Enhancing Lung Ultrasound Diagnostics: A Clinical Study on an Artificial Intelligence Tool for the Detection and Quantification of A-Lines and B-Lines
Abstract
:1. Introduction
The Goals of This Investigation
2. Materials and Methods
2.1. Study Design
2.2. Approach
2.3. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komatsu, M.; Sakai, A.; Dozen, A.; Shozu, K.; Yasutomi, S.; Machino, H.; Asada, K.; Kaneko, S.; Hamamoto, R. Towards clinical application of artificial intelligence in ultrasound imaging. Biomedicines 2021, 9, 720. [Google Scholar] [CrossRef] [PubMed]
- Loukas, M.; Burns, D. Essential Ultrasound Anatomy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2024. [Google Scholar]
- Gargani, L. Lung ultrasound: A new tool for the cardiologist. Cardiovasc. Ultrasound 2011, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Haji-Hassan, M.; Lenghel, L.M.; Bolboacă, S.D. Hand-held ultrasound of the lung: A systematic review. Diagnostics 2021, 11, 1381. [Google Scholar] [CrossRef] [PubMed]
- Mojoli, F.; Bouhemad, B.; Mongodi, S.; Lichtenstein, D. Lung ultrasound for critically ill patients. Am. J. Respir. Crit. Care Med. 2019, 199, 701–714. [Google Scholar] [CrossRef]
- Pelosi, P.; Tonelli, R.; Torregiani, C.; Baratella, E.; Confalonieri, M.; Battaglini, D.; Marchioni, A.; Confalonieri, P.; Clini, E.; Salton, F.; et al. Different methods to improve the monitoring of noninvasive respiratory support of patients with severe pneumonia/ARDS due to COVID-19: An update. J. Clin. Med. 2022, 11, 1704. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Zheng, S.; Zhou, Z.; Zhang, W.; Du, G.; Mikish, A.; Ruaro, B.; Bruni, C.; Hoffmann-Vold, A.M.; et al. A versatile role for lung ultrasound in systemic autoimmune rheumatic diseases related pulmonary involvement: A narrative review. Arthritis Res. Ther. 2024, 26, 164. [Google Scholar] [CrossRef]
- Chiumello, D.; Coppola, S.; Catozzi, G.; Danzo, F.; Santus, P.; Radovanovic, D. Lung Imaging and Artificial Intelligence in ARDS. J. Clin. Med. 2024, 13, 305. [Google Scholar] [CrossRef]
- Chu, D.; Liteplo, A.; Duggan, N.; Hutchinson, A.B.; Shokoohi, H. Artificial Intelligence in Lung Ultrasound. Curr. Pulmonol. Rep. 2024, 13, 127–134. [Google Scholar] [CrossRef]
- Gómez, M.F.; Pazos, S.d.J.D. The Role of Lung Ultrasound in the Management of Respiratory Emergencies. Open Respir. Arch. 2022, 4, 100206. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Meziere, G.A.; Lagoueyte, J.F.; Biderman, P.; Goldstein, I.; Gepner, A. A-lines and B-lines: Lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically ill. Chest 2009, 136, 1014–1020. [Google Scholar] [CrossRef]
- Sultan, L.R.; Haertter, A.; Al-Hasani, M.; Demiris, G.; Cary, T.W.; Tung-Chen, Y.; Sehgal, C.M. Can Artificial Intelligence Aid Diagnosis by Teleguided Point-of-Care Ultrasound? A Pilot Study for Evaluating a Novel Computer Algorithm for COVID-19 Diagnosis Using Lung Ultrasound. AI 2023, 4, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Short, J.; Acebes, C.; Rodriguez-de Lema, G.; La Paglia, G.M.C.; Pavón, M.; Sánchez-Pernaute, O.; Vazquez, J.C.; Romero-Bueno, F.; Garrido, J.; Naredo, E. Visual versus automatic ultrasound scoring of lung B-lines: Reliability and consistency between systems. Med Ultrason. 2019, 21, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Moshavegh, R.; Hansen, K.L.; Møller-Sørensen, H.; Nielsen, M.B.; Jensen, J.A. Automatic detection of B-lines in In Vivo lung ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 66, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Panisello-Tafalla, A.; Haro-Montoya, M.; Caballol-Angelats, R.; Montelongo-Sol, M.; Rodriguez-Carralero, Y.; Lucas-Noll, J.; Clua-Espuny, J.L. Prognostic Significance of Lung Ultrasound for Heart Failure Patient Management in Primary Care: A Systematic Review. J. Clin. Med. 2024, 13, 2460. [Google Scholar] [CrossRef]
