The Effect of Kinesiology Taping on Posture, Balance, and Gait in Patients Suffering from Low Back Pain
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Inclusion and Exclusion Criteria
2.3. Intervention
2.4. Outcome Measures
2.5. Statistical Evaluation
3. Results
Summary of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, M.L.; De Luca, K.; Haile, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; Kopec, J.A.; Ferreira, P.H.; Blyth, F.M.; Buchbinder, R.; et al. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Foster, N.E.; Anema, J.R.; Cherkin, D.; Chou, R.; Cohen, S.P.; Gross, D.P.; Ferreira, P.H.; Fritz, J.M.; Koes, B.W.; Peul, W.; et al. Lancet Low Back Pain Series Working Group. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet 2018, 391, 2368–2383. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.S.; Vera, G.E.Z.; Maher, C.G.; Ferreira, G.E.; Machado, G.C.; Buchbinder, R.; Pinto, R.Z.; Oliveira, C.B. Clinical care standards for the management of low back pain: A scoping review. Rheumatol. Int. 2024, 44, 1197–1207. [Google Scholar] [CrossRef]
- Jayani, S.; Raghava Neelapala, Y.V.; Nayak, S.; Naik, A.R.; Vishal, K. Physiotherapists’ attitudes and beliefs in the management of low back pain: Protocol for a systematic review. Musculoskelet. Care 2024, 22, e1915. [Google Scholar] [CrossRef]
- Kase, K.; Wallis, J.; Kase, T. Clinical Therapeutic Applications of the Kinesio Taping Method; Kení-kai Co., Ltd.: Tokyo, Japan, 2003. [Google Scholar]
- Trobec, K.; Peršolja, M. Efficacy of kinesio taping in reducing low back pain: A comprehensive review. J. Health Sci. 2019, 7, 1–8. [Google Scholar]
- Li, P.; Li, Y.; Gao, L.; Sun, Y.; Li, M.; Zhang, X.; Wang, Y.; Shi, B. The Effects of Kinesio Taping for Chronic Nonspecific Low Back Pain: A Systematic. Review and Meta-analysis. Altern. Ther. Health Med. 2023, 29, 68–76. [Google Scholar]
- Elabd, A.M.; Elabd, O.M. Efficacy of kinesio tape added to lumbar stabilization exercises on adult patients with mechanical low back pain: A randomized, single-blind clinical trial. J. Bodyw. Mov. Ther. 2024, 39, 218–224. [Google Scholar] [CrossRef]
- Meinke, A.; Peters, R.; Knols, R.H.; Swanenburg, J.; Karlen, W. Feedback on Trunk Movements From an Electronic Game to Improve Postural Balance in People With Nonspecific Low Back Pain: Pilot Randomized Controlled Trial. JMIR Serious Games 2022, 10, e31685. [Google Scholar] [CrossRef]
- Fiałkowski, T.; Opara, J. The effect of visual biofeedback balance control training on posture and balance in patients suffering from sciatica. Acta Kinesiol. 2021, 15, 68–73. [Google Scholar] [CrossRef]
- Spitzer, W.O. Diagnosis of the problem (problem of diagnosis). Scientific Approach to the Assessment and Measurement of Activity—Related Spinal Disorders: A Monograph for Clinicians-Report of the Quebec Task Force on Spinal Disorders. Spine 1987, 12, 16–21. [Google Scholar]
- Atlas, S.J.; Deyo, R.A.; Patrick, D.L.; Convery, K.; Keller, R.B.; Singer, D.E. The Quebec Task Force classification for Spinal Disorders and the severity, treatment, and outcomes of sciatica and lumbar spinal stenosis. Spine 1996, 21, 2885–2892. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. One-legged balance test times. Percept. Mot. Ski. 1994, 78, 801–802. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Podsiadło, D.; Richardson, S. The timed ‘Up & Go’: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Carlsson, A.M. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 1983, 16, 87–101. [Google Scholar] [CrossRef]
