Sentinel Lymph Node Biopsy in Breast Cancer Using Different Types of Tracers According to Molecular Subtypes and Breast Density—A Randomized Clinical Study
Abstract
:1. Introduction
SLNB Recommendations
2. Materials and Methods
2.1. Density Identification
2.2. Approval from the Ethics Commission
2.3. SLNB Methods
2.4. MB (Methylene Blue)
2.5. ICG (Indocyanine Green)
2.6. ICG + MB (Indocyanine Green + Methylene Blue)
2.7. RI + MB (Radioisotope—Tc-99m + Methylene Blue)
2.8. RI + ICG (Radioisotope + Indocyanine Green)
2.9. RI + MB-ICG (Triple Tracer)
2.10. Histopathologic Examination of SLNB
2.11. Immunohistochemistry Analysis and Molecular Typing
2.12. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehman, C.D.; Yala, A.; Schuster, T.; Dontchos, B.; Bahl, M.; Swanson, K.; Barzilay, R. Mammographic breast density assessment using deep learning: Clinical implementation. Radiology 2019, 290, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.P.; Helvie, M.A. Deep learning for mammographic breast density assessment and beyond. Radiology 2019, 290, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Byng, J.W.; Boyd, N.; Fishell, E.; Jong, R.; Yaffe, M.J. The quantitative analysis of mammographic densities. Phys. Med. Biol. 1994, 39, 1629. [Google Scholar] [CrossRef] [PubMed]
- Sickles, E.A.; D’Orsi, C.J.; Bassett, L.W. ACR BI-RADS RMammography. In ACR BI-RADS R Atlas, Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Tseng, J.; Alban, R.F.; Siegel, E.; Chung, A.; Giuliano, A.E.; Amersi, F.F. Changes in Utilization of Axillary Dissection in Women with Invasive Breast Cancer and Sentinel Node Metastasis after the ACOSOG Z0011 Trial. Breast J. 2021, 27, 216–221. [Google Scholar] [CrossRef]
- Rashmi Kumar, N.; Schonfeld, R.; Gradishar, W.J.; Lurie, R.H.; Moran, M.S.; Abraham, J.; Abramson, V.; Aft, R.; Agnese, D.; Allison, K.H.; et al. NCCN Guidelines Breast Cancer; Version 1.2024; NIH: Bethesda, MD, USA, 2024. [Google Scholar]
- Feier, C.V.I.; Vonica, R.C.; Faur, A.M.; Streinu, D.R.; Muntean, C. Assessment of Thyroid Carcinogenic Risk and Safety Profile of GLP1-RA Semaglutide (Ozempic) Therapy for Diabetes Mellitus and Obesity: A Systematic Literature Review. Int. J. Mol. Sci. 2024, 25, 4346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caudle, A.S.; Kuerer, H.M.; Le-Petross, H.T.; Yang, W.; Yi, M.; Bedrosian, I.; Krishnamurthy, S.; Fornage, B.D.; Hunt, K.K.; Mittendorf, E.A. Predicting the Extent of Nodal Disease in Early-Stage Breast Cancer. Ann. Surg. Oncol. 2014, 21, 3440–3447. [Google Scholar] [CrossRef]
- Loi, S. LBA20—ARandomized, Double-Blind Trial of Nivolumab (NIVO) vs. Placebo (PBO) with Neoadjuvant Chemotherapy (NACT) Followed by Adjuvant Endocrine Therapy (ET) NIVO in Patients (Pts) with High-Risk, ER+ HER2 Primary Breast Cancer (BC). Ann. Oncol. 2023, 34, S1259–S1260. [Google Scholar] [CrossRef]
