Influence of Aflibercept on Choroidal Blood Flow and Thickness in Branch Retinal Vein Occlusion: A Six-Month Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Therapy for Macular Edema Related to Branch Retinal Vein Occlusion and Follow-Up
2.3. Eye Examinations
2.4. Assessment of Choroidal and Retinal Thickness
2.5. Assessment of Choroidal Blood Flow
2.6. Ocular Hemodynamics
2.7. Statistical Analysis
3. Results
3.1. Clinical and Laboratory Characteristics of Patients
3.2. Regional Distribution of Retinal and Choroidal Parameters Before Intravitreal Aflibercept Injections in Affected Eyes
3.3. Changes in Retinal and Choroidal Parameters Following Intravitreal Aflibercept Injections in Affected Eyes
3.4. Changes in Choroidal Blood Flow Following Aflibercept Treatment in BRVO Eyes over 6 Months
3.5. Hemodynamics
3.6. Safety
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rehak, J.; Rehak, M. Branch retinal vein occlusion: Pathogenesis, visual prognosis, and treatment modalities. Curr. Eye Res. 2008, 33, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Zimmerman, M.B. Fundus changes in branch retinal vein occlusion. Retina 2015, 35, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, Y.; Tsujikawa, A.; Takahashi, A.; Iida, Y.; Murakami, T.; Ooto, S.; Suzuma, K.; Uji, A.; Yoshimura, N. Foveal damage due to subfoveal hemorrhage associated with branch retinal vein occlusion. PLoS ONE 2015, 10, e0144894. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.M.; Faria de Abreu, J.R.; Cunha-Vaz, J.G. Blood-retina barrier in acute retinal branch vein occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 1995, 233, 721–726. [Google Scholar] [CrossRef]
- Aiello, L.P.; Avery, R.L.; Arrigg, P.G.; Keyt, B.A.; Jampel, H.D.; Shah, S.T.; Pasquale, L.R.; Thieme, H.; Iwamoto, M.A.; Park, J.E.; et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 1994, 331, 1480–1487. [Google Scholar] [CrossRef]
- Heier, J.S.; Campochiaro, P.A.; Yau, L.; Li, Z.; Saroj, N.; Rubio, R.G.; Lai, P. Ranibizumab for macular edema due to retinal vein occlusions: Long-term follow-up in the HORIZON trial. Ophthalmology 2012, 119, 802–809. [Google Scholar] [CrossRef]
- Hanada, N.; Iijima, H.; Sakurada, Y.; Imasawa, M. Recurrence of macular edema associated with branch retinal vein occlusion after intravitreal bevacizumab. Jpn. J. Ophthalmol. 2012, 56, 165–174. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Korean RVO Study Group; Kim, H.K.; Yoon, H.S.; Kang, S.W.; Kim, J.-G.; Park, K.H.; Jo, Y.J.; Lee, J.Y.; Lee, D.H. Improved visual outcome with early treatment in macular edema secondary to retinal vein occlusions: 6-month results of a Korean RVO study. Jpn. J. Ophthalmol. 2014, 58, 146–154. [Google Scholar] [CrossRef]
- Yamada, R.; Nishida, A.; Shimozono, M.; Kameda, T.; Miyamoto, N.; Mandai, M.; Kurimoto, Y. Predictive factors for recurrence of macular edema after successful intravitreal bevacizumab therapy in branch retinal vein occlusion. Jpn. J. Ophthalmol. 2015, 59, 389–393. [Google Scholar] [CrossRef]
- Sugimoto, M.; Ichio, A.; Kondo, M. Importance of central retinal sensitivity for prediction of visual acuity after intravitreal bevacizumab in eyes with macular edema associated with branch retinal vein occlusion. PLoS ONE 2016, 11, e0149246. [Google Scholar] [CrossRef]
- Saint-Geniez, M.; Maldonado, A.E.; D’Amore, P.A. VEGF expression and receptor activation in the choroid during development and in the adult. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3135–3142. [Google Scholar] [CrossRef] [PubMed]
