Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Search Strategy
2.3. Eligibility Criteria
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.4. Study Selection
2.5. Data Extraction
2.6. Quality Assessment
2.7. Statistical Analysis
3. Results
3.1. Literature Search
3.2. General Characteristics
3.3. Impact of Cisplatin on GFR and Serum Creatinine
3.4. Meta-Analysis
3.5. Quality Assessment
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Databases | Search Terms |
---|---|
PubMed | (“cisplatin”[MeSH Terms] OR “metal-based drug”[Title/Abstract] OR “platinol”[Title/Abstract]) AND (“kidney failure”[Title/Abstract] OR “kidney damage”[Title/Abstract] OR “renal insufficiency”[MeSH Terms] OR “renal failure”[Title/Abstract] OR “kidney dysfunction”[Title/Abstract] OR “nephrotoxicity”[Title/Abstract]) AND (“glomerular filtration rate”[Title/Abstract] OR “GFR”[Title/Abstract] OR “estimated GFR”[Title/Abstract] OR “eGFR”[Title/Abstract]) AND (“diethyl-triamine-penta-acetic acid”[Title/Abstract] OR “DTPA”[Title/Abstract] OR “99mTc DTPA”[Title/Abstract] OR “nuclear medicine”[Title/Abstract] OR “renal scintigraphy”[Title/Abstract] OR “creatinine clearance”[Title/Abstract]) AND (“cancer”[Title/Abstract] OR “oncology”[Title/Abstract] OR “neoplasms”[MeSH Terms] OR “malignancy”[Title/Abstract] OR “tumours”[Title/Abstract]) |
ScienceDirect | (cisplatin OR platinol) AND (kidney failure OR renal failure) AND (glomerular filtration rate OR GFR) AND (cancer OR oncology) |
The Cochrane Library | ((“cisplatin” OR “metal-based drug” OR “platinol”)):ti,ab,kw AND ((“kidney failure” OR “kidney damage” OR “renal insufficiency” OR “renal failure” OR “kidney dysfunction” OR “nephrotoxicity”)):ti,ab,kw AND ((“glomerular filtration rate” OR “GFR” OR “estimated GFR” OR “eGFR”)):ti,ab,kw AND ((“diethyl-triamine-penta-acetic acid” OR “DTPA” OR “Tc99m DTPA” OR “nuclear medicine” OR “renal scintigraphy” OR “creatinine clearance”)):ti,ab,kw AND ((“cancer” OR “oncology” OR “neoplasms” OR “malignancy” OR “tumours”)):ti,ab,kw |
Scopus | (“cisplatin” OR “metal-based drug” OR “platinol”) AND (“kidney failure” OR “kidney damage” OR “renal insufficiency” OR “renal failure” OR “kidney dysfunction” OR “nephrotoxicity”) AND (“glomerular filtration rate” OR “GFR” OR “estimated GFR” OR “eGFR”) AND (“diethyl-triamine-penta-acetic acid” OR “DTPA” OR “Tc99m DTPA” OR “nuclear medicine” OR “renal scintigraphy” OR “creatinine clearance”) AND (“cancer” OR “oncology” OR “neoplasms” OR “malignancy” OR “tumours”) |
Google Scholar | (“cisplatin” OR “metal-based drug” OR “platinol”) AND (“kidney failure” OR “kidney damage” OR “renal insufficiency” OR “renal failure”) AND (“glomerular filtration rate” OR “GFR”) AND (“diethyl-triamine-penta-acetic acid” OR “nuclear medicine”) AND (“cancer” OR “oncology” OR “neoplasms”) |
References
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Cancer Burden Growing, Amidst Mounting Need for Services. 2024. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services#:~:text=In%202022,%20there%20were%20an,women%20die%20from%20the%20disease (accessed on 15 October 2024).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, M.; Huang, H.; Jin, W.-L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 92. [Google Scholar] [CrossRef]