- Kalron, A.; Bar-Sela, S. A systematic review of the effectiveness of Kinesio Taping—Fact or fashion? Eur. J. Phys. Rehabil. Med. 2013, 49, 699–709. [Google Scholar]
- Nelson, N.L. Kinesio taping for chronic low back pain: A systematic review. J. Bodyw. Mov. Ther. 2016, 20, 672–681. [Google Scholar] [CrossRef]
- Sheng, Y.; Duan, Z.; Qu, Q.; Chen, W.; Yu, B. Kinesio taping in treatment of chronic non-specific low back pain: A systematic review and meta-analysis. J. Rehabil. Med. 2019, 51, 734–740. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Jia, G.; Chen, H.; Yu, L.; Wu, D. Effects of kinesiotape on pain and disability in individuals with chronic low back pain: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2019, 33, 596–606. [Google Scholar] [CrossRef]
- Luz Júnior, M.A.D.; Almeida, M.O.; Santos, R.S.; Civile, V.T.; Costa, L.O.P. Effectiveness of Kinesio Taping in Patients with Chronic Nonspecific Low Back Pain: A Systematic Review with Meta-analysis. Spine 2019, 44, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: A systematic review of the literature. Eur. Spine, J. 2011, 20, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.S.; Lee, D. Postural control and trunk stability on sway parameters in adults with and without chronic low back pain. Eur. Spine J. 2024, 33, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Jassi, F.J.; Del Antônio, T.T.; Azevedo, B.O.; Moraes, R.; George, S.Z.; Chaves, T.C. Star-Shape Kinesio Taping Is Not Better Than a Minimal Intervention or Sham Kinesio Taping for Pain Intensity and Postural Control in Chronic Low Back Pain: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 1352–1360.e3. [Google Scholar] [CrossRef]
- Bagheri, R.; Pourahmadi, M.R.; Sarmadi, A.R.; Takamjani, I.E.; Torkaman, G.; Fazeli, S.H. What is the effect and mechanism of kinesiology tape on muscle activity? J. Bodyw. Mov. Ther. 2018, 22, 266–275. [Google Scholar] [CrossRef]
- Tran, L.; Makram, A.M.; Makram, O.M.; Elfaituri, M.K.; Morsy, S.; Ghozy, S.; Zayan, A.H.; Nam, N.H.; Zaki, M.M.M.; Allison, E.L.; et al. Efficacy of Kinesio Taping Compared to Other Treatment Modalities in Musculoskeletal Disorders: A Systematic Review and Meta-Analysis. Res. Sports Med. 2023, 31, 416–439. [Google Scholar] [CrossRef]
- Ge, L.; Wang, C.; Zhou, H.; Yu, Q.; Li, X. Effects of low back pain on balance performance in elderly people: A systematic review and meta-analysis. Eur. Rev. Aging Phys. Act. 2021, 18, 8. [Google Scholar] [CrossRef]
- Smith, J.A.; Stabbert, H.; Bagwell, J.J.; Teng, H.L.; Wade, V.; Lee, S.P. Do people with low back pain walk differently? A systematic review and meta-analysis. J. Sport. Health Sci. 2022, 11, 450–465. [Google Scholar] [CrossRef]
- Melzack, R. The McGill Pain Questionnaire: Major properties and scoring methods. Pain 1975, 1, 277–299. [Google Scholar] [CrossRef]
- Melzack, R. The short-form McGill Pain Questionnaire. Pain 1987, 30, 191–197. [Google Scholar] [CrossRef]
- Ruta, D.A.; Garratt, A.M.; Wardlaw, D.; Russell, I.T. Developing a valid and reliable measure of health outcome for patients with low back pain. Spine 1994, 19, 1887–1896. [Google Scholar] [CrossRef] [PubMed]
