An Association Between Fetal Subarachnoid Space and Various Pathologies Using MR Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Group
2.2. MR Images
2.3. Subarachnoid Space Width Measurements
2.4. Other Measurements
2.5. Statistical Analysis
3. Results
3.1. Macrocephaly Versus Microcephaly
3.2. Microcephaly Versus FGR
4. Discussion
4.1. Macrocephaly Versus Microcephaly
4.2. Microcephaly Versus FGR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mortazavi, M.M.; Quadri, S.A.; Khan, M.A.; Gustin, A.; Suriya, S.S.; Hassanzadeh, T.; Fahimdanesh, K.M.; Adl, F.H.; Fard, S.A.; Taqi, M.A. Subarachnoid trabeculae: A comprehensive review of their embryology, histology, morphology, and surgical significance. World Neurosurg. 2018, 111, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, S.; Taoka, T. The glymphatic system: A review of the challenges in visualizing its structure and function with MR imaging. Magn. Reson. Med. Sci. 2022, 21, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Czarniak, N.; Kamińska, J.; Matowicka-Karna, J.; Koper-Lenkiewicz, O.M. Cerebrospinal fluid–basic concepts review. Biomedicines 2023, 11, 1461. [Google Scholar] [CrossRef] [PubMed]
- Wandel, A.; Weissbach, T.; Katorza, E.; Ziv-Baran, T. Subarachnoid Space Measurements in Apparently Healthy Fetuses Using MR Imaging. AJNR Am. J. Neuroradiol. 2023, 44, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Malinger, G.; Lerman-Sagie, T.; Achiron, R.; Lipitz, S. The subarachnoid space: Normal fetal development as demonstrated by transvaginal ultrasound. Prenat. Diagn. 2000, 20, 890–893. [Google Scholar] [CrossRef]
- Watanabe, Y.; Abe, S.; Takagi, K.; Yamamoto, T.; Kato, T. Evolution of subarachnoid space in normal fetuses using magnetic resonance imaging. Prenat. Diagn. 2005, 25, 1217–1222. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Bilardo, C.M.; Chalouhi, G.E.; Ghi, T.; Kagan, K.O.; Lau, T.K.; Papageorghiou, A.T.; Raine-Fenning, N.J.; Stirnemann, J.; et al. ISUOG practice guidelines: Performance of first-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2013, 41, 102–113. [Google Scholar] [CrossRef]
- Napolitano, R.; Dhami, J.; Ohuma, E.O.; Ioannou, C.; Conde-Agudelo, A.; Kennedy, S.H.; Villar, J.; Papageorghiou, A.T. Pregnancy dating by fetal crown–rump length: A systematic review of charts. BJOG Int. J. Obstet. Gynaecol. 2014, 121, 556–565. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Ohuma, E.O.; Altman, D.G.; Todros, T.; Ismail, L.C.; Lambert, A.; Jaffer, Y.A.; Bertino, E.; Gravett, M.G.; Purwar, M.; et al. International standards for fetal growth based on serial ultrasound measurements: The Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 869–879. [Google Scholar] [CrossRef]
- Chervenak, F.A.; Rosenberg, J.J.; Brightman, R.C.; Chitkara, U.; Jeanty, P. A prospective study of the accuracy of ultrasound in predicting fetal microcephaly. Obstet. Gynecol. 1987, 69, 908–910. [Google Scholar]
- Becerra-Solano, L.E.; Mateos-Sánchez, L.; López-Muñoz, E. Microcephaly, an etiopathogenic vision. Pediatr. Neonatol. 2021, 62, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, M.Z.; Tao, G.W.; Ma, Z.; Wu, H.F.; Li, Q. Effect of head circumference in combination with facial profile line on ultrasonic diagnosis of microcephaly. J. Matern. Fetal Neonatal Med. 2019, 33, 2372–2376. [Google Scholar] [CrossRef] [PubMed]
