Diagnostic Efficacy of Bone SPECT Techniques in Differentiating Unilateral and Bilateral Condylar Hyperplasia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Bone SPECT Imaging
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Ke, J.; Long, X.; Meng, Q.; Deng, M.; Fang, W.; Li, J.; Cai, H.; Chen, S. Insulin-like growth factor-1 boosts the developing process of condylar hyperplasia by stimulating chondrocytes proliferation. Osteoarthr. Cartil. 2012, 20, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.A.A.A.J. (Ed.) Adaptations to Cellular Growth and Differentiation. In Robbins and Cotran Pathologic Basis of Disease; Elsevier: Philadelphia, PA, USA, 2015; p. 34. [Google Scholar]
- Nolte, J.W.; Alders, M.; Karssemakers, L.H.E.; Becking, A.G.; Hennekam, R.C.M. Unilateral condylar hyperplasia in hemifacial hyperplasia, is there genetic proof of overgrowth? Int. J. Oral. Maxillofac. Surg. 2020, 49, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Gateno, J.; Coppelson, K.B.; Kuang, T.; Poliak, C.D.; Xia, J.J. A better understanding of unilateral condylar hyperplasia of the mandible. J. Oral. Maxillofac. Surg. 2021, 79, 1122–1132. [Google Scholar] [CrossRef]
- Wolford, L.M.; Mehra, P.; Reiche-Fischel, O.; Morales-Ryan, C.A.; García-Morales, P. Efficacy of high condylectomy for management of condylar hyperplasia. Am. J. Orthod. Dentofac. Orthop. 2002, 121, 136–151. [Google Scholar] [CrossRef]
- Shintaku, W.H.; Venturin, J.S.; Langlais, R.P.; Clark, G.T. Imaging modalities to access bony tumors and hyperplasic reactions of the temporomandibular joint. J. Oral. Maxillofac. Surg. 2010, 68, 1911–1921. [Google Scholar] [CrossRef]
- Al-Okshi, A.; Lindh, C.; Salé, H.; Gunnarsson, M.; Rohlin, M. Effective dose of cone beam CT (CBCT) of the facial skeleton: A systematic review. Br. J. Radiol. 2015, 88, 20140658. [Google Scholar] [CrossRef]
- Higginson, J.A.; Bartram, A.C.; Banks, R.J.; Keith, D.J.W. Condylar hyperplasia: Current thinking. Br. J. Oral. Maxillofac. Surg. 2018, 56, 655–662. [Google Scholar] [CrossRef]
- Wen, B.; Shen, Y.; Wang, C.-Y. Clinical value of 99Tcm-MDP SPECT bone scintigraphy in the diagnosis of unilateral condylar hyperplasia. Sci. World J. 2014, 2014, 1–6. [Google Scholar]
- Hodder, S.C.; Rees, J.I.S.; Oliver, T.B.; Facey, P.E.; Sugar, A.W. SPECT bone scintigraphy in the diagnosis and management of mandibular condylar hyperplasia. Br. J. Oral. Maxillofac. Surg. 2000, 38, 87–93. [Google Scholar] [CrossRef]
- Ouyang, N.; Zhang, C.; Xu, F.; Chen, T.; Shen, G.; Si, J.; Yu, H. Evaluation of optimal single-photon emission computed tomography reference value and three-dimensional mandibular growth pattern in 54 Chinese unilateral condylar hyperplasia patients. Head Face Med. 2023, 19, 18. [Google Scholar] [CrossRef]
- Saridin, C.P.; Raijmakers, P.G.H.M.; Al Shamma, S.; Tuinzing, D.B.; Becking, A.G. Comparison of different analytical methods used for analyzing SPECT scans of patients with unilateral condylar hyperactivity. Int. J. Oral. Maxillofac. Surg. 2009, 38, 942–946. [Google Scholar] [CrossRef] [PubMed]