- Nickla, D.L.; Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Baines, J.A. Occlusion of the posterior ciliary artery. II. Chorio-retinal lesions. Br. J. Ophthalmol. 1972, 56, 736–753. [Google Scholar] [CrossRef] [PubMed]
- Iwase, T.; Yamamoto, K.; Kobayashi, M.; Ra, E.; Murotani, K.; Terasaki, H. What ocular and systemic variables affect choroidal circulation in healthy eyes. Medicine 2016, 95, e5102. [Google Scholar] [CrossRef]
- Noma, H.; Funatsu, H.; Harino, S.; Nagaoka, T.; Mimura, T.; Hori, S. Influence of macular microcirculation and retinal thickness on visual acuity in patients with branch retinal vein occlusion and macular edema. Jpn. J. Ophthalmol. 2010, 54, 430–434. [Google Scholar] [CrossRef]
- Nagaoka, T.; Sogawa, K.; Yoshida, A. Changes in retinal blood flow in patients with macular edema secondary to branch retinal vein occlusion before and after intravitreal injection of bevacizumab. Retina 2014, 34, 2037–2043. [Google Scholar] [CrossRef]
- Kunikata, H.; Nitta, F.; Aizawa, N.; Omodaka, K.; Shiga, Y.; Yasuda, M.; Nakazawa, T. The effect of intravitreal bevacizumab on ocular blood flow in diabetic retinopathy and branch retinal vein occlusion as measured by laser speckle flowgraphy. Clin. Ophthalmol. 2014, 8, 1119–1127. [Google Scholar] [CrossRef]
- Noma, H.; Yasuda, K.; Minezaki, T.; Watarai, S.; Shimura, M. Changes of retinal flow volume after intravitreal injection of bevacizumab in branch retinal vein occlusion with macular edema: A case series. BMC Ophthalmol. 2016, 16, 61. [Google Scholar] [CrossRef]
- Okamoto, M.; Yamashita, M.; Sakamoto, T.; Ogata, N. Choroidal blood flow and thickness as predictors for response to anti-vascular endothelial growth factor therapy in macular edema secondary to branch retinal vein occlusion. Retina 2018, 38, 550–558. [Google Scholar] [CrossRef]
- Fukami, M.; Iwase, T.; Yamamoto, K.; Kaneko, H.; Yasuda, S.; Terasaki, H. Changes in retinal microcirculation after intravitreal ranibizumab injection in eyes with macular edema secondary to branch retinal vein occlusion. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1246–1255. [Google Scholar] [CrossRef]
- Matsumoto, M.; Suzuma, K.; Yamada, Y.; Tsuiki, E.; Fujikawa, A.; Kitaoka, T. Retinal blood flow after intravitreal bevacizumab is a predictive factor for outcomes of macular edema associated with central retinal vein occlusion. Retina 2018, 38, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Zimmerman, M.B.; Podhajsky, P. Incidence of various types of retinal vein occlusion and their recurrence and demographic characteristics. Am. J. Ophthalmol. 1994, 117, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Koizumi, H.; Pozzoni, M.C. Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 2008, 146, 496–500. [Google Scholar] [CrossRef]
- Imamura, Y.; Fujiwara, T.; Margolis, R.; Spaide, R.F. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009, 29, 1469–1473. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am. J. Ophthalmol. 2009, 147, 644–652. [Google Scholar] [CrossRef]
- Fujiwara, T.; Imamura, Y.; Margolis, R.; Slakter, J.S.; Spaide, R.F. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am. J. Ophthalmol. 2009, 148, 445–450. [Google Scholar] [CrossRef]
- Maruko, I.; Iida, T.; Sugano, Y.; Oyamada, H.; Sekiryu, T.; Fujiwara, T.; Spaide, R.F. Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 2011, 31, 510–517. [Google Scholar] [CrossRef]
