An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Selection Criteria
2.3. Exclusion Criteria
2.4. Data Extraction and Quality Assessment
2.5. Target Conditions
2.6. Quality of Evidence Assessment
2.7. Evaluation of Diagnostic Accuracy
2.8. Data Analysis
3. Results
3.1. Study Characteristics
3.2. Patient Characteristics
3.3. Diagnosis of Any Fibrosis (F0 vs. F1–4)
3.4. Diagnosis of Significant Fibrosis (F0–1 vs. F2–4)
3.5. Diagnosis of Advanced Fibrosis (F0–2 vs. F3–4)
3.6. Diagnosis of Cirrhosis (F0–3 vs. F4)
3.7. Diagnosis of Mild Steatosis (CAP < 33%, S1)
3.8. Diagnosis of Moderate Steatosis (CAP 34–66%, S2)
3.9. Diagnosis of Severe Steatosis (CAP > 67%, S3)
3.10. Adherence to POC VCTE
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luppa, P.B.; Muller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-care testing (POCT): Current techniques and future perspectives. Trends Analyt Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Rockey, D.C.; Caldwell, S.H.; Goodman, Z.D.; Nelson, R.C.; Smith, A.D.; American Association for the Study of Liver, D. Liver biopsy. Hepatology 2009, 49, 1017–1044. [Google Scholar] [CrossRef] [PubMed]
- Castera, L.; Forns, X.; Alberti, A. Non-invasive evaluation of liver fibrosis using transient elastography. J. Hepatol. 2008, 48, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Adams, L.A.; de Ledinghen, V.; Wong, G.L.; Sookoian, S. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 461–478. [Google Scholar] [CrossRef]
- Xiao, G.; Zhu, S.; Xiao, X.; Yan, L.; Yang, J.; Wu, G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017, 66, 1486–1501. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Harman, D.J.; Ryder, S.D.; James, M.W.; Jelpke, M.; Ottey, D.S.; Wilkes, E.A.; Card, T.R.; Aithal, G.P.; Guha, I.N. Direct targeting of risk factors significantly increases the detection of liver cirrhosis in primary care: A cross-sectional diagnostic study utilising transient elastography. BMJ Open 2015, 5, e007516. [Google Scholar] [CrossRef]
- Eddowes, P.J.; Sasso, M.; Allison, M.; Tsochatzis, E.; Anstee, Q.M.; Sheridan, D.; Guha, I.N.; Cobbold, J.F.; Deeks, J.J.; Paradis, V.; et al. Accuracy of FibroScan Controlled Attenuation Parameter and Liver Stiffness Measurement in Assessing Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1717–1730. [Google Scholar] [CrossRef]
- Boursier, J.; Hagstrom, H.; Ekstedt, M.; Moreau, C.; Bonacci, M.; Cure, S.; Ampuero, J.; Nasr, P.; Tallab, L.; Canivet, C.M.; et al. Non-invasive tests accurately stratify patients with NAFLD based on their risk of liver-related events. J. Hepatol. 2022, 76, 1013–1020. [Google Scholar] [CrossRef]
- Siddiqui, M.S.; Vuppalanchi, R.; Van Natta, M.L.; Hallinan, E.; Kowdley, K.V.; Abdelmalek, M.; Neuschwander-Tetri, B.A.; Loomba, R.; Dasarathy, S.; Brandman, D.; et al. Vibration-Controlled Transient Elastography to Assess Fibrosis and Steatosis in Patients With Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2019, 17, 156–163 e152. [Google Scholar] [CrossRef]
- Lai, L.L.; Wan Yusoff, W.N.I.; Vethakkan, S.R.; Nik Mustapha, N.R.; Mahadeva, S.; Chan, W.K. Screening for non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus using transient elastography. J. Gastroenterol. Hepatol. 2019, 34, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Nik Mustapha, N.R.; Mahadeva, S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2014, 29, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.; Nik Mustapha, N.R.; Wong, G.L.; Wong, V.W.; Mahadeva, S. Controlled attenuation parameter using the FibroScan(R) XL probe for quantification of hepatic steatosis for non-alcoholic fatty liver disease in an Asian population. United European Gastroenterol. J. 2017, 5, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.S.; Kim, B.K.; Kim, S.U.; Chon, Y.E.; Chun, K.H.; Kim, S.B.; Lee, S.H.; Ahn, S.S.; Park, J.Y.; Kim, D.Y.; et al. Factors affecting the accuracy of controlled attenuation parameter (CAP) in assessing hepatic steatosis in patients with chronic liver disease. PLoS ONE 2014, 9, e98689. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R.; Tse, Y.K.; Wong, G.L.; Ha, Y.; Lee, A.U.; Ngu, M.C.; Chan, H.L.; Wong, V.W. Systematic review with meta-analysis: Non-invasive assessment of non-alcoholic fatty liver disease--the role of transient elastography and plasma cytokeratin-18 fragments. Aliment. Pharmacol. Ther. 2014, 39, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Beaugrand, M.; de Ledinghen, V.; Douvin, C.; Marcellin, P.; Poupon, R.; Sandrin, L.; Miette, V. Controlled attenuation parameter (CAP): A novel VCTE guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: Preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med. Biol. 2010, 36, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zheng, R.D.; Mi, Y.Q.; Wang, X.Y.; Pan, Q.; Chen, G.Y.; Cao, H.X.; Chen, M.L.; Xu, L.; Chen, J.N.; et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis in Chinese patients. World J. Gastroenterol. 2014, 20, 4702–4711. [Google Scholar] [CrossRef] [PubMed]
- Karlas, T.; Petroff, D.; Garnov, N.; Bohm, S.; Tenckhoff, H.; Wittekind, C.; Wiese, M.; Schiefke, I.; Linder, N.; Schaudinn, A.; et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS ONE 2014, 9, e91987. [Google Scholar] [CrossRef]
- Chon, Y.E.; Jung, K.S.; Kim, S.U.; Park, J.Y.; Park, Y.N.; Kim, D.Y.; Ahn, S.H.; Chon, C.Y.; Lee, H.W.; Park, Y.; et al. Controlled attenuation parameter (CAP) for detection of hepatic steatosis in patients with chronic liver diseases: A prospective study of a native Korean population. Liver Int. 2014, 34, 102–109. [Google Scholar] [CrossRef]
- Masaki, K.; Takaki, S.; Hyogo, H.; Kobayashi, T.; Fukuhara, T.; Naeshiro, N.; Honda, Y.; Nakahara, T.; Ohno, A.; Miyaki, D.; et al. Utility of controlled attenuation parameter measurement for assessing liver steatosis in Japanese patients with chronic liver diseases. Hepatol. Res. 2013, 43, 1182–1189. [Google Scholar] [CrossRef]
- Kumar, R.; Rastogi, A.; Sharma, M.K.; Bhatia, V.; Tyagi, P.; Sharma, P.; Garg, H.; Chandan Kumar, K.N.; Bihari, C.; Sarin, S.K. Liver stiffness measurements in patients with different stages of nonalcoholic fatty liver disease: Diagnostic performance and clinicopathological correlation. Dig. Dis. Sci. 2013, 58, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Friedrich-Rust, M.; Ong, M.F.; Martens, S.; Sarrazin, C.; Bojunga, J.; Zeuzem, S.; Herrmann, E. Performance of transient elastography for the staging of liver fibrosis: A meta-analysis. Gastroenterology 2008, 134, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Caussy, C.; Chen, J.; Alquiraish, M.H.; Cepin, S.; Nguyen, P.; Hernandez, C.; Yin, M.; Bettencourt, R.; Cachay, E.R.; Jayakumar, S.; et al. Association Between Obesity and Discordance in Fibrosis Stage Determination by Magnetic Resonance vs Transient Elastography in Patients With Nonalcoholic Liver Disease. Clin. Gastroenterol. Hepatol. 2018, 16, 1974–1982 e1977. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.; Vergniol, J.; Wong, G.L.; Foucher, J.; Chan, H.L.; Le Bail, B.; Choi, P.C.; Kowo, M.; Chan, A.W.; Merrouche, W.; et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef]