- Von Korff, M.; Ormel, J.; Keefe, F.J.; Dworkin, S.F. Grading the severity of chronic pain. Pain 1992, 50, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Von Korff, M.; DeBar, L.L.; Krebs, E.; Kerns, R.D.; Deyo, R.A.; Keefe, F.J. Graded chronic pain scale revised: Mild, bothersome, and high-impact chronic pain. Pain 2000, 161, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Mannion, A.; Balagué, F.; Pellisé, F.; Cedraschi, C. Pain measurement in patients with low back pain. Nat. Rev. Rheumatol. 2007, 3, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, B.; Wilski, M. Psychometric Properties of Chosen Scales Evaluating Disability in Low Back Pain—Narrative Review. Healthcare 2024, 12, 1139. [Google Scholar] [CrossRef]
- Fairbank, J.; Pynsen, P. The Oswestry Disability Index. Spine 2000, 25, 2940–2953. [Google Scholar] [CrossRef]
- Roland, M.O.; Morris, R.W. A study of the natural history of back pain. Part 1: Development of a reliable and sensitive measure of disability in low back pain. Spine 1983, 8, 141–144. [Google Scholar] [CrossRef]
- Opara, J.; Szary, S.; Kucharz, E. Polish cultural adaptation of the Roland-Morris Questionnaire for evaluation of quality of life in patients with low back pain. Spine 2006, 31, 2744–2746. [Google Scholar] [CrossRef]
- Hayden, J.A.; Ellis, J.; Ogilvie, R.; Malmivaara, A.; van Tulder, M.W. Exercise therapy for chronic low back pain. Cochrane Database Syst. Rev. 2021, 9, CD009790. [Google Scholar] [CrossRef]
- Nwodo, O.D.; Ibikunle, P.O.; Ogbonna, N.L.; Ani, K.U.; Okonkwo, A.C.; Eze, C.J.; Onwudiwe, C.U.; Ezeja, G.U.; Maduanusi, I.A. Review of core stability exercise versus conventional exercise in the management of chronic low back pain. Afr. Health Sci. 2022, 22, 148–167. [Google Scholar] [CrossRef]
- Saragiotto, B.T.; Maher, C.G.; Yamato, T.P.; Costa, L.O.P.; Costa, L.C.M.; Ostelo, R.W.J.G.; Macedo, L.G. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst. Rev. 2016, 1, CD012004. [Google Scholar] [CrossRef] [PubMed]
KT Group | VFB Group | ||||
---|---|---|---|---|---|
n | % | n | % | ||
Gender | Females | 16 | 27% | 16 | 27% |
Men | 14 | 23% | 14 | 23% | |
Age (years) | 20–83 | 36–80 | |||
Mean age (mean ± SD) | 53.9 ± 14.65 | 55.2 ± 13 | |||
Body length (mean ± SD) cm | 170.10 ± 19.59 | 169.17 ± 7.18 | |||
Body mass (mean ± SD) | 79.53 | 80.37 ± 15.42 | |||
BMI (average) | 27.49 | 28.08 |
KT Group | VFB Group | |||||
---|---|---|---|---|---|---|
Parameter Name | Pre Intervention | Post Intervention | p Value | Pre Intervention | Post Intervention | p Value |
COP sway (centimeters) with eyes open | 175.53 | 216.96 | 0.001 | 216.19 | 229.31 | 0.14 |
Execution time (%) | 16.37 | 30.50 | 0.00002 | 18,93 | 36.93 | 0.00001 |
KT Group | VFB Group | |||||
---|---|---|---|---|---|---|
Parameter Name | Pre Intervention | Post Intervention | p Value | Pre Intervention | Post Intervention | p Value |
Limb load distribution L/R leg (%) | L: 49.93 R: 50.07 | L: 50 R: 50 | 0.69 | L: 49.97 R: 50.03 | L: 49.40 R: 50.60 | 0.21 |
Standing time (s) on left leg | 8.48 | 12.92 | 0.000002 | 6.04 | 9.62 | 0.000002 |
Standing time (s) on right leg | 8.53 | 13.16 | 0.000003 | 6.49 | 10.75 | 0.000002 |
KT Group | VFB Group | |||||
---|---|---|---|---|---|---|
Parameter Name | Pre Intervention | Post Intervention | p Value | Pre Intervention | Post Intervention | p Value |