- Hashimoto, R.; Yata, K.; Isa, S.; Maeno, T. Increased Choroidal Blood Flow in Eyes with Macular Edema is Associated with Branch Retinal Vein Occlusion on Laser Speckle Flowgraphy. EC Ophthalmol. 2023, 14, 1029–1034. [Google Scholar]
- Hashimoto, R.; Aso, K.; Yata, K.; Fujioka, N.; Tanaka, K.; Moriyama, S.; Hirota, A.; Kawamura, J.; Maeno, T. Baseline Choroidal Blood Flow Imbalance as a Predictive Factor for Macular Edema Recurrence Secondary to Branch Retinal Vein Occlusion. Diagnostics 2024, 14, 2328. [Google Scholar] [CrossRef]
- Tan, C.S.; Ouyang, Y.; Ruiz, H.; Sadda, S.R. Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2012, 53, 261–266. [Google Scholar] [CrossRef]
- Isono, H.; Kishi, S.; Kimura, Y.; Hagiwara, N.; Konishi, N.; Fujii, H. Observation of choroidal circulation using index of erythrocytic velocity. Arch. Ophthalmol. 2003, 121, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, G.; Fujii, H.; Kishi, S. Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon. Jpn. J. Ophthalmol. 2008, 52, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Saito, W.; Saito, M.; Hirooka, K.; Mori, S.; Noda, K.; Ishida, S. Increased choroidal blood flow velocity with regression of unilateral acute idiopathic maculopathy. Jpn. J. Ophthalmol. 2015, 59, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Saito, W.; Hirooka, K.; Hashimoto, Y.; Mori, S.; Noda, K.; Ishida, S. Pulse waveform changes in macular choroidal hemodynamics with regression of acute central serous chorioretinopathy. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6515–6522. [Google Scholar] [CrossRef]
- Hirooka, K.; Saito, W.; Saito, M.; Hashimoto, Y.; Mori, S.; Noda, K.; Ishida, S. Increased choroidal blood flow velocity with regression of acute posterior multifocal placoid pigment epitheliopathy. Jpn. J. Ophthalmol. 2016, 60, 172–178. [Google Scholar] [CrossRef]
- Hashimoto, R.; Hirota, A.; Maeno, T. Choroidal blood flow impairment demonstrated using laser speckle flowgraphy in a case of commotio retinae. Am. J. Ophthalmol. Case Rep. 2016, 4, 30–34. [Google Scholar] [CrossRef]
- Hashimoto, R.; Kawamura, J.; Hirota, A.; Oyamada, M.; Sakai, A.; Maeno, T. Changes in choroidal blood flow and choroidal thickness after treatment in two cases of pediatric anisohypermetropic amblyopia. Am. J. Ophthalmol. Case Rep. 2017, 8, 39–43. [Google Scholar] [CrossRef]
- Saito, M.; Noda, K.; Saito, W.; Ishida, S. Relationship between choroidal blood flow velocity and choroidal thickness in patients with regression of acute central serous chorioretinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 227–229. [Google Scholar] [CrossRef]
- Nagasato, D.; Mitamura, Y.; Semba, K.; Akaiwa, K.; Nagasawa, T.; Yoshizumi, Y.; Tabuchi, H.; Kiuchi, Y. Correlation between optic nerve head circulation and visual function before and after anti-VEGF therapy for central retinal vein occlusion: Prospective, interventional case series. BMC Ophthalmol. 2016, 16, 36. [Google Scholar] [CrossRef]
- Sugiyama, T.; Araie, M.; Riva, C.E.; Schmetterer, L.; Orgul, S. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol. 2010, 88, 723–729. [Google Scholar] [CrossRef]
- Sugiyama, T. Basic technology and clinical applications of the updated model of laser speckle flowgraphy to ocular diseases. Photonics 2014, 1, 220–234. [Google Scholar] [CrossRef]