- Nath, S.; Datta, A.; Das, A.; Adhikari, S. Metal-Based Drugs in Cancer Therapy. Int. J. Exp. Res. Rev. 2024, 37, 159–173. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Scully, C. 31—Cancer. In Oral and Maxillofacial Medicine, 3rd ed.; Scully, C., Ed.; Churchill Livingstone: London, UK, 2013; pp. 204–217. [Google Scholar]
- Zoń, A.; Bednarek, I. Cisplatin in Ovarian Cancer Treatment—Known Limitations in Therapy Force New Solutions. Int. J. Mol. Sci. 2023, 24, 7585. [Google Scholar] [CrossRef]
- Khurana, R.; Deswal, S.; Prakash, C.; Singh, D.K. Cisplatin Induced Renal Insufficiency Measured by Glomerular Filtration Rate with 99mTc-DTPA and by using Serum Creatinine based Formulae: A Prospective Study. J. Clin. Diagn. Res. 2016, 10, Xc05–Xc07. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, K.R.; Gadanec, L.K.; Qaradakhi, T.; Ali, B.A.; Zulli, A.; Apostolopoulos, V. Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations. Cancers 2021, 13, 1572. [Google Scholar] [CrossRef]
- Eslamifar, Z.; Moridnia, A.; Sabbagh, S.; Ghaffaripour, R.; Jafaripour, L.; Behzadifard, M. Ameliorative Effects of Gallic Acid on Cisplatin-Induced Nephrotoxicity in Rat Variations of Biochemistry, Histopathology, and Gene Expression. Biomed. Res. Int. 2021, 2021, 2195238. [Google Scholar] [CrossRef]
- Peres, L.A.B.; Cunha Júnior, A.D.d. Acute nephrotoxicity of cisplatin: Molecular mechanisms. Braz. J. Nephrol. 2013, 35, 332–340. [Google Scholar] [CrossRef]
- Fang, C.-Y.; Lou, D.-Y.; Zhou, L.-Q.; Wang, J.-C.; Yang, B.; He, Q.-J.; Wang, J.-J.; Weng, Q.-J. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol. Sin. 2021, 42, 1951–1969. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, H.; Wu, Y.; Zhang, B.; Wang, N.; Mao, H.; Xing, C. P53 Contributes to Cisplatin Induced Renal Oxidative Damage via Regulating P66shc and MnSOD. Cell. Physiol. Biochem. 2015, 37, 1240–1256. [Google Scholar] [CrossRef]
- Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008, 8, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 2014, 371, 58–66. [Google Scholar] [CrossRef]
- Zsom, L.; Zsom, M.; Salim, S.A.; Fülöp, T. Estimated Glomerular Filtration Rate in Chronic Kidney Disease: A Critical Review of Estimate-Based Predictions of Individual Outcomes in Kidney Disease. Toxins 2022, 14, 127. [Google Scholar] [CrossRef] [PubMed]
- Stormoen, D.R.; Joensen, U.N.; Daugaard, G.; Oturai, P.; Hyllested, E.; Lauritsen, J.; Pappot, H. Glomerular filtration rate measurement during platinum treatment for urothelial carcinoma: Optimal methods for clinical practice. Int. J. Clin. Oncol. 2024, 29, 309–317. [Google Scholar] [CrossRef]
- McMahon, B.A.; Rosner, M.H. GFR Measurement and Chemotherapy Dosing in Patients with Kidney Disease and Cancer. Kidney360 2020, 1, 141–150. [Google Scholar] [CrossRef]
- Klöckl, M.-C.; Kasparek, A.-K.; Riedl, J.M.; Moik, F.; Mollnar, S.; Stotz, M.; Szkandera, J.; Terbuch, A.; Gerger, A.; Niedrist, T.; et al. Estimation versus measurement of the glomerular filtration rate for kidney function assessment in patients with cancer undergoing cisplatin-based chemotherapy. Sci. Rep. 2020, 10, 11219. [Google Scholar] [CrossRef]