- Volpicelli, G.; Cardinale, L.; Garofalo, G.; Veltri, A. Usefulness of lung ultrasound in the bedside distinction between pulmonary edema and exacerbation of COPD. Emerg. Radiol. 2008, 15, 145–151. [Google Scholar] [CrossRef]
- Tsaban, G.; Galante, O.; Almog, Y.; Ullman, Y.; Fuchs, L. Feasibility of machine integrated point of care lung ultrasound automatic B-lines tool in the Corona-virus 2019 critical care unit. Crit. Care 2021, 25, 345. [Google Scholar] [CrossRef]
- Volpicelli, G.; Elbarbary, M.; Blaivas, M.; Lichtenstein, D.A.; Mathis, G.; Kirkpatrick, A.W.; Melniker, L.; Gargani, L.; Noble, V.E.; Via, G.; et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012, 38, 577–591. [Google Scholar] [CrossRef]
- Gargani, L.; Sicari, R.; Raciti, M.; Serasini, L.; Passera, M.; Torino, C.; Letachowicz, K.; Ekart, R.; Fliser, D.; Covic, A.; et al. Efficacy of a remote web-based lung ultrasound training for nephrologists and cardiologists: A LUST trial sub-project. Nephrol. Dial. Transplant. 2016, 31, 1982–1988. [Google Scholar] [CrossRef]
- Camacho, J.; Muñoz, M.; Genovés, V.; Herraiz, J.L.; Ortega, I.; Belarra, A.; González, R.; Sánchez, D.; Giacchetta, R.C.; Trueba-Vicente, Á.; et al. Artificial intelligence and democratization of the use of lung ultrasound in COVID-19: On the feasibility of automatic calculation of lung ultrasound score. Int. J. Transl. Med. 2022, 2, 17–25. [Google Scholar] [CrossRef]
- Marozzi, M.S.; Cicco, S.; Mancini, F.; Corvasce, F.; Lombardi, F.A.; Desantis, V.; Loponte, L.; Giliberti, T.; Morelli, C.M.; Longo, S.; et al. A Novel Automatic Algorithm to Support Lung Ultrasound Non-Expert Physicians in Interstitial Pneumonia Evaluation: A Single-Center Study. Diagnostics 2024, 14, 155. [Google Scholar] [CrossRef]
- Howell, L.; Ingram, N.; Lapham, R.; Morrell, A.; McLaughlan, J.R. Deep learning for real-time multi-class segmentation of artefacts in lung ultrasound. Ultrasonics 2024, 140, 107251. [Google Scholar] [CrossRef] [PubMed]
- Nhat, P.T.H.; Van Hao, N.; Tho, P.V.; Kerdegari, H.; Pisani, L.; Thu, L.N.M.; Phuong, L.T.; Duong, H.T.H.; Thuy, D.B.; McBride, A.; et al. Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit. Critical Care 2023, 27, 257. [Google Scholar] [CrossRef] [PubMed]
- Fraleigh, C.D.; Duff, E. Point-of-care ultrasound: An emerging clinical tool to enhance physical assessment. Nurse Pract. 2022, 47, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Marini, T.J.; Castaneda, B.; Baran, T.; O’Connor, T.P.; Garra, B.; Tamayo, L.; Zambrano, M.; Carlotto, C.; Trujillo, L.; Kaproth-Joslin, K.A. Lung ultrasound volume sweep imaging for pneumonia detection in rural areas: Piloting training in rural Peru. J. Clin. Imaging Sci. 2019, 9, 35. [Google Scholar] [CrossRef]