- Fujii, H. Visualisation of retinal blood flow by laser speckle flowgraphy. Med. Biol. Eng. Comput. 1994, 32, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Riva, C.E.; Titze, P.; Hero, M.; Petrig, B.L. Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1752–1760. [Google Scholar]
- Quaranta, L.; Katsanos, A.; Russo, A.; Riva, I. 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv. Ophthalmol. 2013, 58, 26–41. [Google Scholar] [CrossRef]
- Costa, V.P.; Harris, A.; Anderson, D.; Stodtmeister, R.; Cremasco, F.; Kergoat, H.; Lovasik, J.; Stalmans, I.; Zeitz, O.; Lanzl, I.; et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014, 92, e252–e266. [Google Scholar] [CrossRef]
- Okuno, T.; Sugiyama, T.; Kohyama, M.; Kojima, S.; Oku, H.; Ikeda, T. Ocular blood flow changes after dynamic exercise in humans. Eye 2006, 20, 796–800. [Google Scholar] [CrossRef]
- Luksch, A.; Maár, N.; Tittl, M.; Ergun, E.; Findl, O.; Stur, M.; Schmetterer, L. Evaluation of pulsatile choroidal blood flow in branch retinal vein occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 240, 548–550. [Google Scholar] [CrossRef]
- Niwa, Y.; Kakinoki, M.; Sawada, T.; Wang, X.; Ohji, M. Ranibizumab and aflibercept: Intraocular pharmacokinetics and their effects on aqueous VEGF level in vitrectomized and nonvitrectomized macaque eyes. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6501–6505. [Google Scholar] [CrossRef]
- Yoshihara, N.; Terasaki, H.; Shirasawa, M.; Kawano, H.; Yamaguchi, M.; Hashiguch, T.; Toshio, H.; Tatsuro, I.; Taiji, S. Permeability and anti-vascular endothelial growth factor effects of bevacizumab, ranibizumab, and aflibercept in polarized retinal pigment epithelial layer in vitro. Retina 2017, 37, 179–190. [Google Scholar] [CrossRef]
- Saint-Geniez, M.; Kurihara, T.; Sekiyama, E.; Maldonado, A.E.; D’Amore, P.A. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc. Natl. Acad. Sci. USA 2009, 106, 18751–18756. [Google Scholar] [CrossRef]
- Peters, S.; Heiduschka, P.; Julien, S.; Ziemssen, F.; Fietz, H.; Bartz-Schmidt, K.U.; Schraermeyer, U. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am. J. Ophthalmol. 2007, 143, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sawada, T.; Sawada, O.; Saishin, Y.; Liu, P.; Ohji, M. Serum and plasma vascular endothelial growth factor concentrations before and after intravitreal injection of aflibercept or ranibizumab for age-related macular degeneration. Am. J. Ophthalmol. 2014, 158, 738–744.e1. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, I.; Shiba, T.; Taniguchi, H.; Takahashi, M.; Murano, T.; Hiruta, N.; Hori, Y.; Bujo, H.; Maeno, T. Evaluation of plasma vascular endothelial growth factor levels after intravitreal injection of ranibizumab and aflibercept for exudative age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Zehetner, C.; Kralinger, M.T.; Modi, Y.S.; Waltl, I.; Ulmer, H.; Kirchmair, R.; Bechrakis, N.E.; Kieselbach, G.F. Systemic levels of vascular endothelial growth factor before and after intravitreal injection of aflibercept or ranibizumab in patients with age-related macular degeneration: A randomized, prospective trial. Acta Ophthalmol. 2015, 93, e154–e159. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, D.H.; Lee, J.J.; Park, S.W.; Byon, I.S.; Lee, J.E. Regional choroidal thickness changes in branch retinal vein occlusion with macular edema. Ophthalmologica 2015, 234, 109–118. [Google Scholar] [CrossRef]
- Wirostko, B.M. Vascular endothelial growth factor. Ophthalmology 2007, 114, 1954–1955. [Google Scholar] [CrossRef]