- Shinar, S.; Chitayat, D.; Shannon, P.; Blaser, S. Fetal macrocephaly: Pathophysiology, prenatal diagnosis and management. Prenat. Diagn. 2023, 43, 1650–1661. [Google Scholar] [CrossRef] [PubMed]
- Lazea, C.; Vulturar, R.; Chiș, A.; Encica, S.; Horvat, M.; Belizna, C.; Damian, L.-O. Macrocephaly and Finger Changes: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 5567. [Google Scholar] [CrossRef]
- Unterscheider, J.; Daly, S.; Geary, M.P.; Kennelly, M.M.; McAuliffe, F.M.; O’Donoghue, K.; Hunter, A.; Morrison, J.J.; Burke, G.; Dicker, P.; et al. Optimizing the definition of intrauterine growth restriction: The multicenter prospective PORTO Study. Am. J. Obstet. Gynecol. 2013, 208, 290.e1–290.e6. [Google Scholar] [CrossRef]
- Chauhan, S.P.; Gupta, L.M.; Hendrix, N.W.; Berghella, V. Intrauterine growth restriction: Comparison of American College of Obstetricians and Gynecologists practice bulletin with other national guidelines. Am. J. Obstet. Gynecol. 2009, 200, 409.e1–409.e6. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Silver, R.M.; Baker, P.N.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- McCowan, L.M.; Figueras, F.; Anderson, N.H. Evidence-based national guidelines for the management of suspected fetal growth restriction: Comparison, consensus, and controversy. Am. J. Obstet. Gynecol. 2018, 218, S855–S868. [Google Scholar] [CrossRef]
- Gevaerd Martins, J.; Biggio, J.R.; Abuhamad, A. Society for Maternal-Fetal Medicine Consult Series #52: Diagnosis and management of fetal growth restriction: (Replaces Clinical Guideline Number 3, April 2012). Am. J. Obstet. Gynecol. 2020, 223, B2–B17. [Google Scholar]
- Chew, L.C.; Verma, R.P. Fetal Growth Restriction; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Pellerito, J.; Bromley, B.; Allison, S.; Chauhan, A.; Destounis, S.; Dickman, E.; Kline-Fath, B.; Mastrobattista, J.; Neumyer, M.; Rundek, T. AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of standard diagnostic obstetric ultrasound examinations. J. Ultrasound Med. 2018, 37, E13–E24. [Google Scholar]
- Lutz, H.; Buscarini, E. Manual of Diagnostic Ultrasound, 2nd ed.; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-924-154-854-0. [Google Scholar]
- Nagaraj, U.D.; Kline-Fath, B.M. Clinical Applications of Fetal MRI in the Brain. Diagnostics 2022, 12, 764. [Google Scholar] [CrossRef] [PubMed]
- Leibovitz, Z.; Daniel-Spiegel, E.; Malinger, G.; Haratz, K.; Tamarkin, M.; Gindes, L.; Schreiber, L.; Ben-Sira, L.; Lev, D.; Shapiro, I.; et al. Prediction of microcephaly at birth using three reference ranges for fetal head circumference: Can we improve prenatal diagnosis? Ultrasound Obstet. Gynecol. 2016, 47, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.D.; Bradburn, M.; Campbell, M.J.; Cooper, C.L.; Graham, R.; Jarvis, D.; Kilby, M.D.; Mason, G.; Mooney, C.; Robson, S.C.; et al. Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): A multicentre, prospective cohort study. Lancet 2017, 389, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, P.D.; Bradburn, M.; Campbell, M.J.; Cooper, C.L.; Embleton, N.; Graham, R.; Hart, A.R.; Jarvis, D.; Kilby, M.D.; Lie, M.; et al. MRI in the diagnosis of fetal developmental brain abnormalities: The MERIDIAN diagnostic accuracy study. Health Technol. Assess. 2019, 23, 1–144. [Google Scholar] [CrossRef]