- Tapper, E.B.; Challies, T.; Nasser, I.; Afdhal, N.H.; Lai, M. The Performance of Vibration Controlled Transient Elastography in a US Cohort of Patients With Nonalcoholic Fatty Liver Disease. Am. J. Gastroenterol. 2016, 111, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Bertot, L.C.; Jeffrey, G.P.; de Boer, B.; Wang, Z.; Huang, Y.; Garas, G.; MacQuillan, G.; Wallace, M.; Smith, B.W.; Adams, L.A. Comparative Accuracy of Clinical Fibrosis Markers, Hepascore and Fibroscan(R) to Detect Advanced Fibrosis in Patients with Nonalcoholic Fatty Liver Disease. Dig. Dis. Sci. 2023, 68, 2757–2767. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, H.W.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Jang, J.Y.; Park, S.Y.; Lee, H.W.; Lee, C.K.; et al. Comparison of FibroScan-Aspartate Aminotransferase (FAST) Score and Other Non-invasive Surrogates in Predicting High-Risk Non-alcoholic Steatohepatitis Criteria. Front. Med. 2022, 9, 869190. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-W.; Wong, V.W.; Wong, S.K.; Wong, G.L.; Lai, C.M.; Lam, C.C.; Shu, S.S.; Chan, H.L.; Ng, E.K. A prospective 5-year study on the use of transient elastography to monitor the improvement of non-alcoholic fatty liver disease following bariatric surgery. Sci. Rep. 2021, 11, 5416. [Google Scholar] [CrossRef]
- de Lédinghen, V.; Vergniol, J.; Capdepont, M.; Chermak, F.; Hiriart, J.-B.; Cassinotto, C.; Merrouche, W.; Foucher, J. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: A prospective study of 5323 examinations. J. Hepatol. 2014, 60, 1026–1031. [Google Scholar] [CrossRef]
- Laurence, C.O.; Gialamas, A.; Bubner, T.; Yelland, L.; Willson, K.; Ryan, P.; Beilby, J.; the Point of Care Testing in General Practice Trial Management Group. Patient satisfaction with point-of-care testing in general practice. Br. J. Gen. Pract. 2010, 60, e98–e104. [Google Scholar] [CrossRef] [PubMed]
- Regev, A.; Berho, M.; Jeffers, L.J.; Milikowski, C.; Molina, E.G.; Pyrsopoulos, N.T.; Feng, Z.-Z.; Reddy, K.R.; Schiff, E.R. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol. 2002, 97, 2614–2618. [Google Scholar] [CrossRef]
- Bota, S.; Herkner, H.; Sporea, I.; Salzl, P.; Sirli, R.; Neghina, A.M.; Peck-Radosavljevic, M. Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int. 2013, 33, 1138–1147. [Google Scholar] [CrossRef]
- Castera, L. Noninvasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology 2012, 142, 1293–1302.e4. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Castera, L.; Afdhal, N.H. FibroScan (vibration-controlled transient elastography): Where does it stand in the United States practice. Clin. Gastroenterol. Hepatol. 2015, 13, 27–36. [Google Scholar] [CrossRef]
- Vuppalanchi, R.; Siddiqui, M.S.; Van Natta, M.L.; Hallinan, E.; Brandman, D.; Kowdley, K.; Neuschwander-Tetri, B.A.; Loomba, R.; Dasarathy, S.; Abdelmalek, M.; et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology 2018, 67, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Shah, V.H.; Therneau, T.M.; Venkatesh, S.K.; Mounajjed, T.; Larson, J.J.; Mara, K.C.; Schulte, P.J.; Kellogg, T.A.; Kendrick, M.L.; et al. The Role of Three-Dimensional Magnetic Resonance Elastography in the Diagnosis of Nonalcoholic Steatohepatitis in Obese Patients Undergoing Bariatric Surgery. Hepatology 2020, 71, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Garteiser, P.; Castera, L.; Coupaye, M.; Doblas, S.; Calabrese, D.; Dioguardi Burgio, M.; Ledoux, S.; Bedossa, P.; Esposito-Farèse, M.; Msika, S.; et al. Prospective comparison of transient elastography, MRI and serum scores for grading steatosis and detecting non-alcoholic steatohepatitis in bariatric surgery candidates. JHEP Rep. 2021, 3, 100381. [Google Scholar] [CrossRef] [PubMed]