- Nagaoka, T.; Hein, T.W.; Yoshida, A.; Kuo, L. Simvastatin elicits dilation of isolated porcine retinal arterioles: Role of nitric oxide and mevalonate-rho kinase pathways. Investig. Ophthalmol. Vis. Sci. 2007, 48, 825–832. [Google Scholar] [CrossRef]
- Pournaras, C.J.; Rungger-Brändle, E.; Riva, C.E.; Hardarson, S.H.; Stefansson, E. Regulation of retinal blood flow in health and disease. Prog. Retin. Eye Res. 2008, 27, 284–330. [Google Scholar] [CrossRef]
- Fard, M.A.; Dehpour, A.R. Aqueous humor nitric oxide levels in patients with branch retinal vein occlusion. Jpn. J. Ophthalmol. 2010, 54, 107–109. [Google Scholar] [CrossRef]
- Noma, H.; Mimura, T.; Eguchi, S. Association of inflammatory factors with macular edema in branch retinal vein occlusion. JAMA Ophthalmol. 2013, 131, 160–165. [Google Scholar] [CrossRef]
- Tilton, R.G.; Chang, K.C.; LeJeune, W.S.; Stephan, C.C.; A Brock, T.; Williamson, J.R. Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF. Investig. Ophthalmol. Vis. Sci. 1999, 40, 689–696. [Google Scholar]
Patients (n) | 20 |
Men:women | 8:12 |
Age (years) | 69.6 ± 9.3 |
Major BRVO:macular BRVO | 9:11 |
Superior:inferior (occlusive region) | 13:7 |
Axial length (mm) | 23.9 ± 1.4 |
Systolic blood pressure (mmHg) | 143 ± 17.7 |
Diastolic blood pressure (mmHg) | 81.2 ± 10.9 |
Mean blood pressure (mmHg) | 102 ± 11.5 |
Ocular perfusion pressure (mmHg) | 54.8 ± 7.3 |
Arm to retina circulation time (seconds) | 18.9 ± 4.4 |
Hypertension (%) | 11/20 (55.0) |
Hyperlipidemia (%) | 8/20 (40.0) |
Type 2 diabetes mellitus (%) | 1/20 (5.0) |
Administration of ARB (%) | 4/20 (20.0) |
Administration of CCB (%) | 6/20 (30.0) |
Administration of statin (%) | 5/20 (20.0) |
Administration of hypoglycemic agents (%) | 1/20 (5.0) |
Triglyceride (mg/dL) | 138 ± 77.1 |
HDL cholesterol (mg/dL) | 56.3 ± 13.6 |
LDL cholesterol (mg/dL) | 128 ± 30.9 |
Fasting plasma glucose (mg/dL) | 110 ± 37.1 |
Hemoglobin A1c (%) | 5.8 ± 0.3 |
eGFR (mL/minutes per 1.73 m2) | 72.3 ± 14.6 |
Red blood cells (×106 μL) | 4.6 ± 0.4 |
Hemoglobin (g/dL) | 13.8 ± 1.3 |
Hematocrit (%) | 40.9 ± 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, R.; Aso, K.; Yata, K.; Tanaka, K.; Fujioka, N.; Yamazaki, R.; Moriyama, S.; Kawamura, J.; Hirota, A.; Maeno, T. Influence of Aflibercept on Choroidal Blood Flow and Thickness in Branch Retinal Vein Occlusion: A Six-Month Follow-Up Study. Diagnostics 2024, 14, 2484. https://doi.org/10.3390/diagnostics14222484
Hashimoto R, Aso K, Yata K, Tanaka K, Fujioka N, Yamazaki R, Moriyama S, Kawamura J, Hirota A, Maeno T. Influence of Aflibercept on Choroidal Blood Flow and Thickness in Branch Retinal Vein Occlusion: A Six-Month Follow-Up Study. Diagnostics. 2024; 14(22):2484. https://doi.org/10.3390/diagnostics14222484
Chicago/Turabian StyleHashimoto, Ryuya, Kenichiro Aso, Keisuke Yata, Kazufumi Tanaka, Naoki Fujioka, Ryo Yamazaki, Serika Moriyama, Juri Kawamura, Asato Hirota, and Takatoshi Maeno. 2024. "Influence of Aflibercept on Choroidal Blood Flow and Thickness in Branch Retinal Vein Occlusion: A Six-Month Follow-Up Study" Diagnostics 14, no. 22: 2484. https://doi.org/10.3390/diagnostics14222484
APA StyleHashimoto, R., Aso, K., Yata, K., Tanaka, K., Fujioka, N., Yamazaki, R., Moriyama, S., Kawamura, J., Hirota, A., & Maeno, T. (2024). Influence of Aflibercept on Choroidal Blood Flow and Thickness in Branch Retinal Vein Occlusion: A Six-Month Follow-Up Study. Diagnostics, 14(22), 2484. https://doi.org/10.3390/diagnostics14222484