.916 | 0.525 |
Men | 130.86 ± 68.359 | 125.49 ± 57.576 | 0.973 | 146.02 ± 77.456 | 139.25 ± 63.487 | 0.827 | 106.37 ± 40.918 | 103.25 ± 37.97 | 0.737 |
Women | 134.80 ± 49.626 | 132.64 ± 48.537 | 0.570 | 141.87 ± 45.243 | 140.28 ± 49.500 | 0.753 | 109.56 ± 59.873 | 105.33 ± 35.455 | 0.398 |
SBP, mmHg (mean ± SD) | |||||||||
Total | 136.18 ± 17.998 | 131.18 ± 13.037 | 0.001 | 137.01 ± 19.072 | 132.48 ± 13.219 | 0.016 | 134.48 ± 15.732 | 128.55 ± 12.44 | 0.014 |
Men | 138.90 ± 19.002 | 131.07 ± 13.769 | 0.000 | 140.74 ± 20.187 | 131.86 ± 14.598 | 0.001 | 135.92 ± 16.866 | 129.81 ± 12.487 | 0.022 |
Women | 130.41 ± 14.264 | 131.41 ± 11.531 | 0.906 | 130.76 ± 15.463 | 133.52 ± 10.709 | 0.699 | 129.14 ± 9.616 | 123.86 ± 11.964 | 0.271 |
DBP, mmHg (mean ± SD) | |||||||||
Total | 81.45 ± 9.950 | 78.70 ± 8.796 | 0.001 | 81.82 ± 10.521 | 79.54 ± 9.29 | 0.033 | 80.70 ± 8.780 | 77.00 ± 7.542 | 0.009 |
Men | 82.69 ± 10.076 | 79.40 ± 7.81 | 0.004 | 83.24 ± 11.078 | 80.36 ± 8.479 | 0.080 | 81.81 ± 8.338 | 77.85 ± 6.442 | 0.011 |
Women | 78.81 ± 9.282 | 77.22 ± 10.579 | 0.158 | 79.44 ± 9.238 | 78.16 ± 10.554 | 0.220 | 76.57 ± 9.813 | 73.86 ± 10.761 | 0.500 |
Total | COPD with MetS | COPD Without MetS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spirometry Parameters | 95% Confidence Interval | 95% Confidence Interval | 95% Confidence Interval | |||||||||
r | p | Lower Limit | Upper Limit | r | p | Lower Limit | Upper Limit | r | p | Lower Limit | Upper Limit | |
BMI | ||||||||||||
Baseline | ||||||||||||
FEV1 (%) | 0.342 | <0.001 | 0.157 | 0.505 | 0.389 | 0.001 | 0.164 | 0.575 | 0.198 | 0.270 | −0.156 | 0.507 |
FVC % | 0.171 | 0.089 | −0.026 | 0.355 | 0.071 | 0.570 | −0.173 | 0.306 | 0.114 | 0.526 | −0.238 | 0.440 |
FEV1/FVC | 0.379 | <0.001 | 0.198 | 0.536 | 0.508 | <0.001 | 0.305 | 0.667 | 0.149 | 0.408 | −0.205 | 0.468 |
Follow-up | ||||||||||||
FEV1 (%) | 0.333 | <0.001 | 0.146 | 0.497 | 0.361 | 0.003 | 0.132 | 0.553 | 0.149 | 0.409 | −0.205 | 0.468 |
FVC % | 0.223 | 0.026 | 0.028 | 0.402 | 0.127 | 0.304 | −0.116 | 0.357 | 0.202 | 0.259 | −0.151 | 0.510 |
FEV1/FVC | 0.349 | <0.001 | 0.164 | 0.510 | 0.484 | <0.001 | 0.276 | 0.649 | 0.062 | 0.734 | −0.288 | 0.396 |
Distance at 6MWT (m) | ||||||||||||
Baseline | ||||||||||||
FEV1 (%) | 0.289 | 0.010 | 0.071 | 0.481 | 0.227 | 0.106 | −0.049 | 0.470 | 0.447 | 0.022 | 0.072 | 0.711 |
FVC % | 0.343 | 0.002 | 0.131 | 0.526 | 0.370 | 0.007 | 0.108 | 0.584 | 0.416 | 0.034 | 0.034 | 0.692 |