- Kan, V.Y.; Marquez Azalgara, V.; Ford, J.A.; Peter Kwan, W.C.; Erb, S.R.; Yoshida, E.M. Patient preference and willingness to pay for transient elastography versus liver biopsy: A perspective from British Columbia. Can. J. Gastroenterol. Hepatol. 2015, 29, 72–76. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Lou, Z.; Kong, N.; Vuppalanchi, R.; Imperiale, T.F.; Chalasani, N. Cost Effectiveness of Different Strategies for Detecting Cirrhosis in Patients With Nonalcoholic Fatty Liver Disease Based on United States Health Care System. Clin. Gastroenterol. Hepatol. 2020, 18, 2305–2314 e2312. [Google Scholar] [CrossRef]
- Reinson, T.; Byrne, C.D.; Patel, J.; El-Gohary, M.; Moore, M. Transient elastography in patients at risk of liver fibrosis in primary care: A follow-up study over 54 months. BJGP Open 2021, 5, 145. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.; Venugopal, R.V.; Peter, L.; Hussain, S.; Naresh Kumar Shetty, K.; Shetti, M.P. Effects of lifestyle modification on liver enzyme and Fibroscan in Indian patients with non-alcoholic fatty liver disease. Gastroenterol. Rep. 2018, 6, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Leong, W.L.; Lai, L.L.; Nik Mustapha, N.R.; Vijayananthan, A.; Rahmat, K.; Mahadeva, S.; Chan, W.K. Comparing point shear wave elastography (ElastPQ) and transient elastography for diagnosis of fibrosis stage in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2020, 35, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, T.; Sun, J.; Li, S.; Cao, L.; Lu, X. Non-invasive methods to evaluate liver fibrosis in patients with non-alcoholic fatty liver disease. Front. Physiol. 2022, 13, 1046497. [Google Scholar] [CrossRef] [PubMed]
- Thiele, M.; Madsen, B.S.; Hansen, J.F.; Detlefsen, S.; Antonsen, S.; Krag, A. Accuracy of the Enhanced Liver Fibrosis Test vs FibroTest, Elastography, and Indirect Markers in Detection of Advanced Fibrosis in Patients with Alcoholic Liver Disease. Gastroenterology 2018, 154, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Choo, B.P.; Goh, G.B.B.; Chia, S.Y.; Oh, H.C.; Tan, N.C.; Tan, J.Y.L.; Ang, T.L.; Bee, Y.M.; Wong, Y.J. Non-alcoholic fatty liver disease screening in type 2 diabetes mellitus: A cost-effectiveness and price threshold analysis. Ann. Acad. Med. Singap. 2022, 51, 686–694. [Google Scholar] [CrossRef]
- Staufer, K.; Halilbasic, E.; Spindelboeck, W.; Eilenberg, M.; Prager, G.; Stadlbauer, V.; Posch, A.; Munda, P.; Marculescu, R.; Obermayer-Pietsch, B.; et al. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. United Eur. Gastroenterol. J. 2019, 7, 1113–1123. [Google Scholar] [CrossRef]
- Yoneda, M.; Imajo, K.; Nakajima, A. Non-invasive diagnosis of nonalcoholic fatty liver disease. Off. J. Am. Coll. Gastroenterol.|ACG 2018, 113, 1409–1411. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.; Pantoja, C.; Hall, R.; Matthews, S.; Spalding, P.; Banerjee, R. Patient understanding and experience of non-invasive imaging diagnostic techniques and the liver patient pathway. J. Patient-Rep. Outcomes 2021, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Sasso, K.E.; Strunk, D.R.; Braun, J.D.; DeRubeis, R.J.; Brotman, M.A. Identifying moderators of the adherence-outcome relation in cognitive therapy for depression. J. Consult. Clin. Psychol. 2015, 83, 976. [Google Scholar] [CrossRef]
Study Author | Was a Consecutive or Random Sample of Patients Enrolled? | Was a Case–Control Design Avoided? | Did the Study Avoid Inappropriate Exclusions? | Were the Index Test Results (VCTE) Interpreted Without Knowledge of the Results of the Reference Standard (Liver Biopsy)? | If a Threshold Was Used, Was It Pre-Specified? | Did All Patients Receive a Reference Standard (Liver Biopsy)? | Were All Patients Included in the Analysis? | Risk of Bias for Patient Selection? High, Low, or Unclear | Risk of Bias for Result Interpretion? High, Low, or Uncertain | Risk of Bias for Interpretion of Test and Reference Test? High, Low, or Unclear |