- de Godoy Torso, N.; Visacri, M.B.; Quintanilha, J.C.F.; Cursino, M.A.; Pincinato, E.d.C.; Moriel, P. Assessment of Renal Function in Head and Neck Cancer Patients Treated with Cisplatin: Different Biomarkers and Acute Kidney Injury Classifications. Int. J. Mol. Sci. 2023, 24, 141. [Google Scholar] [CrossRef]
- Murty, M.S.; Sharma, U.K.; Pandey, V.B.; Kankare, S.B. Serum cystatin C as a marker of renal function in detection of early acute kidney injury. Indian. J. Nephrol. 2013, 23, 180–183. [Google Scholar] [CrossRef]
- Hussein, M.; Younis, J.; Moustafa, H.; Elantably, I. Comparison of Glomerular Filtration Rate Measurement Methods between Radionuclide in vivo Scintigraphic Gates’ and Plasma Sampling. Open Access Maced. J. Med. Sci. 2019, 7, 2734–2738. [Google Scholar] [CrossRef] [PubMed]
- Morton, K.A.; Pisani, D.E.; Whiting, J.H.; Cheung, A.K.; Arias, J.M.; Valdivia, S. Determination of glomerular filtration rate using technetium-99m-DTPA with differing degrees of renal function. J. Nucl. Med. Technol 1997, 25, 110–114. [Google Scholar]
- Rehling, M.; Møller, M.L.; Thamdrup, B.; Lund, J.O.; Trap-Jensen, J. Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin. Sci. 1984, 66, 613–619. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, B.; Ckaki, C. The estimation of glomerular filtration rate (GFR) for renal split function with 99mTc-DTPA. J. Adv. Res. Appl. Phys. 2015, 2, 16–27. [Google Scholar] [CrossRef]
- Delpassand, E.S.; Homayoon, K.; Madden, T.; Mathai, M.; Podoloff, D.A. Determination of Glomerular Filtration Rate Using a Dual-Detector Gamma Camera and the Geometric Mean of Renal Activity: Correlation With the 99mTc DTPA Plasma Clearance Method. Clin. Nucl. Med. 2000, 25, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Ahn, E.; Kang, H. Introduction to systematic review and meta-analysis. Korean J. Anesthesiol. 2018, 71, 103–112. [Google Scholar] [CrossRef]
- McGuinness, L.A.; Higgins, J.P. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Syn. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Bagri, P.K.; Kapoor, A.; Kalwar, A.; Singhal, M.K.; Singh, D.; Narayan, S. Comparative analysis of cisplatin-induced nephrotoxicity in head and neck cancer and carcinoma cervix during concurrent chemoradiotherapy. S. Asian J. Cancer 2014, 3, 217–220. [Google Scholar] [CrossRef]
- Choudhary, R.; Bundela, M.K.; Bharang, K. Comparison of Renal Functions Evaluated by Measured Glomerular Filtration Rate in Patients Treated With Cisplatin, Carboplatin, and Oxaliplatin. Cureus 2023, 15, e36549. [Google Scholar] [CrossRef]
- Fatima, N.; Niaz, K.; Maseeh Uz, Z.; Kamal, S.; Hameed, A. Nephrotoxicity of CDDP assessed estimating glomerular filtration rate with 99mTc-DTPA plasma sample method. J. Coll. Physicians Surg. Pak. 2010, 20, 98–101. [Google Scholar]
- Fatima, N.; Zaman, M.; Kamal, S.; Hameed, A. Detection of early cisplatin induced nephrotoxicity by serial estimation of glomerular filtration rate: Comparison of various methods. Nephro-Urol. Mon. 2010, 2, 422–430. [Google Scholar]