- Fahey, F.H.; Abramson, Z.R.; Padwa, B.L.; Zimmerman, R.E.; Zurakowski, D.; Nissenbaum, M.; Kaban, L.B.; Treves, S.T. Use of 99mTc-MDP SPECT for assessment of mandibular growth: Development of normal values. Eur. J. Nucl. Med. Mol. Imaging. 2010, 37, 1002–1010. [Google Scholar] [CrossRef]
- Anzola, F.L.K.; Moron, A.S.; Jaramillo, C.M.C.; Quijano, G.D.C.; Hernandez, H.N.; González, A.E.; Rodriguez, I.; Moreno, L.S.M.; Amador, P.E.; Orozco, F.M.; et al. Quantitative bone SPECT analysis of mandibular condyles in an asymptomatic population: An approach to normal reference values. Int. J. Oral. Maxillofac. Surg. 2021, 50, 733–739. [Google Scholar] [CrossRef]
- Liu, P.; Shi, J. Is single-photon emission computed tomography/computed tomography superior to single-photon emission computed tomography in assessing unilateral condylar hyperplasia? J. Oral. Maxillofac. Surg. 2019, 77, 1279.e1–1279.e7. [Google Scholar] [CrossRef] [PubMed]
- Karssemakers, L.H.E.; Nolte, J.W.; Rehmann, C.; Raijmakers, P.G.; Becking, A.G. Diagnostic performance of SPECT–CT imaging in unilateral condylar hyperplasia. Int. J. Oral. Maxillofac. Surg. 2023, 52, 199–204. [Google Scholar] [CrossRef]
- López, D.F.; Ríos Borrás, V.; Muñoz, J.M.; Cardenas-Perilla, R.; Almeida, L.E. SPECT/CT correlation in the diagnosis of unilateral condilar hyperplasia. Diagnostics 2021, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Nolte, J.W.; Schreurs, R.; Karssemakers, L.H.E.; Tuinzing, D.B.; Becking, A.G. Demographic features in Unilateral Condylar Hyperplasia: An overview of 309 asymmetric cases and presentation of an algorithm. J. Craniomaxillofac. Surg. 2018, 46, 1484–1492. [Google Scholar] [CrossRef]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Saridin, C.P.; Raijmakers, P.G.H.M.; Tuinzing, D.B.; Becking, A.G. Comparison of planar bone scintigraphy and single photon emission computed tomography in patients suspected of having unilateral condylar hyperactivity. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2008, 106, 426–432. [Google Scholar] [CrossRef]
- Raijmakers, P.G.; Karssemakers, L.H.E.; Tuinzing, D.B. Female predominance and effect of gender on unilateral condylar hyperplasia: A review and meta-analysis. J. Oral. Maxillofac. Surg. 2012, 70, e72-6. [Google Scholar] [CrossRef]
- Surendran, K.S.B.; Cobb, M.A.; Keith, D.J.W.; Banks, R.J.; Gannon, M. Choosing the best method to utilize single positron emission computed tomography (SPECT) scans in the management of unilateral condylar hyperplasia. Br. J. Oral. Maxillofac. Surg. 2020, 58, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Anzola, L.K.; Hernandez, N.; Rodriguez, L.F.; Sanguino, G.; Martinez, E.; Lopez, R.; Moreno, S.; Prill, R.; Mut, F.; Rasch, H.; et al. The role of SPECT/CT in painful, noninfected knees after knee arthroplasty: A systematic review and meta-analysis—a diagnostic test accuracy review. J. Orthop. Surg. Res. 2023, 18, 223. [Google Scholar] [CrossRef] [PubMed]
- Hylander, W.L. An experimental analysis of temporomandibular joint reaction force in macaques. Am. J. Phys. Anthropol. 1979, 51, 433–456. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.E.; Stocum, D.L. Part II: Temporomandibular joint (TMJ)—regeneration, degeneration, and adaptation. Curr. Osteoporos. Rep. 2018, 16, 369–379. [Google Scholar] [CrossRef]