Schober test (cm) | 2.85 | 4.28 | 0.00001 | 3.17 | 4.25 | 0.00003 |
Laségue (L) | 53.87° | 69.20° | 0.000003 | 52.03° | 67.50° | 0.000003 |
Laségue (P) | 55.17° | 68.60° | 0.000002 | 55.37° | 69.90° | 0.000002 |
FAC | 4.83 | 4.97 | 0.067 | 4.60 | 4.90 | 0.01 |
TUG sec. | 13.40 | 10.28 | 0.000004 | 14.24 | 11.35 | 0.00003 |
mean VAS | 5.40 | 3.10 | 0.00001 | 5.87 | 3.50 | 0.00001 |
Average Age > 55 | Average Age < 55 | SD Age > 55 | SD Age < 55 | p Value | |
---|---|---|---|---|---|
TUG 1 parameter (tested on first day) a | 15.73 | 10.74 | 6.19 | 3.15 | 0.007 |
TUG 2 parameter (tested on last day) a | 11.78 | 8.57 | 3.39 | 2.23 | 0.011 |
COP sway interaction time with virtual target (%)—the first day of therapy b | 10.69 | 22.86 | 9.73 | 11.79 | 0.004 |
COP sway interaction time with virtual target (%)—the last day of therapy b | 22.31 | 39.86 | 16.28 | 20.39 | 0.004 |
Weight domination (left leg—first day of therapy) c | 41.31 | 70.43 | 35.45 | 34.86 | 0.032 |
Weight domination (right leg—first day of therapy) c | 58.69 | 29.57 | 35.45 | 34.86 | 0.032 |
Bohannon test (left leg, eyes open, the first day of therapy) d | 102.44 | 102.64 | 0.51 | 0.50 | 0.002 |
Bohannon test (right leg, eyes open, the first day of therapy) d | 102.19 | 102.29 | 0.40 | 0.47 | 0.042 |
Bohannon test (left leg, eyes closed, the first day of therapy) d | 4.79 | 12.70 | 3.22 | 7.33 | 0.020 |
Bohannon test (right leg, eyes closed, the first day of therapy) d | 5.16 | 12.38 | 3.10 | 11.69 | 0.044 |
Bohannon test (left leg, eyes open, the last day of therapy) d | 2.56 | 4.23 | 2.52 | 2.40 | 0.005 |
Bohannon test (right leg, eyes open, the last day of therapy) d | 2.47 | 4.93 | 1.66 | 4.02 | 0.040 |
Bohannon test (left leg, eyes closed, the last day of therapy) d | 7.36 | 19.27 | 3.72 | 13.57 | 0.046 |
Bohannon test (right leg, eyes closed, the last day of therapy) d | 8.24 | 18.77 | 3.24 | 15.29 | 0.021 |
Parameter | Average Age > 55 | Average Age < 55 | SD Age > 55 | SD Age < 55 | p Value |
---|---|---|---|---|---|
COP sway interaction time with virtual target (%)—the first day of therapy a | 13.87 | 24.00 | 10.22 | 12.60 | 0.040 |
COP sway interaction time with virtual target (%)—the last day of therapy b | 27.00 | 46.87 | 12.26 | 20.73 | 0.007 |
Bohannon test (left leg, eyes open, the first day of therapy) c | 102.27 | 102.20 | 0.59 | 0.41 | 0.026 |
Bohannon test (left leg, eyes closed, the last day of therapy) d | 7.74 | 11.50 | 5.06 | 6.55 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opara, J.A.; Fiałkowski, T. The Effect of Kinesiology Taping on Posture, Balance, and Gait in Patients Suffering from Low Back Pain. Diagnostics 2024, 14, 2506. https://doi.org/10.3390/diagnostics14222506
Opara JA, Fiałkowski T. The Effect of Kinesiology Taping on Posture, Balance, and Gait in Patients Suffering from Low Back Pain. Diagnostics. 2024; 14(22):2506. https://doi.org/10.3390/diagnostics14222506
Chicago/Turabian StyleOpara, Józef Alphons, and Tomasz Fiałkowski. 2024. "The Effect of Kinesiology Taping on Posture, Balance, and Gait in Patients Suffering from Low Back Pain" Diagnostics 14, no. 22: 2506. https://doi.org/10.3390/diagnostics14222506
APA StyleOpara, J. A., & Fiałkowski, T. (2024). The Effect of Kinesiology Taping on Posture, Balance, and Gait in Patients Suffering from Low Back Pain. Diagnostics, 14(22), 2506. https://doi.org/10.3390/diagnostics14222506