Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Brain Injury
4.2. Organ Dysfunction in the Course of TBI
5. Limitations
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aramouni, K.; Assaf, R.; Shaito, A.; Fardoun, M.; Al-Asmakh, M.; Sahebkar, A.; Eid, A.H. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J. Cell. Physiol. 2023, 238, 1951–1963. [Google Scholar] [CrossRef] [PubMed]
- Fesharaki-Zadeh, A. Oxidative Stress in Traumatic Brain Injury. Int. J. Mol. Sci. 2022, 23, 13000. [Google Scholar] [CrossRef] [PubMed]
- Grune, T.; Berger, M. Markers of oxidative stress in ICU clinical settings: Present and future. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Gasparovic, A.; Zarkovic, N.; Zarkovic, K.; Semen, K.; Kaminskyy, D.; Yelisyeyeva, O.; Bottari, S.P. Biomarkers of oxidative and nitro-oxidative stress: Conventional and novel approaches. Br. J. Pharmacol. 2017, 174, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Ursini, F.; Maiorino, M.; Forman, H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016, 8, 205–215. [Google Scholar] [CrossRef]
- Reed, E.; Case, A. Defining the nuanced nature of redox biology In post-traumatic stress dis order. Front. Physiol. 2023, 13, 1130861. [Google Scholar]
- Lichtenberg, D.; Pinchuk, I. Oxidative stress, the term and the concept. Biochem. Biophys. Res. Commun. 2015, 461, 441–444. [Google Scholar] [CrossRef]
- Cobley, J.; Margaritelis, N.; Chatzinikolaou, P.; Nikolaidis, M.; Davison, G. Ten “Cheat Codes” for Measuring Oxidative Stress in Humans. Antioxidants 2024, 13, 877. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Fransen, M.; Lismont, C. Peroxisomes and Cellular Oxidant/Antioxidant Balance: Protein Redox Modifications and Impact on Inter-organelle Communication. In Subcellular Biochemistry; Springer: Singapore, 2018; Volume 89, pp. 435–461. [Google Scholar] [CrossRef]
- Breitenbach, M.; Eckl, P. Introduction to Oxidative Stress in Biomedical and Biological Research. Biomolecules 2015, 5, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurements and clinical significance of biomarkers of oxidative stress in Humans. Oxidative Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef] [PubMed]
- Lemineur, T.; Deby-Dupont, G.; Preister, J. Biomarkers of oxidative stress in critically ill patients: What should be measured, when and how? Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Ottolenghi, S.; Sabbatini, G.; Brizzolari, A.; Samaja, M.; Chiumello, D. Hyperoxia and oxidative stress in anesthesia and critical care medicine. Minerva Anesthesiol. 2020, 86, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Prior, R.; Cao, G. In vivo Total antioxidant capacity: Comparison of different analytical methods. Free. Radic. Biol. Med. 1999, 11, 1173–1181. [Google Scholar] [CrossRef]
- Serafini, M.; Del Rio, D. Understanding the association between dieary antioxidants, redox status and disease: Is the Total antioxidant capacity the right tool? Redox Rep. 2004, 9, 145–152. [Google Scholar] [CrossRef]
- Ghiselli ASerafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free. Radic. Biol. Med. 2000, 11, 1106–1114. [Google Scholar] [CrossRef]
- Munteanu, I.; Apetrei, C. Analytical Methods used In determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Sahoo, D.; Wong, D.; Patani, A.; Paital, B.; Yadav, V.; Patel, A.; Jergens, A. Exploring the role of antioxidants In sepsis-associated oxidative stress: A comprehensive review. Front. Cell. Infect. Microbiol. 2024, 14, 1348713. [Google Scholar] [CrossRef]