- Agarwal, K.K.; Mukherjee, A.; St, A.; Tripathi, M.; Bal, C. Incremental value of single-photon emission computed tomography/computed tomography in the diagnosis of active condylar hyperplasia. Nucl. Med. Commun. 2017, 38, 29–34. [Google Scholar] [CrossRef]
- Liu, P.; Shi, J. Assessment of unilateral condylar hyperplasia with quantitative SPECT/CT. Heliyon 2024, 10, e23777. [Google Scholar] [CrossRef]
- Ahmed, R.; Singh, S.P.; Mittal, B.R.; Rattan, V.; Parghane, R.; Utreja, A. Role of fluorine-18 fluoride PET-CT scan in the assessment of unilateral condylar hyperplasia in faciomandibular asymmetry patients: A preliminary study. Nucl. Med. Commun. 2016, 37, 263–372. [Google Scholar] [CrossRef]
- Saridin, C.P.; Raijmakers, P.G.H.M.; Kloet, R.W.; Tuinzing, D.B.; Becking, A.G.; Lammertsma, A.A. No signs of metabolic hyperactivity in patients with unilateral condylar hyperactivity: An in vivo positron emission tomography study. J. Oral. Maxillofac. Surg. 2009, 67, 576–581. [Google Scholar] [CrossRef]
- Cook, G.J.R.; Fogelman, I. The role of positron emission tomography in skeletal disease. Semin. Nucl. Med. 2001, 31, 50–61. [Google Scholar] [CrossRef]
- Lo Giudice, A.; Ronsivalle, V.; Grippaudo, C.; Lucchese, A.; Muraglie, S.; Lagravère, M.O.; Isola, G. One step before 3D printing evaluation of imaging software accuracy for 3-dimensional analysis of the mandible: A comparative study using a surface-to-surface matching technique. Materials 2020, 13, 2798. [Google Scholar] [CrossRef]
Variables | Non Disease | Condylar Hyperplasia | Total |
---|---|---|---|
N = 48 | N = 91 | N = 139 | |
Sex | |||
Female | 26 (54.17%) | 50 (54.95%) | 76 (54.68%) |
Male | 22 (45.83%) | 41 (45.05%) | 63 (45.32%) |
Age (years) | 33.50 (22.00–49.50) | 18.00 (15.00–23.00) | 20.00 (16.00–32.00) |
Age group | |||
10 or younger | 9 (18.75%) | 58 (63.74%) | 67 (48.20%) |
10–20 years old | 9 (18.75%) | 26 (28.57%) | 35 (25.18%) |
20–30 years old | 11 (22.92%) | 5 (5.49%) | 16 (11.51%) |
30–40 years old | 7 (14.58%) | 1 (1.10%) | 8 (5.76%) |
50 or older | 12 (25.00%) | 1 (1.10%) | 13 (9.35%) |
Clinical status | |||
Bilateral Hyperplasia | 0 (0.00%) | 35 (38.46%) | 35 (25.18%) |
Unilatera Hyperplasial | 0 (0.00%) | 56 (61.54%) | 56 (40.29%) |
Non disease | 48 (100.00%) | 0 (0.00%) | 48 (34.53%) |
Variables | Non Disease | Condylar Hyperplasia | Total |
---|---|---|---|
N = 96 | N = 182 | N = 278 | |
Ratio condyle/clivus | 0.74 (0.67–0.84) | 1.26 (1.00–1.66) | 1.00 (0.77–1.36) |
Relative uptake | 0.06 (0.02–0.10) | 0.05 (0.02–0.15) | 0.05 (0.02–0.12) |
Relative Uptake | |||
Variables | Non Disease | Condylar Hyperplasia | Total |
N = 96 | N = 182 | N = 278 | |
Relative uptake | |||
dif < 10% (normal) | 70 (72.92%) | 108 (59.34%) | 178 (64.03%) |
dif ≥ 10% (abnormal) | 26 (27.08%) | 74 (40.66%) | 100 (35.97%) |
Results | Estimate | 95% CI | |
Sensitivity | 40.7% | (33.5–48.2) | |
Specificity | 72.9% | (62.9–81.5) | |
ROC area | 0.57 | (0.51–0.63) | |