FEV1/FVC | 0.144 | 0.209 | −0.081 | 0.355 | 0.153 | 0.279 | −0.125 | 0.409 | 0.171 | 0.405 | −0.232 | 0.523 |
Follow-up | ||||||||||||
FEV1 (%) | 0.185 | 0.065 | −0.012 | 0.368 | 0.104 | 0.403 | −0.140 | 0.336 | 0.344 | 0.050 | 0.001 | 0.615 |
FVC % | 0.206 | 0.040 | 0.010 | 0.387 | 0.184 | 0.137 | −0.059 | 0.406 | 0.289 | 0.103 | −0.060 | 0.575 |
FEV1/FVC | 0.132 | 0.190 | −0.066 | 0.320 | 0.079 | 0.525 | −0.164 | 0.313 | 0.234 | 0.191 | −0.119 | 0.534 |
Triglycerides | Unstandardized Coefficient | p | 95% Confidence Interval (B) | ||
---|---|---|---|---|---|
B (Effect) | Std. Error | ||||
(Constant) | 28.013 | 54.651 | 0.609 | −80.513 ÷ 136.538 | |
Age, years | −0.710 | 0.649 | 0.277 | −2.000 ÷ 0.579 | |
Gender | 12.817 | 17.735 | 0.472 | −22.401 ÷ 48.035 | |
BMI (kg/m2) | 3.358 | 0.963 | <0.001 | 1.447 ÷ 5.270 | |
MetS | 17.433 | 13.332 | 0.194 | −9.042 ÷ 43.908 | |
Smoking | 1.889 | 9.509 | 0.843 | −16.995 ÷ 20.773 | |
Smoking history, pack-years | 0.792 | 0.373 | 0.036 | 0.053 ÷ 1.532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaleș, E.-A.; Dima-Cozma, L.C.; Cojocaru, D.-C.; Zota, I.M.; Ghiciuc, C.M.; Adam, C.A.; Ciorpac, M.; Tudorancea, I.M.; Petrariu, F.D.; Leon, M.-M.; et al. Assessment of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: A 6-Month Follow-Up Study. Diagnostics 2024, 14, 2437. https://doi.org/10.3390/diagnostics14212437
Moaleș E-A, Dima-Cozma LC, Cojocaru D-C, Zota IM, Ghiciuc CM, Adam CA, Ciorpac M, Tudorancea IM, Petrariu FD, Leon M-M, et al. Assessment of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: A 6-Month Follow-Up Study. Diagnostics. 2024; 14(21):2437. https://doi.org/10.3390/diagnostics14212437
Chicago/Turabian StyleMoaleș, Elena-Andreea, Lucia Corina Dima-Cozma, Doina-Clementina Cojocaru, Ioana Mădălina Zota, Cristina Mihaela Ghiciuc, Cristina Andreea Adam, Mitică Ciorpac, Ivona Maria Tudorancea, Florin Dumitru Petrariu, Maria-Magdalena Leon, and et al. 2024. "Assessment of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: A 6-Month Follow-Up Study" Diagnostics 14, no. 21: 2437. https://doi.org/10.3390/diagnostics14212437
APA StyleMoaleș, E. -A., Dima-Cozma, L. C., Cojocaru, D. -C., Zota, I. M., Ghiciuc, C. M., Adam, C. A., Ciorpac, M., Tudorancea, I. M., Petrariu, F. D., Leon, M. -M., Cozma, R. S., & Mitu, F. (2024). Assessment of Metabolic Syndrome in Patients with Chronic Obstructive Pulmonary Disease: A 6-Month Follow-Up Study. Diagnostics, 14(21), 2437. https://doi.org/10.3390/diagnostics14212437