---|---|---|---|---|---|---|---|---|---|---|
Boursier et al. [9] | consecutive | yes | yes | yes | yes | no, 594 underwent biopsy | yes | |||
Siddiqui et al. [10] | consecutive | yes | yes | yes | yes | yes | yes | |||
Lai et al. [11] | consecutive | yes | yes | yes | yes | No, 171 who had LSM ≥ 8, 71 underwent biopsy | yes | low | low | high |
Chan et al. 2014 [12] | consecutive | yes | yes | yes | yes | yes | yes | low | low | high |
Chan et al. 2017 [13] | consecutive | yes | yes | yes | yes | yes | yes | low | low | high |
Jung et al. [14] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Kwok et al. [15] | consecutive | yes | yes | yes | yes | no, only patients with advanced fibrosis or cirrhosis on VCTE | yes | low | low | high |
Sasso et al. [16] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Shen et al. [17] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Karlas et al. [18] | consecutive | yes | yes | yes | yes | yes | yes | low | high | low |
Chon et al. [19] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Masaki [20] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Kumar et al. [21] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Friedrich-Rust et al. [22] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Caussy et al. [23] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Wong et al. [24] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Tapper et al. [25] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Bertrot et al. [26] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Lee et al. [27] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Liu et al. [28] | consecutive | yes | yes | yes | yes | yes | yes | low | low | low |
Study | N | Type of Study | Location | % Male | Mean/ Median Age | BMI | % Completed Test | % with Diabetes | % with Hyper-Tension | % with Dyslipidemia | Type of Probe | Why People Refused |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Boursier et al. [9] | 1057 | multicenter cohort | France, Sweden, Spain | 62 | 55 | 76.8 | 37 | 44 | 27 | M and XL | No show | |
Siddiqui et al. [10] | 393 | prospective | USA | 32 | 51 | 34 | not reported | 44 | 57 | |||
Lai et al. [11] | 557 | prospective cross-sectional | Malaysia | 40.6 | 61 | 28.2 | not reported | 100 | 36.4 | 52.4 | M and XL | NA |
Chan et al. 2014 [12] | 101 | prospective cohort | Malaysia | 51.5 | 50.3 | 29.4 | not reported | 52.5 | 88.1 | 95 | M only | |
Chan et al. 2017 [13] | 57 | prospective cross-sectional | Malaysia, Hong Kong | 49 | 50.1 | 30.2 | not reported | M | ||||
Jung et al. [14] | 161 | prospective | Korea | 63.4 | 49 | 24.4 | not reported | 17.4 | M | |||
Kwok et al. [15] | 1918 | prospective cohort study | Hong Kong | 54.3 | 61 | 26.6 | 90.4 | 100 | 69.9 | 67.6 | M and XL | |
Sasso et al. [16] | 112 | prospective study | France | 54 | 53.8 | 25.8 | not reported | 24 | 37 | M | ||
Shen et al. [17] | 152 | multicenter prospective | China | 69.3 | 35 | 26 | not reported | M | ||||
Karlas et al. [18] | 50 | prospective cohort study | Germany | 25 | 54.7 +/− 9.1 | 33.0 +/− 4.9 | not reported | 50 | 67 | M | ||
Chon et al. [19] | 135 | prospective study | Korea | 64 | 51 | 24.4 | not reported | M | ||||
Masaki et al. [20] | 150 | Japan | 61.3 | 55 | 24.4 | not reported | M | |||||
Kumar et al. [21] | 317 | India | 73 | 37 | 25.1 +/− 2.0 | not reported | M | |||||
Friedrich-Rust et al. [22] | 57 | Germany | 52.6 | 45 +/− 14 | 28 +/− 5.5 | not reported | M and XL | |||||