- Bar-Or, D.; Bar-Or, R.; Rael, L.; Brody, E. Oxidative stress in severe acute illness. Redox Biol. 2015, 4, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Muballe, K.; Sewani-Rusike, C.; Longo-Mbenza, B.; Iputo, J. Predictors of recovery in moderate to severe traumatic brain injury. J. Neurosurg. 2019, 131, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- Kościuczuk, U.; Jakubów, P.; Tarnowska, K.; Rynkiewicz-Szczepańska, E. Opioid therapy and implications for oxidative balance: A clinical study of total oxidative capacity (TOC) and total antioxidative capacity (TAC). J. Clin. Med. 2024, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Kościuczuk, U.; Knapp, P.; Łotowska-Ćwiklewska, A. Opioid-induced immunosuppression and carcinogenesis promotion theories create the newest trend in acute and chronic pain pharmacotherapy. Clinics 2020, 75, e1554. [Google Scholar] [CrossRef] [PubMed]
- Oft, H.C.; Simon, D.W.; Sun, D. New insights into metabolism dysregulation after TBI. J. Neuroinflamm. 2024, 21, 184. [Google Scholar] [CrossRef]
- Fesharaki-Zadeh, A.; Datta, D. An overview of preclinical models of traumatic brain injury (TBI): Relevance to pathophysiological mechanisms. Front. Cell. Neurosci. 2024, 18, 1371213. [Google Scholar] [CrossRef]
- Thapa, K.; Khan, H.; Singh, T.G.; Kaur, A. Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. J. Mol. Neurosci. 2021, 71, 1725–1742. [Google Scholar] [CrossRef]
- Otero-Losada, M.; Capani, F. Oxidative Medicine in Brain Injury. Curr. Pharm. Des. 2019, 25, 4735–4736. [Google Scholar] [CrossRef]
- Fejfer, K.; Buczko, P.; Niczyporuk, M.; Ładny, J.; Hady, R.H.; Knas, M.; Waszkiel, D.; Klimiuk, A.; Zalewska, A.; Maciejczyk, M. Oxidative modification of biomolecules in the nonstimulated and stimulated saliva of patients with morbid obesity treated with bariatric surgery. Biomed Res. Int. 2017, 2017, 4923796. [Google Scholar] [CrossRef]
- Wang, J.; Schipper, H.; Velly, A.; Mohit, S.; Gornitsky, M. Salivary biomarkers od oxidative stress: A critical review. Free. Radic. Biol. Med. 2015, 85, 95–104. [Google Scholar] [CrossRef]
- Cizmarova, B.; Tomeckova, V.; Hubkova, B.; Hurajtova, A.; Ohlasova, J.; Birkova, A. Salivary Redox homeostasis in human health anddisease. Int. J. Mol. Sci. 2022, 23, 10076. [Google Scholar] [CrossRef] [PubMed]
- Quillinan, N.; Herson, P.S.; Traystman, R.J. Neuropathophysiology of Brain Injury. Anesthesiol. Clin. 2016, 34, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Eastman, C.L.; D’Ambrosio, R.; Ganesh, T. Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology 2020, 172, 107907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Khan, S.; Liu, Y.; Wu, G.; Yong, V.W.; Xue, M. Oxidative Stress Following Intracerebral Hemorrhage: From Molecular Mechanisms to Therapeutic Targets. Front. Immunol. 2022, 13, 847246. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, A.; Langley, E.F.; Weber, S.; Adkins, D.; Tomlinson, S. Identifying the Role of Complement in Triggering Neuroinflammation after Traumatic Brain Injury. J. Neurosci. 2018, 38, 2519–2532. [Google Scholar] [CrossRef]
- El-Menyar, A.; Asim, M.; Latifi, R.; Bangdiwala, S.; Al-Thani, H. Predictive value of positive high sensitivity troponin T in intubated traumatic brain injury patients. J. Neurosurg. 2018, 129, 1541–1549. [Google Scholar] [CrossRef]