- Groth, S.; Nielsen, H.; Sørensen, J.B.; Christensen, A.B.; Pedersen, A.G.; Rørth, M. Acute and long-term nephrotoxicity of cis-platinum in man. Cancer Chemother. Pharmacol. 1986, 17, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Özülker, F.; Özülker, T.; Uzun, A.K.; Özpaçacı, T. Investigation of the efficacy of 99mTc-DTPA scintigraphic GFR measurement with Gates method in the detection of cisplatin-induced nephrotoxicity in comparison with plasma urea and creatinine measurement. Med. Oncol. 2011, 28, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Sahab, S.K.S.; Manap, M.; Hamzah, F. Estimating glomerular filtration rate in oncology patients receiving Cisplatin chemotherapy: Predicted creatinine clearance against 99mTc-DTPA methods. In Journal of Physics: Conference Series; IPO publishing: Bristol, UK, 2017; p. 012039. [Google Scholar]
- Büchler, M.; Bretagnol, A.; Desaldeleer, C.; Garreau, P.; Halimi, J.M.; Al-Najjar, A.; Marlière, J.F.; Nivet, H.; Lebranchu, Y. Estimation of the glomerular filtration rate through different methods in kidney transplant recipients: Correlation with the creatinine clearance measurement. Transplant. Proc. 2006, 38, 2289–2291. [Google Scholar] [CrossRef]
- Fotopoulos, A.; Bokharhli, J.A.; Tsiouris, S.; Katsaraki, A.; Papadopoulos, A.; Tsironi, M.; Theodorou, J. Comparison of six radionuclidic and non-radionuclidic methods for the assessment of glomerular filtration rate in patients with chronic renal failure. Hell. J. Nucl. Med. 2006, 9, 133–140. [Google Scholar]
- Malik, S.I.; Abideen, Z.U.; Alam, M.F.; Khan, R.; Habib, R.; Shah, S.U. Glomerular Filtration Rate Estimation With Commonly Used Methods Among Healthy Live Kidney Donors of South Punjab, Pakistan. Cureus 2021, 13, e19588. [Google Scholar] [CrossRef]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of Cisplatin nephrotoxicity. Toxins 2010, 2, 2490–2518. [Google Scholar] [CrossRef]
- Holditch, S.J.; Brown, C.N.; Lombardi, A.M.; Nguyen, K.N.; Edelstein, C.L. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int. J. Mol. Sci. 2019, 20, 3011. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Wu, M.; Yu, H.; Long, G.; Gui, Z.; Li, X.; Chen, H.; Jia, Z.; Xia, W. Isoliquiritin Ameliorates Cisplatin-Induced Renal Proximal Tubular Cell Injury by Antagonizing Apoptosis, Oxidative Stress and Inflammation. Front. Med. 2022, 9, 873739. [Google Scholar] [CrossRef]
- Oh, G.S.; Kim, H.J.; Shen, A.; Lee, S.B.; Khadka, D.; Pandit, A.; So, H.S. Cisplatin-induced Kidney Dysfunction and Perspectives on Improving Treatment Strategies. Electrolytes Blood Press. 2014, 12, 55–65. [Google Scholar] [CrossRef]
- Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: A review. Am. J. Med. Sci. 2007, 334, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ye, Z.W.; Tew, K.D.; Townsend, D.M. Cisplatin chemotherapy and renal function. Adv. Cancer Res. 2021, 152, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, Y.; Abassi, Z.; Bloch-Isenberg, N.; Khamaisi, M.; Heyman, S.N. Changing serum creatinine in the detection of acute renal failure and recovery following radiocontrast studies among acutely ill inpatients: Reviewing insights regarding renal functional reserve gained by large-data analysis. Pract. Lab. Med. 2022, 30, e00276. [Google Scholar] [CrossRef] [PubMed]