- Weber, W.P.; Matrai, Z.; Hayoz, S.; Tausch, C.; Henke, G.; Zimmermann, F.; Montagna, G.; Fitzal, F.; Gnant, M.; Ruhstaller, T.; et al. Association of Axillary Dissection with Systemic Therapy in Patients with Clinically Node-Positive Breast Cancer. JAMA Surg. 2023, 158, 1013–1021. [Google Scholar] [CrossRef]
- Henke, G.; Knauer, M.; Ribi, K.; Hayoz, S.; Gérard, M.A.; Ruhstaller, T.; Zwahlen, D.R.; Muenst, S.; Ackerknecht, M.; Hawle, H.; et al. Tailored Axillary Surgery with or without Axillary Lymph Node Dissection Followed by Radiotherapy in Patients with Clinically Node-Positive Breast Cancer (TAXIS): Study Protocol for a Multicenter, Randomized Phase-III Trial. Trials 2018, 19, 667. [Google Scholar] [CrossRef]
- Ciatto, S.; Bernardi, D.; Calabrese, M.; Durando, M.; Gentilini, M.A.; Mariscotti, G.; Monetti, F.; Moriconi, E.; Pesce, B.; Roselli, A.; et al. A first evaluation of breast radiological density assessment by QUANTRA software as compared to visual classification. Breast 2012, 21, 503–506. [Google Scholar] [CrossRef]
- Highnam, R.; Brady, M.; Yaffe, M.J.; Karssemeijer, N.; Harvey, J. Robust breast composition measurement-Volpara TM. In International Workshop on Digital Mammography; Springer: Berlin/Heidelberg, Germany, 2010; pp. 342–349. [Google Scholar]
- Seo, J.; Ko, E.; Han, B.K.; Ko, E.Y.; Shin, J.H.; Hahn, S.Y. Automated volumetric breast density estimation: A comparison with visual assessment. Clin. Radiol. 2013, 68, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Byng, J.; Boyd, N.; Fishell, E.; Jong, R.; Yaffe, M. Automated analysis of mammographic densities. Phys. Med. Biol. 1996, 41, 909. [Google Scholar] [CrossRef] [PubMed]
- Boyd, N.F.; Martin, L.J.; Bronskill, M.; Yaffe, M.J.; Duric, N.; Minkin, S. Breast tissue composition and susceptibility to breast cancer. J. Natl. Cancer Inst. 2010, 102, 1224–1237. [Google Scholar] [CrossRef] [PubMed]
- Horgos, M.S.; Pop, O.L.; Sandor, M.; Borza, I.L.; Negrean, R.A.; Cote, A.; Neamtu, A.-A.; Grierosu, C.; Sachelarie, L.; Huniadi, A. Platelets Rich Plasma (PRP) Procedure in the Healing of Atonic Wounds. J. Clin. Med. 2023, 12, 3890. [Google Scholar] [CrossRef] [PubMed]
- Kallenberg, M.; Petersen, K.; Nielsen, M.; Ng, A.Y.; Diao, P.; Igel, C.; Vachon, C.M.; Holland, K.; Winkel, R.R.; Karssemeijer, N.; et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 2016, 35, 1322–1331. [Google Scholar] [CrossRef]
- Dalmis, M.U.; Litjens, G.; Holland, K.; Setio, A.; Mann, R.; Karssemeijer, N.; Gubern-Mérida, A. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 2017, 44, 533–546. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Mohamed, A.A.; Luo, Y.; Peng, H.; Jankowitz, R.C.; Wu, S. Understanding clinical mammographic breast density assessment: A deep learning perspective. J. Digit. Imaging 2018, 31, 387–392. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Berg, W.A.; Peng, H.; Luo, Y.; Jankowitz, R.C.; Wu, S. A deep learning method for classifying mammographic breast density categories. Med. Phys. 2018, 45, 314–321. [Google Scholar] [CrossRef]