- El-Menyar, A.; Goyal, A.; Latifi, R.; Al-Thani, H.; Frishman, W. Brain-Heart Interactions In Traumatic Brain Injury. Cardiol. Rev. 2017, 25, 279–288. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, T.; Yuan, X.; Shen, Y.; Huang, Z. Predictive value of the Trauma Rating Index In age, Glasgow Coma Scale, Respiratory rate and systoli blond pressure score (TRIAGES) and Revised Trauma Score (RTS) for the short-term mortality of patients with isolated traumatic brain injury. Am. J. Emerg. Med. 2023, 71, 175–181. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, T.; Yuan, X.; Yang, Y.; Shen, Y.; Huang, Z. Predictive value of the Trauma Rating Index In age, Glasgow Coma Scale, Respiratory rate and systoli blond pressure score (TRIAGES) for the short-term mortality of older patients with isolated traumatic brain injury: A retrospective kohort study. BMJ Open 2024, 14, e082770. [Google Scholar] [CrossRef]
- Dony, C.A.; Illipparambil, L.C.; Maeda, T.; Mroczek, S.K.; Rovitelli, A.; Wexler, O.; Malnoske, M.; Bice, T.; Fe, A.Z.; Storms, C.R.; et al. Plasma Nitric Oxide Consumption Is Elevated and Associated with Adverse Outcomes in Critically Ill Patients. Crit. Care Med. 2023, 51, 1706–1715. [Google Scholar] [CrossRef]
- Hohl, A.; Gullo, J.; Silva, C.; Bertotti, M.; Felisberto, F.; Nunes, J.; de Souza, B.; Petronilho, F.; Soares, F.; Prediger, R.; et al. Plasma levels of oxidative stress biomarkers and hospital mortality in severe head injury: A multivariate analysis. J. Crit. Care 2012, 27, 523.e11–523.e19. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.; Perez-Cejas, A.; Abreu-Gonzalez, P.; Ramos, L.; Argueso, M.; Caceres, J.; Sole-Violan, J.; Jimenez, A. Association between Total antioxidant capacity and mortality in ischemic stroke patients. Ann. Intensive Care 2016, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, I.M.; Cojocaru, M.; Sapira, V.; Ionescu, A. Evaluation of oxidative stress in patients with acute ischemic stroke. Rom. J. Intern. Med. 2013, 51, 97–106. [Google Scholar] [PubMed]
- Krenzlin, H.; Wesp, D.; Schmitt, J.; Frenz Ch Kurz, E.; Masomi-Bornwasser, J.; Lotz, J.; Ringer, F.; Kerz, T.; Keric, N. Decreased Superoxide Dismutase Concentrations (SOD) in Plasma and CSF and Increased Circulating Total Antioxidant Capacity (TAC) Are Associated with Unfavorable Neurological Outcome after Aneurysmal Subarachnoid Hemorrhage. J. Clin. Med. 2021, 10, 1188. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, M.; Jurajda, M.; Duris, K. The role of oxidative stress in early brain injury after subarachnoid hemorrhage. Oxidative Med. Cell. Longev. 2020, 2020, 8877116. [Google Scholar] [CrossRef]
- Lorente, L.; Martín, M.M.; Pérez-Cejas, A.; González-Rivero, A.F.; Abreu-González, P.; Ramos, L.; Argueso, M.; Solé-Violán, J.; Cáceres, J.J.; Jiménez, A.; et al. Traumatic Brain Injury Patients Mortality and Serum Total Antioxidant Capacity. Brain Sci. 2020, 10, 110. [Google Scholar] [CrossRef]
- Gruhl, S.; Su, J.; Chua, W.; Tay, K. Takotsubo cardiomyopathy in post-traumatic brain injury; a systematic review of diagnosis and management. Clin. Neurol. Neurosurg. 2022, 213, 107119. [Google Scholar] [CrossRef]
- Pinto, S.; Thakur, B.; Kumar, R.; Rabinowitz, A.; Zafonte, R.; Walker, W.; Ding, K.; Driver, S.; Venkatesan, U.; Moralez, G.; et al. Prevalence of cardiovascular conditions after Traumatic Brain Injury: A comparison between the traumatic brain injury model systems and the national health and nutrition examination survey. J. Am. Hear. Assoc. 2024, 13, e033673. [Google Scholar] [CrossRef]