- Chaddad, A.; Peng, J.; Xu, J.; Bouridane, A. Survey of explainable AI techniques in healthcare. Sensors 2023, 23, 634. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Hayes, W.; Allinovi, M.; Bull, D.; Achim, A. Line detection as an inverse problem: Application to lung ultrasound imaging. IEEE Trans. Med. Imaging 2017, 36, 2045–2056. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kaneko, T.; Yoshikawa, H.; Uchiyama, S.; Nagata, Y.; Matsushita, Y.; Hiki, M.; Minamino, T.; Takahashi, K.; Daida, H.; et al. Artificial intelligence-based point-of-care lung ultrasound for screening COVID-19 pneumoniae: Comparison with CT scans. PLoS ONE 2023, 18, e0281127. [Google Scholar] [CrossRef]
- Russell, F.M.; Ehrman, R.R.; Barton, A.; Sarmiento, E.; Ottenhoff, J.E.; Nti, B.K. B-line quantification: Comparing learners novice to lung ultrasound assisted by machine artificial intelligence technology to expert review. Ultrasound J. 2021, 13, 33. [Google Scholar] [CrossRef]
- Anderson, K.L.; Fields, J.M.; Panebianco, N.L.; Jenq, K.Y.; Marin, J.; Dean, A.J. Inter-rater reliability of quantifying pleural B-lines using multiple counting methods. J. Ultrasound Med. 2013, 32, 115–120. [Google Scholar] [CrossRef]
- Herraiz, J.L.; Freijo, C.; Camacho, J.; Muñoz, M.; González, R.; Alonso-Roca, R.; Álvarez-Troncoso, J.; Beltrán-Romero, L.M.; Bernabeu-Wittel, M.; Blancas, R.; et al. Inter-rater variability in the evaluation of lung ultrasound in videos acquired from COVID-19 patients. Appl. Sci. 2023, 13, 1321. [Google Scholar] [CrossRef]
- Baloescu, C.; Chen, A.; Raju, B.; Evans, N.; Moore, C. 19 Automated Quantification Of B-Lines in Lung Ultrasound On COVID-19 Patients. Ann. Emerg. Med. 2021, 78, S9–S10. [Google Scholar] [CrossRef]
Metric | B-Line Threshold = 3 | B-Line Threshold = 5 | A-Lines |
---|---|---|---|
Accuracy | 89% | 85% | 85% |
Sensitivity | 94% | 84% | 91% |
Specificity | 77% | 86% | 81% |
Kappa Score | 0.73 [95% CI 0.68–0.79], p-value < 0.05 | 0.68 [95% CI 0.62–0.74], p-value < 0.05 | 0.71 [95% CI 0.65–0.76], p-value < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekoui, M.; Seyed Bolouri, S.E.; Forouzandeh, A.; Dehghan, M.; Zonoobi, D.; Jaremko, J.L.; Buchanan, B.; Nagdev, A.; Kapur, J. Enhancing Lung Ultrasound Diagnostics: A Clinical Study on an Artificial Intelligence Tool for the Detection and Quantification of A-Lines and B-Lines. Diagnostics 2024, 14, 2526. https://doi.org/10.3390/diagnostics14222526
Nekoui M, Seyed Bolouri SE, Forouzandeh A, Dehghan M, Zonoobi D, Jaremko JL, Buchanan B, Nagdev A, Kapur J. Enhancing Lung Ultrasound Diagnostics: A Clinical Study on an Artificial Intelligence Tool for the Detection and Quantification of A-Lines and B-Lines. Diagnostics. 2024; 14(22):2526. https://doi.org/10.3390/diagnostics14222526
Chicago/Turabian StyleNekoui, Mahdiar, Seyed Ehsan Seyed Bolouri, Amir Forouzandeh, Masood Dehghan, Dornoosh Zonoobi, Jacob L. Jaremko, Brian Buchanan, Arun Nagdev, and Jeevesh Kapur. 2024. "Enhancing Lung Ultrasound Diagnostics: A Clinical Study on an Artificial Intelligence Tool for the Detection and Quantification of A-Lines and B-Lines" Diagnostics 14, no. 22: 2526. https://doi.org/10.3390/diagnostics14222526
APA StyleNekoui, M., Seyed Bolouri, S. E., Forouzandeh, A., Dehghan, M., Zonoobi, D., Jaremko, J. L., Buchanan, B., Nagdev, A., & Kapur, J. (2024). Enhancing Lung Ultrasound Diagnostics: A Clinical Study on an Artificial Intelligence Tool for the Detection and Quantification of A-Lines and B-Lines. Diagnostics, 14(22), 2526. https://doi.org/10.3390/diagnostics14222526