- Li, S.; Wei, J.; Chan, H.P.; Helvie, M.A.; Roubidoux, M.A.; Lu, Y.; Zhou, C.; Hadjiiski, L.M.; Samala, R.K. Computer-aided assessment of breast density: Comparison of supervised deep learning and feature-based statistical learning. Phys. Med. Biol. 2018, 63, 025005. [Google Scholar] [CrossRef]
- Dubrovina, A.; Kisilev, P.; Ginsburg, B.; Hashoul, S.; Kimmel, R. Computational mammography using deep neural networks. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 6, 243–247. [Google Scholar] [CrossRef]
- Ciritsis, A.; Rossi, C.; Vittoria De Martini, I.; Eberhard, M.; Marcon, M.; Becker, A.S.; Berger, N.; Boss, A. Determination of mammographic breast density using a deep convolutional neural network. Br. J. Radiol. 2019, 92, 20180691. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Nasser, M.; Moreno, A.; Puig, D. Temporal mammogram image registration using optimized curvilinear coordinates. Comput. Methods Programs Biomed. 2016, 127, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Moreira, I.C.; Amaral, I.; Domingues, I.; Cardoso, A.; Cardoso, M.J.; Cardoso, J.S. Inbreast: Toward a full-field digital mammographic database. Acad. Radiol. 2012, 19, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Kerlikowske, K.; Zhu, W.; Tosteson, A.N.; Sprague, B.L.; Tice, J.A.; Lehman, C.D.; Miglioretti, D.L. Identifying women with dense breasts at high risk for interval cancer: A cohort study. Ann. Intern. Med. 2015, 162, 673–681. [Google Scholar] [CrossRef]
- Nickson, C.; Arzhaeva, Y.; Aitken, Z.; Elgindy, T.; Buckley, M.; Li, M.; English, D.R.; Kavanagh, A.M. AutoDensity: An automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomes. Breast Cancer Res. 2013, 15, R80. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.; Kim, J.H. Automated Estimation of Breast Density on Mammogram Using Combined Information of Histogram Statistics and Boundary Gradients. In Proceedings of the Medical Imaging 2010: Computer-Aided Diagnosis, San Diego, CA, USA, 16–18 February 2010; Volume 7624, p. 76242F. [Google Scholar]
- Rouhi, R.; Jafari, M.; Kasaei, S.; Keshavarzian, P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst. Appl. 2015, 42, 990–1002. [Google Scholar] [CrossRef]
- Nagi, J.; Kareem, S.A.; Nagi, F.; Ahmed, S.K. Automated breast profile segmentation for ROI detection using digital mammograms. In Proceedings of the 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 87–92. [Google Scholar]
- Zwiggelaar, R. Local greylevel appearance histogram based texture segmentation. In International Workshop on Digital Mammography; Springer: Berlin/Heidelberg, Germany, 2010; pp. 175–182. [Google Scholar]
- Oliver, A.; Lladó, X.; Pérez, E.; Pont, J.; Denton, E.R.; Freixenet, J.; Martí, J. A statistical approach for breast density segmentation. J. Digit. Imaging 2010, 23, 527–537. [Google Scholar] [CrossRef]