- Resta, M.; Greco, P.; D’Addario, V.; Florio, C.; Dardes, N.; Caruso, G.; Spagnolo, P.; Clemente, R.; Vimercati, A.; Selvaggi, L. Magnetic resonance imaging in pregnancy: Study of fetal cerebral malformations. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 1994, 4, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.P.; Guan, H.; Jin, F. Prenatal diagnosis of microcephaly through combined MRI and ultrasonography: Analysis of a case series. Medicine 2023, 102, e36623. [Google Scholar] [CrossRef] [PubMed]
- Katorza, E.; Strauss, G.; Cohen, R.; Berkenstadt, M.; Hoffmann, C.; Achiron, R.; Barzilay, E.; Bar-Yosef, O. Apparent diffusion coefficient levels and neurodevelopmental outcome in fetuses with brain MR imaging white matter hyperintense signal. AJNR Am. J. Neuroradiol. 2018, 39, 1926–1931. [Google Scholar] [CrossRef]
- Zvi, E.; Shemer, A.; Zvi, D.; Bashan, Y.; Hirschfeld-dicker, L.; Oselka, N.; Amitai, M.M.; Ezra, O.; Bar-Yosef, O.; Katorza, E. Fetal exposure to MR imaging: Long-term neurodevelopmental outcome. AJNR Am. J. Neuroradiol. 2020, 41, 1989–1992. [Google Scholar] [CrossRef]
- Dütemeyer, V.; Cannie, M.M.; Badr, D.A.; Kadji, C.; Carlin, A.; Jani, J.C. Prevalence of and risk factors for failure of fetal magnetic resonance imaging due to maternal claustrophobia or malaise. Ultrasound Obstet. Gynecol. 2023, 61, 392–398. [Google Scholar] [CrossRef]
- Meyers, M.L.; Mirsky, D.M.; Dannull, K.A.; Tong, S.; Crombleholme, T.M. Effects of maternal valium administration on fetal MRI motion artifact: A comparison study at high altitude. Fetal Diagn. Ther. 2017, 42, 124–129. [Google Scholar] [CrossRef]
- Halevy, J.; Peretz, R.; Ziv-Baran, T.; Katorza, E. Fetal brain volumes and neurodevelopmental outcome of intrauterine growth restricted fetuses. Eur. J. Radiol. 2023, 168, 111143. [Google Scholar] [CrossRef] [PubMed]
- Chervenak, F.A.; Jeanty, P.; Cantraine, F.; Chitkara, U.; Venus, I.; Berkowitz, R.L.; Hobbins, J.C. The diagnosis of fetal microcephaly. Am. J. Obstet. Gynecol. 1984, 149, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Polat, A.; Barlow, S.; Ber, R.; Achiron, R.; Katorza, E. Volumetric MRI study of the intrauterine growth restriction fetal brain. Eur. Radiol. 2017, 27, 2110–2118. [Google Scholar] [CrossRef] [PubMed]
- Ber, R.; Bar-Yosef, O.; Hoffmann, C.; Shashar, D.; Achiron, R.; Katorza, E. Normal fetal posterior fossa in MR imaging: New biometric data and possible clinical significance. AJNR Am. J. Neuroradiol. 2015, 36, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Choudhri, A.F. Pediatric Neuroradiology: Clinical Practice Essentials, 1st ed.; George Thieme: Stuttgart, Germany, 2017; ISBN 9781626230965. [Google Scholar]
- Garel, C. MRI of the Fetal Brain: Normal Development and Cerebral Pathologies, 1st ed.; Springer: New York, NY, USA, 2004; ISBN 9783540407478. [Google Scholar]
- Rossi, A.C.; Prefumo, F. Additional value of fetal magnetic resonance imaging in the prenatal diagnosis of central nervous system anomalies: A systematic review of the literature. Ultrasound Obstet. Gynecol. 2014, 44, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Gafner, M.; Fried, S.; Gosher, N.; Sade, E.K.; Barzilay, E.; Mayer, A.; Katorza, E. Fetal brain biometry: Is there an agreement among ultrasound, MRI and the measurements at birth? Eur. J. Radiol. 2020, 133, 109369. [Google Scholar] [CrossRef]
- Corbacioglu Esmer, A.; Yuksel, A.; Aksu Uzunhan, T.; Demir, O.; Sarac Sivrikoz, T.; Aydinli, N. Evaluation of fetal subarachnoid space using transabdominal ultrasonography and normal values during pregnancy. Springerplus 2016, 5, 1439. [Google Scholar] [CrossRef]