- Faig, J.; Haughton, M.; Taylor, R.C.; D’Agostino, R.B., Jr.; Whelen, M.J.; Porosnicu Rodriguez, K.A.; Bonomi, M.; Murea, M.; Porosnicu, M. Retrospective Analysis of Cisplatin Nephrotoxicity in Patients With Head and Neck Cancer Receiving Outpatient Treatment With Concurrent High-dose Cisplatin and Radiotherapy. Am. J. Clin. Oncol. 2018, 41, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Porosnicu, M.; Faig, J.; Franklin, A.; D’Agostino, R.B.; Whelan, M.; Murea, M. Retrospective Analysis of Cisplatin Nephrotoxicity in Head-and-Neck Cancer Patients Treated as Outpatient With Concurrent High-Dose Cisplatin and Radiation Therapy: Definitive Management of Head-and-Neck Squamous Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 483. [Google Scholar] [CrossRef]
- Schofield, J.; Harcus, M.; Pizer, B.; Jorgensen, A.; McWilliam, S. Long-term cisplatin nephrotoxicity after childhood cancer: A systematic review and meta-analysis. Pediatr. Nephrol. 2024, 39, 699–710. [Google Scholar] [CrossRef]
- Ellayan, D.N. A single center retrospective study to examine the effect of concomitant metformin treatment on cisplatin induced nephrotoxicity in adult HNSCC patients between 2015–2021. medRxiv 2024, 2024-06. [Google Scholar] [CrossRef]
- Li, J.; Gui, Y.; Ren, J.; Liu, X.; Feng, Y.; Zeng, Z.; He, W.; Yang, J.; Dai, C. Metformin Protects Against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-regulated Autophagy Induction. Sci. Rep. 2016, 6, 23975. [Google Scholar] [CrossRef]
- Aoyama, T.; Tsunoda, T.; Kato, H.; Hagino, A.; Furutani, R.; Ito, K.; Yoshioka, H.; Nakamura, M.; Hiraide, M.; Kawakami, K.; et al. Comparison of cisplatin-induced nephrotoxicity when using conventional versus short hydration in gastric cancer-a retrospective study. J. Chemother. 2020, 32, 144–150. [Google Scholar] [CrossRef]
- Gutgarts, V.; Gerardine, S.; Shingarev, R.A.; Knezevic, A.; Zabor, E.C.; Latcha, S.; Joy, M.S.; Aleksunes, L.M.; Jaimes, E.A. Evaluation of Cisplatin-Induced Acute Kidney Injury in Patients Co-Prescribed Serotonin Receptor Antagonists: A Retrospective Analysis. Kidney360 2024, 5, 1094–1100. [Google Scholar] [CrossRef]
Study ID | Country | Study Design | Sample Size | Age (Years) | Gender | Cancer Type | Cisplatin Dosage | Total Cycles | 99mTc-DTPA Dose |
---|---|---|---|---|---|---|---|---|---|
[34] | Denmark | Retrospective | 9 | 23.6 | NA | Testicular cancer | 20 mg/m2 | 1 | 300 uCi wasinjected IV |
[32] | Pakistan | Descriptive | 36 | 45.3 | 28:8 | Different types of cancer | 114.02 mg/m2 each cycle | 6 | 5 mCi was injected IV |
[33] | Pakistan | Descriptive | 33 | 45 | 26:7 | Solid tumors | 114 ± 23 mg/m2 | 6 | 99mTc DTPA was injected IV |
[35] | Turkey | Retrospective | 26 | 26.73 | 26:0 | Seminomatous and non-seminomatous testicular carcinoma | 20 mg/m2 per day for five consecutive days repeated every 21 days | 4 | 99mTc DTPA was injected IV |
[30] | India | RCT | 100 | 40–60 | NA | HNC and CaCx | 50 mg/m2 IV/weekly | 6 | 99mTc DTPA was injected IV |
[9] | India | Prospective | 64 | 53 | 42:22 | Locally advanced HNC and uterine CaCx | 35 mg/m2 | 6 | 3 mCi of 99mTc DTPA |
[36] | Malaysia | Prospective | 21 | 55.1 | 16:5 | Solid tumors | 75 mg/m2 for each cycle | 3 | 99mTc DTPA was injected IV |