- Çolakoğlu, M.K.; Güven, E.; Akgül, G.G.; Doğan, L.; Gülçelik, M.A. Biological Subtypes of Breast Cancer and Sentinel Lymph Node Biopsy. Eur. J. Breast Health 2018, 14, 100–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Age | No. of Patients | % |
---|---|---|
Under 50 | 87 | 63.5 |
Above 50 | 50 | 36.49 |
Grading tumoral (Broders classification) | ||
G1 | 45 | 32.84 |
G2 | 71 | 51.82 |
G3 | 21 | 15.32 |
Lympho-vascular invasion | ||
Yes | 44 | 32.11 |
No | 93 | 67.88 |
Breast density—Tabar-Gram | ||
I | 9 | 6.58 |
II | 2 | 1.45 |
III | 42 | 30.65 |
IV | 56 | 40.87 |
V | 28 | 20.43 |
Surgery type | ||
BCS | 72 | 52.55 |
OBCS | 24 | 17.5 |
Mastectomy | 41 | 29.92 |
Tumor status | ||
Unifocal | 106 | 77.37 |
Multifocal | 22 | 16.05 |
Multicentric | 9 | 6.56 |
Molecular subtype | No. of patients | % |
Luminal A | 68 | 49.63 |
Luminal B | 39 | 28.46 |
HER2+ | 7 | 5.1 |
TNBC | 23 | 16.78 |
cTNM | No. of patients | % |
Tis | 9 | 6.56 |
T1 | 74 | 54.01 |
T2 | 54 | 39.41 |
Variables | No. of Patients | % |
---|---|---|
Molecular subtype | ||
Luminal A | 68 | 49.63 |
Luminal B | 39 | 28.46 |
HER2+ | 7 | 5.1 |
TNBC | 23 | 16.78 |
BMI | ||
<30 kg/m2 | 76 | 55.47 |
>30 kg/m2 | 61 | 44.53 |
Tracer | ||
ICG | 24 | 17.51 |
MB | 23 | 16.78 |
ICG + MB | 18 | 13.13 |
RI + MB | 21 | 15.32 |
RI + ICG | 28 | 20.43 |
RI + ICG + MB | 23 | 16.78 |
TAD (Targeted axillary dissection) | 36 | 26.27 |
Variables | No. of Patients | % | |||
---|---|---|---|---|---|
Total number of patients | 233 | ||||
No. of SLNB | 137 | 58.79% | |||
SLN+ | 47 | 34.30% | Cluster cells n = 4 | Micrometastasis n = 11 | Macrometastasis n = 32 |
SLN- | 90 | 65.70% | 2.91% | 8.02% | 23.35% |
Identification rate (IR) | 126/137 | 91.97% |
Parameter | ICG (n = 24) | MB (n = 23) | ICG + MB (n = 18) | RI + MB (n = 21) | RI + ICG (n = 28) | RI + ICG + MB (n = 23) | p |
---|---|---|---|---|---|---|---|
Luminal A | 12 | 11 | 8 | 12 | 14 | 11 | 0.0678 |
Luminal B | 9 | 6 | 6 | 7 | 6 | 5 | 0.065 |
HER2+ | 2 | 1 | 0 | 1 | 1 | 2 | 0.156 |
TNBC | 1 | 5 | 4 | 1 | 7 | 5 | 0.345 |
BMI | |||||||
<30 kg/m2 | 17 | 11 | 8 | 13 | 12 | 15 | 0.043 |
>30 kg/m2 | 7 | 12 | 10 | 8 | 16 | 8 | 0.076 |
Age | |||||||
Under 50 years | 12 | 19 | 14 | 14 | 9 | 19 | p < 0.05 |
Above 50 years | 12 | 4 | 4 | 7 | 19 | 4 | |
Breast density Tabar-Gram | |||||||
I | 2 | 2 | 2 | 1 | 1 | 1 | p = −0.025 |
II | 1 | 0 | 0 | 0 | 0 | 1 | |
III | 2 | 6 | 7 | 4 | 16 | 7 | p < 0.05 |
IV | 10 | 9 | 6 | 12 | 8 | 11 | |
V | 9 | 6 | 3 | 4 | 3 | 3 | |
IR (identification rate) 126/137 | IR global = 91.97% | ||||||
Yes | 21 | 19 | 17 | 19 | 27 | 23 | p < 0.05 |
No | 3 | 4 | 1 | 2 | 1 | 0 |
Breast Density Tabar-Gram | ICG (n = 24) | IR1 21/24 | MB (n = 23) | IR2 19/23 | ICG + MB (n = 18) | IR3 17/18 | RI + MB (n = 21) | IR4 19/21 | RI + ICG (n = 28) | IR5 27/28 | RI + ICG + MB (n = 23) | IR6 23/23 | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | 2 | 0 | 2 | 0 | 2 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | −0.03 |
II | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | −0.02 |