- Pilu, G.; De Palma, L.; Romero, R.; Bovicelli, L.; Hobbins, J.C. The fetal subarachnoid cisterns: An ultrasound study with report of a case of congenital communicating hydrocephalus. J. Ultrasound Med. 1986, 5, 365–372. [Google Scholar] [CrossRef]
- McArdle, C.B.; Richardson, C.J.; Nicholas, D.A.; Mirfakhraee, M.; Hayden, C.K.; Amparo, E.G. Developmental features of the neonatal brain: MR imaging. Part II. Ventricular size and extracerebral space. Radiology 1987, 162, 230–234. [Google Scholar] [CrossRef]
- Prayer, D.; Malinger, G.; De Catte, L.; De Keersmaecker, B.; Gonçalves, L.F.; Kasprian, G.; Laifer-Narin, S.; Lee, W.; Millischer, A.E.; Platt, L.; et al. ISUOG Practice Guidelines (updated): Performance of fetal magnetic resonance imaging. Ultrasound Obstet. Gynecol. 2023, 61, 278. [Google Scholar] [CrossRef]
- Maytal, J.; Alvarez, L.A.; Elkin, C.M.; Shinnar, S. External hydrocephalus: Radiologic spectrum and differentiation from cerebral atrophy. AJNR Am. J. Neuroradiol. 1987, 8, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Adeyanju, B.T.; Aduloju, O.P.; Okunola, T.O.; Ojo, I.O. Head circumference, as predictor of cephalopelvic disproportion: A prospective analysis of cases of spontaneous vaginal delivery and caesarean section in Ekiti State, Nigeria. Afr. J. Reprod. Health 2023, 27, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Burke, N.; Burke, G.; Breathnach, F.; McAuliffe, F.; Morrison, J.J.; Turner, M.; Dornan, S.; Higgins, J.R.; Cotter, A.; Geary, M. Prediction of cesarean delivery in the term nulliparous woman: Results from the prospective, multicenter Genesis study. Am. J. Obstet. Gynecol. 2017, 216, 598.e1–598.e11. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.; Mastrolia, S.A.; Shelef, I.; Tirosh, D.; Mijalovsky, A.; Ben-Harush, Y.; Hershkovitz, R. Fetal wide subarachnoid space and its outcome in cases of macrocephaly without ventriculomegaly. J. Matern. Fetal Neonatal Med. 2020, 33, 2570–2575. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, A.B.; Wapner, R.J.; Rubin, C.S.; Cole-Beuglet, C.; Ross, R.D.; Goldberg, B.B. Ultrasound criteria for in utero diagnosis of microcephaly. J. Clin. Ultrasound 1980, 8, 11–16. [Google Scholar] [CrossRef]
- Adle-Biassette, H.; Golden, J.A.; Harding, B. Developmental and perinatal brain diseases. Handb. Clin. Neurol. 2018, 145, 51–78. [Google Scholar]
- Peretz, R.; Halevy, T.; Gafner, M.; Fried, S.; Revesz, Y.; Mayer, A.; Katorza, E. Volumetric brain MRI study in fetuses with intrauterine growth restriction using a semiautomated method. AJNR Am. J. Neuroradiol. 2022, 43, 1674–1679. [Google Scholar] [CrossRef]
- Peng, R.; Zheng, Q.; Wu, L.H.; Yin, X.; Zheng, J.; Xie, H.N. Frontal lobe development in fetuses with growth restriction by using ultrasound: A case–control study. BMC Pregnancy Childbirth 2022, 22, 861. [Google Scholar] [CrossRef]
- Inversetti, A.; Fesslova, V.; Deprest, J.; Candiani, M.; Giorgione, V.; Cavoretto, P. Prenatal growth in fetuses with isolated cyanotic and non-cyanotic congenital heart defects. Fetal Diagn. Ther. 2020, 47, 411–419. [Google Scholar] [CrossRef]
- Giorgione, V.; Fesslova, V.; Boveri, S.; Candiani, M.; Khalil, A.; Cavoretto, P. Adverse perinatal outcome and placental abnormalities in pregnancies with major fetal congenital heart defects: A retrospective case-control study. Prenat. Diagn. 2020, 40, 1390–1397. [Google Scholar] [CrossRef]