Caussy et al. [23] | 119 | cross-section prospective | California, San Diego (UCSD) | 41.2 | 52.4 | 29.9 | 95 | X and M | No show | |||
Wong et al. [24] | 246 | prospective cohort | France, China | 54.9 | 51 +/− 11 | 28 +/− 4.5 | not reported | 36.2 | 40.2 | M | ||
Tapper et al. [25] | 164 | prospective cohort | USA | 91.4 (3 m) 53 (6 m) | M | |||||||
Bertrot et al. [26] | 271 | retrospective cohort | Australia | 40 | 52 +/− 12 | 38 +/− 8 | not reported | 49 | 45 | 27 | M and XL | |
Lee et al. [27] | 251 | multi-center retrospective cohort | Korea | 52.6 | 44 | 28.64 | 87.2 | 46.6 | 31.1 | M and XL | ||
Liu et al. [28] | 101 | prospective cohort study | China | 16.8 | 38.9 +/− 10.8 | 41.1 +/− 5.6 | 94.6 (1 y) 100 (2 y) 94.6 (3 y) 91.9 (4 y) 64.9 (5 y) | 48.6 | 51.4 | 43.2 | M and XL |
Studies, (Patients; n) | AUC | Sensitivity (95%CI) | Specificity (95%CI) | Negative Likelihood Ratio (95% CI) | Positive Likelihood Ratio (95% CI) | Diagnostic Odds Ratio (95% CI) | |
---|---|---|---|---|---|---|---|
F ≥ 1 | 4 (210) | 0.74 | 69.5% (0.49–0.84) | 70.6% (0.29–0.93) | 0.47 (0.31–0.71) | 2.93 (1.13–8.23) | 6.62 (1.64–18.30) |
F ≥ 2 | 8 (650) | 0.69 | 81.7% (0.62–0.92) | 64.6% (0.56–0.73) | 0.30 (0.12–0.58) | 2.30 (1.67–3.02) | 9.28 (2.96–22.30) |
F ≥ 3 | 10 (619) | 0.84 | 88.1% (0.78–0.94) | 63.8% (0.49–0.77) | 0.20 (0.10–0.36) | 2.50 (1.68–3.77) | 14.60 (5.02–33.50) |
F ≥ 4 | 9 (543) | 0.65 | 87.5% (0.78–0.93) | 62.6% (0.55–0.70) | 0.21 (0.11–0.36) | 2.34 (1.86–2.92) | 12.70 (5.36–25.70) |
CAP < 33% | 10 (510) | 0.85 | 84.3% (0.81–0.94) | 70.3% (0.55–0.82) | 0.23 (0.17–0.31) | 2.94 (1.88–4.65) | 13.40 (6.59–24.40) |
CAP 34–66% | 12 (309) | 0.75 | 76.5% (0.68–0.83) | 54.0% (0.40–0.68) | 0.45 (0.29–0.68) | 1.70 (1.23–2.40) | 4.11 (1.83–8.00) |
CAP ≥ 67% | 12 (518) | 0.80 | 80.6% (0.75–0.85) | 57.9% (0.45–0.70) | 0.35 (0.23–0.51) | 1.95 (1.42–2.71) | 6.07 (2.85–11.40) |
M | M and XL | Not Specified | Chi-Square | p-Value | |
---|---|---|---|---|---|
Any fibrosis (F 1) | 11 | 34 | 60 | 12.13 | 0.0164 |
Significant fibrosis (F 2) | 29 | 362 | 47 | 10.536 | 0.0323 |
Advanced fibrosis (F 3) | 27 | 354 | 44 | 8.2596 | 0.0825 |
Cirrhosis (F = 4) | 54 | 297 | 24 | 9.0037 | 0.0610 |
CAP < 33% | 209 | 22 | 94 | 11.0670 | 0.0258 |
CAP 34–66% | 55 | 71 | 40 | 7.3715 | 0.1175 |
CAP >= 67% | 169 | 71 | 63 | 9.8008 | 0.0439 |
Chi-Square | p-Value | |
---|---|---|
Fibrosis | 0.3842 | 0.8252 |
Steatosis | 7.292 | 0.0261 |
Chi-Square | p-Value | |
---|---|---|
Fibrosis | 9.0215 | 0.0110 |
Steatosis | 10.9400 | 0.0042 |
Chi-Square | p-Value | |
---|---|---|
Figure 7 | 7.0286 | 0.3182 |
Steatosis | 3.032 | 0.5525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar Das, T.; Meng, X.; Abdallah, M.; Bilal, M.; Sarwar, R.; Shaukat, A. An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis. Diagnostics 2024, 14, 2478. https://doi.org/10.3390/diagnostics14222478
Sarkar Das T, Meng X, Abdallah M, Bilal M, Sarwar R, Shaukat A. An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis. Diagnostics. 2024; 14(22):2478. https://doi.org/10.3390/diagnostics14222478
Chicago/Turabian StyleSarkar Das, Taranika, Xucong Meng, Mohamed Abdallah, Mohammad Bilal, Raiya Sarwar, and Aasma Shaukat. 2024. "An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis" Diagnostics 14, no. 22: 2478. https://doi.org/10.3390/diagnostics14222478
APA StyleSarkar Das, T., Meng, X., Abdallah, M., Bilal, M., Sarwar, R., & Shaukat, A. (2024). An Assessment of the Feasibility, Patient Acceptance, and Performance of Point-of-Care Transient Elastography for Metabolic-Dysfunction-Associated Steatotic Liver Disease (MASLD): A Systematic Review and Meta-Analysis. Diagnostics, 14(22), 2478. https://doi.org/10.3390/diagnostics14222478