III | 2 | 1 | 6 | 4 | 7 | 7 | 4 | 3 | 16 | 16 | 7 | 7 | 0.047 |
IV | 10 | 10 | 9 | 9 | 6 | 6 | 12 | 12 | 8 | 8 | 11 | 11 | 0.036 |
V | 9 | 9 | 6 | 6 | 3 | 3 | 4 | 4 | 3 | 3 | 3 | 0.05 | 0.05 |
Tracer | IR (%) | Average No. of Nodes | Total No. of Nodes | SLN + (SLN Positivity Rate) |
---|---|---|---|---|
ICG | 87.5 | 4.02 ± 2.3 | 111 | 33/111 (29.72) |
MB | 82.6 | 2.4 ± 1.1 | 67 | 13/67 (19.4) |
ICG + MB | 94.4 | 2.66 ± 1.35 | 66 | 17/66 (25.75) |
RI + MB | 90.4 | 3.2 ± 1.56 | 89 | 26/89 (29.21) |
RI + ICG | 96.4 | 2.34 ± 1.2 | 94 | 31/94 (32.97) |
RI + ICG + MB | 100 | 3.24 ± 1.54 | 108 | 26/108 (24.07) |
Parameter | ICG (n = 24) | MB (n = 23) | ICG + MB (n = 18) | RI + MB (n = 21) | RI + ICG (n = 28) | RI + ICG + MB (n = 23) | X2 | p |
---|---|---|---|---|---|---|---|---|
SLN IR | 21/24 | 19/23 | 17/18 | 19/21 | 27/28 | 23/23 | 0.042 * | |
Mean No. of SLNs (SD) | 4.02 ± 2.3 | 2.4 ± 1.1 | 2.66 ± 1.35 | 3.2 ± 1.56 | 2.34 ± 1.2 | 3.24 ± 1.54 | −1.80 ^ | 0.074 |
Mean metastatic SLN count | 0.29 | 0.19 | 0.25 | 0.29 | 0.32 | 0.24 | 0.38 ^ | 0.697 |
SLN positivity rate | 33/111 (29.72) | 13/67 (19.4) | 17/66 (25.75) | 26/89 (29.21) | 31/94 (32.97) | 26/108 (24.07) | 0.47 | 0.789 |
No. of patients with >1 SLN | 18/21 (86%) | 15/19 (79%) | 13/17 (81%) | 16/19 (88%) | 25/27 (94%) | 22/23 (97%) | 1.17 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faur, I.F.; Dobrescu, A.; Clim, I.A.; Pasca, P.; Prodan-Barbulescu, C.; Tarta, C.; Neamtu, C.; Isaic, A.; Brebu, D.; Braicu, V.; et al. Sentinel Lymph Node Biopsy in Breast Cancer Using Different Types of Tracers According to Molecular Subtypes and Breast Density—A Randomized Clinical Study. Diagnostics 2024, 14, 2439. https://doi.org/10.3390/diagnostics14212439
Faur IF, Dobrescu A, Clim IA, Pasca P, Prodan-Barbulescu C, Tarta C, Neamtu C, Isaic A, Brebu D, Braicu V, et al. Sentinel Lymph Node Biopsy in Breast Cancer Using Different Types of Tracers According to Molecular Subtypes and Breast Density—A Randomized Clinical Study. Diagnostics. 2024; 14(21):2439. https://doi.org/10.3390/diagnostics14212439
Chicago/Turabian StyleFaur, Ionut Flaviu, Amadeus Dobrescu, Ioana Adelina Clim, Paul Pasca, Catalin Prodan-Barbulescu, Cristi Tarta, Carmen Neamtu, Alexandru Isaic, Dan Brebu, Vlad Braicu, and et al. 2024. "Sentinel Lymph Node Biopsy in Breast Cancer Using Different Types of Tracers According to Molecular Subtypes and Breast Density—A Randomized Clinical Study" Diagnostics 14, no. 21: 2439. https://doi.org/10.3390/diagnostics14212439
APA StyleFaur, I. F., Dobrescu, A., Clim, I. A., Pasca, P., Prodan-Barbulescu, C., Tarta, C., Neamtu, C., Isaic, A., Brebu, D., Braicu, V., Feier, C. V. I., Duta, C., & Totolici, B. (2024). Sentinel Lymph Node Biopsy in Breast Cancer Using Different Types of Tracers According to Molecular Subtypes and Breast Density—A Randomized Clinical Study. Diagnostics, 14(21), 2439. https://doi.org/10.3390/diagnostics14212439