Likelihood ratio (+) | 1.49 | (1.03–2.15) | |
Likelihood ratio (−) | 0.82 | (0.69–0.97) | |
Diagnostic Odds ratio | 1.83 | (1.07–3.12) | |
VPP | 74 | (64.3–82.3) | |
VPN | 39.3 | (32.1–46.9) | |
Ratio Condyle/Clivus | |||
Variables | Non Disease | Condylar Hyperplasia | Total |
N = 96 | N = 182 | N = 278 | |
Ratio condyle/clivus | |||
ratio < cut off (normal) | 74 (77.08%) | 18 (9.89%) | 92 (33.09%) |
ratio > cut off (abnormal) | 22 (22.92%) | 164 (90.11%) | 186 (66.91%) |
Results | Estimate | 95% CI | |
Sensitivity | 90.1% | (84.1–94) | |
Specificity | 77.1% | (67.4–85) | |
ROC area | 0.84 | (0.79–0.88) | |
Likelihood ratio (+) | 3.88 | (2.69–5.58) | |
Likelihood ratio (−) | 0.13 | (0.08–0.20) | |
Diagnostic Odds ratio | 29.4 | (15–57.7) | |
VPP | 88.2 | (82.6–92.4) | |
VPN | 80.4 | (70.9–88) |
Unilateral Hyperplasia | |||
Variables | Negative CT Result | Positive CT Result | Total |
Relative uptake | 0.12 (0.10–0.18) | 0.10 (0.04–0.20) | 0.12 (0.07–0.19) |
Relative uptake | |||
dif < 10% (normal) | 6 (24) | 13 (41.94) | 19 (33.93) |
dif ≥ 10% (anormal) | 19 (76) | 18 (58.06) | 37 (66.07) |
Ratio condyle/clivus a | 0.97 (0.77–1.10) | 1.19 (1.00–1.40) | 1.04 (0.85–1.27) |
Ratio condyle/clivus a | |||
ratio < cut off (normal) | 17 (30.36) | 1 (1.79%) | 18 (16.07%) |
ratio > cut off (abnormal) | 39 (69.64) | 55 (98.21%) | 94 (83.93%) |
Bilateral Hyperplasia | |||
Variables | Negative CT Result | Positive CT Result | Total |
Relative uptake | -- | 0.01 (0.01–0.02) | 0.01 (0.01–0.02) |
Relative uptake | |||
dif < 10% (normal) | -- | 35 (100.00%) | 35 (100.00%) |
dif ≥ 10% (abnormal) | -- | 0 (0.00%) | 0 (0.00%) |
Ratio condyle/clivus b | -- | 1.72 (1.36–1.98) | 1.72 (1.36–1.98) |
Ratio condyle/clivus b | |||
ratio < cut off (normal) | -- | 0 (0.00%) | 0 (0.00%) |
ratio > cut off (abnormal) | -- | 70 (100.00%) | 70 (100.00%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anzola, L.K.; Venegas, N.; Jaramillo, M.C.; Moreno, S.; Hinojosa, M.; Amador, E.; Orozco, M.; Mut, F. Diagnostic Efficacy of Bone SPECT Techniques in Differentiating Unilateral and Bilateral Condylar Hyperplasia. Diagnostics 2024, 14, 2548. https://doi.org/10.3390/diagnostics14222548
Anzola LK, Venegas N, Jaramillo MC, Moreno S, Hinojosa M, Amador E, Orozco M, Mut F. Diagnostic Efficacy of Bone SPECT Techniques in Differentiating Unilateral and Bilateral Condylar Hyperplasia. Diagnostics. 2024; 14(22):2548. https://doi.org/10.3390/diagnostics14222548
Chicago/Turabian StyleAnzola, Luz Kelly, Natalia Venegas, Maria Clara Jaramillo, Sergio Moreno, Mauricio Hinojosa, Enrique Amador, Martin Orozco, and Fernando Mut. 2024. "Diagnostic Efficacy of Bone SPECT Techniques in Differentiating Unilateral and Bilateral Condylar Hyperplasia" Diagnostics 14, no. 22: 2548. https://doi.org/10.3390/diagnostics14222548
APA StyleAnzola, L. K., Venegas, N., Jaramillo, M. C., Moreno, S., Hinojosa, M., Amador, E., Orozco, M., & Mut, F. (2024). Diagnostic Efficacy of Bone SPECT Techniques in Differentiating Unilateral and Bilateral Condylar Hyperplasia. Diagnostics, 14(22), 2548. https://doi.org/10.3390/diagnostics14222548