[31] | India | Retrospective | 200 | 47.86 | 118:82 | GI, HNC, colorectal cancer, thoracic cancer | 50–75 mg/m2 31/3–4 week | 3 | 99mTc DTPA was injected IV |
Study ID | GFR before Treatment (mL/min/1.73 m2) | GFR after Each Cycle (mL/min/1.73 m2) | Serum Creatinine mg/dL | AKI Incidence | Conclusion |
---|---|---|---|---|---|
[34] | NA | 1st cycle = 115.7 | After treatment = 89.3 | 0 | The degree of chronic nephrotoxicity did not correlate in individual patients with the acute changes in kidney function |
[32] | 106.74 | 1st cycle = 95.36, 2nd cycle = 93.54, 3rd cycle = 81.54, 4th cycle = 74.32, 5th cycle = 73.12, 6th cycle = 66.38 | NA | NA | CDDP produced an early nephrotoxicity, which manifested in a significant decline in GFR in each cycle |
[33] | 106.74 | 1st cycle = 95.36, 2nd cycle = 93.54, 3rd cycle = 81.54, 4th cycle = 74.32, 5th cycle = 73.12, 6th cycle = 66.38 | NA | 3 | GFR is the most sensitive indicator of early cisplatin-induced nephrotoxicity, and PSC1 and Gates method are reliable substitutes for the PSC2 method |
[35] | 100.23 | Immediately after chemotherapy = 86.77After 7 months = 79.7 | Baseline = 0.98 immediately after chemotherapy = 1.34, 7 months after chemotherapy = 1.02 | NA | Scintigraphic GFR measurement using the Gates method with 99mTc-DTPA is a suitable method in the diagnosis of nephrotoxicity occurring due to cisplatin |
[30] | HNC = 121, CaCx = 123.7 | At the end of 4th week: 80–100 | Baseline: HNC = 1.2, CaCx = 0.9, at the end of 4th week: HNC = 1.1–1.5 in >50% cases, CaCx = 0.6–1 in 44% cases | NA | Cisplatin had an impact on renal function |
[9] | NA | NA | NA | NA | Baseline RI was detected in 12% more cases when measured by dGFR as compared with SCR level. |
[36] | 91.17 | 77.79 | NA | 3 | Utilization of radionuclide methods has shown better detection in GFR changes compared to creatinine-based techniques |
[31] | 85.49 | 1st cycle = 66.66, 2nd cycle = 58.09 | NA | NA | Nephrotoxicity is a major side effect of platin drugs |
Study ID | Selection | Comparability | Outcomes | Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Representative Sample | Selection | Ascertainment of Exposure | Outcomes of Interest | Cofounders | Other Factors | Assessment | Follow-Up | Complete Follow-Up | ||
[34] | * | * | * | * | * | * | 6 | |||
[32] | * | * | * | * | * | * | * | 7 | ||
[33] | * | * | * | * | * | * | * | 7 | ||
[35] | * | * | * | * | * | * | * | 7 | ||
[9] | * | * | * | * | * | * | * | 7 | ||
[36] | * | * | * | * | * | * | 6 | |||
[31] | * | * | * | * | * | * | * | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, M.M. Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 2468. https://doi.org/10.3390/diagnostics14222468
Alqahtani MM. Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis. Diagnostics. 2024; 14(22):2468. https://doi.org/10.3390/diagnostics14222468
Chicago/Turabian StyleAlqahtani, Mansour M. 2024. "Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis" Diagnostics 14, no. 22: 2468. https://doi.org/10.3390/diagnostics14222468
APA StyleAlqahtani, M. M. (2024). Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis. Diagnostics, 14(22), 2468. https://doi.org/10.3390/diagnostics14222468