- Williams, I.A.; Fifer, W.P.; Andrews, H. Fetal Growth and Neurodevelopmental Outcome in Congenital Heart Disease. Pediatr. Cardiol. 2015, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
Macrocephaly | Microcephaly | FGR | p-Value | |
---|---|---|---|---|
Cases (n) | 27 | 27 | 24 | |
Gender–Male (%) | 88.9 | 14.8 | 62.5 | <0.001 |
GA at MRI scan (weeks) | 34.14 (32.57–35.14) | 35.86 (34.00–36.86) | 33.07 (31.5–36.0) | 0.002 |
GA at birth (weeks) | 38.43 (37.86–39.57) | 38.93 (38.14–39.64) | 36 (34–37) | <0.001 |
Birth weight (grams) | 3596 (3320–4005) | 2817.50 (2636.25–3055.25) | 1619 (1398–1930) | <0.001 |
Birth weight (Dolberg centile) | 81 (71–96) | 23 (18.5–44.0) | 3 (1–6) | <0.001 |
HC Chervenak Z Score SD | 1.44 (1.31–1.84) | −1.90 ((−2.21)–(−1.37)) | −1.64 ((−2.45)–(−1.26)) | <0.001 |
STV (mm3) | 251,710 (229,659–280,723) | 192,251 (149,988–213,750) | 185,268.51 (139,408.72–212,800.86) | <0.001 |
STV centiles | 96 (70–99) | 2 (0.5–9) | 5 (3.0–19.4) | <0.001 |
SAS index (mm) | 91.55 (86.35–101.05) | 59.46 (50.00–66.91) | 53.21 (49.71–59.10) | <0.001 |
Plane | Location | Macrocephaly | Microcephaly | p-Value |
---|---|---|---|---|
Axial | Rt. Fr. | 92 (84–100) ** | 30 (14.75–60.75) * | <0.001 |
Lt. Fr. | 92 (74–100) ** | 39.50 (21.75–69.25) | <0.001 | |
Rt. In. | 99 (93–100) ** | 20 (1.00–42.25) ** | <0.001 | |
Lt. In. | 99 (86–100) ** | 13 (2–38) ** | <0.001 | |
Coronal | Rt. Fr. | 88 (50–100) ** | 62 (13–84) | 0.009 |
Lt. Fr. | 93 (83–100) ** | 49 (11–88) | <0.001 | |
Rt. In. | 97 (86–100) ** | 6 (1–19) ** | <0.001 | |
Lt. In. | 96 (89–99) ** | 12 (2–32) ** | <0.001 | |
Rt. It. | 76 (43–98) ** | 50 (25–74) | 0.011 | |
Lt. It. | 55 (25–89) | 49 (19–83) | 0.457 |
Plane | Location | Microcephaly | FGR | p-Value |
---|---|---|---|---|
Axial | Rt. Fr. | 30 (14.75–60.75) * | 3.5 (1–19) ** | 0.003 |
Lt. Fr. | 39.50 (21.75–69.25) | 5.5 (1.00–23.25) ** | <0.001 | |
Rt. In. | 20 (1.00–42.25) ** | 1 (1.00–7.50) ** | 0.038 | |
Lt. In. | 13 (2–38) ** | 1.5 (1–13) ** | 0.017 | |
Coronal | Rt. Fr. | 62 (13–84) | 28 (9.5–57.5) * | 0.157 |
Lt. Fr. | 49 (11–88) | 32 (4.5–56.5) * | 0.117 | |
Rt. In. | 6 (1–19) ** | 1.5 (1.00–26.75) ** | 0.493 | |
Lt. In. | 12 (2–32) ** | 6 (1.00–23.25) ** | 0.457 | |
Rt. It. | 50 (25–74) | 22.5 (7.25–52.5) ** | 0.035 | |
Lt. It. | 49 (19–83) | 16.5 (7.00–72.50) * | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onn-Margalit, L.; Weissbach, T.; Gafner, M.; Fried, S.; Wandel, A.; Ziv-Baran, T.; Katorza, E. An Association Between Fetal Subarachnoid Space and Various Pathologies Using MR Imaging. Diagnostics 2024, 14, 2535. https://doi.org/10.3390/diagnostics14222535
Onn-Margalit L, Weissbach T, Gafner M, Fried S, Wandel A, Ziv-Baran T, Katorza E. An Association Between Fetal Subarachnoid Space and Various Pathologies Using MR Imaging. Diagnostics. 2024; 14(22):2535. https://doi.org/10.3390/diagnostics14222535
Chicago/Turabian StyleOnn-Margalit, Lior, Tal Weissbach, Michal Gafner, Shalev Fried, Ayelet Wandel, Tomer Ziv-Baran, and Eldad Katorza. 2024. "An Association Between Fetal Subarachnoid Space and Various Pathologies Using MR Imaging" Diagnostics 14, no. 22: 2535. https://doi.org/10.3390/diagnostics14222535
APA StyleOnn-Margalit, L., Weissbach, T., Gafner, M., Fried, S., Wandel, A., Ziv-Baran, T., & Katorza, E. (2024). An Association Between Fetal Subarachnoid Space and Various Pathologies Using MR Imaging. Diagnostics, 14(22), 2535. https://doi.org/10.3390/diagnostics14222535