- Münzel, T.; Templin, C.; Cammann, V.L.; Hahad, O. Takotsubo Syndrome: Impact of endothelial dysfunction and oxidative stress. Free. Radic. Biol. Med. 2021, 169, 216–223. [Google Scholar] [CrossRef]
- Huang, C.; Yang, C.; Chang, C. Traumatic brain injury and risk of heart failure and coronary heart disease: A Nationwide population-based kohort study. PLoS ONE 2023, 18, e0295416. [Google Scholar] [CrossRef]
- Li, M.; Wang, R.; Fang, Q.; He, Y.; Shi, Y.; Ge, S.; Ma, R.; Qu, Y. Association between traumatic Subarachnoid hemorrhage and acute respiratory failure in moderate –to-severe traumatic brain injury patients. J. Clin. Med. 2022, 11, 3995. [Google Scholar] [CrossRef] [PubMed]
- Rincon, F.; Ghosh, S.; Dey, S.; Maltenfort, M.; Vibbert, M.; Urtecho, J.; McBride, W.; Moussouttas, M.; Bell, R.; Ratliff, J.; et al. Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the Unites States. Neurosurg 2012, 71, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Ochs-Balcom, H.; Grant, B.; Muti, P.; Sempos, C.; Freudenheim, J.; Browne, R.; Trevisan, M.; Iacoviello, L.; Cassano, P.; Schunemann, H. Oxidative stress and pulmonary function in the general population. Am. J. Epidemiol. 2005, 162, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Beqiri, E.; Smielewski, P.; Guerin, C.; Czosnyka, M.; Robba, C.; Bjertnaes, L.; Frisvold, S. Neurological and respiratory effects of lung protective ventilation in acute brain injury patients without lung injury: Barin vent, a single Centre randomized interventional study. Crit. Care 2023, 27, 115. [Google Scholar] [CrossRef]
- Duan, X.; Wen, Z.; Shen, H.; Shen, M.; Chen, G. Intracerebral Hemorrhage, oxidative stress, and antioxidant therapy. Oxidative Med. Cell. Longev. 2016, 2016, 1203285. [Google Scholar] [CrossRef]
- Abdul-Muneer, P.M.; Chandra, N.; Haorah, J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol. Neurobiol. 2015, 51, 966–979. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Peng, C.; Bian, C.; Ocak, P.E.; Zhang, J.H.; Yang, Y.; Zhou, D.; Chen, G.; Luo, Y. Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxidants Redox Signal. 2022, 37, 115–134. [Google Scholar] [CrossRef]
- Jamjoom, A.; Rhodes, J.; Andrews, P.; Grant, S. The synapse in traumatic brain injury. Brain 2021, 144, 18–31. [Google Scholar] [CrossRef]
- Hakiminia, B.; Alikiaii, B.; Khorvash, F.; Mousavi, S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam. Clin. Pharmacol. 2022, 36, 612–662. [Google Scholar] [CrossRef]
- Kaur, P.; Sharma, S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr. Neuropharmacol. 2018, 16, 1224–1238. [Google Scholar] [CrossRef]
- Lech, M.; Ostrowska, L.; Waszkiewicz, N.; Kułak-Bejda, A.; Maciejczyk, M.; Witczak-Sawczuk, K.; Zalewska, A.; Dańkowska, K.; Żendzian-Piotrowska, M. Oxidative stress parameters in women and men with suicidal thoughts and following a suicide attempt. Front. Psychiatry 2024, 15, 1382303. [Google Scholar] [CrossRef] [PubMed]
- Klimiuk, A.; Zalewska, A.; Sawicki, R.; Knapp, M.; Maciejczyk, M. Salivary Oxidative Stress Increases with the Progression of Chronic Heart Failure. J. Clin. Med. 2020, 9, 769. [Google Scholar] [CrossRef] [PubMed]
- Benito, S.; Unceta, N.; Maciejczyk, M.; Sanchez-Ortega, A.; Taranta-Janusz, K.; Szulimowska, J.; Zalewska, A.; Andrade, F.; Gomez-Caballero, A.; Dubiela, P.; et al. Revealing novel biomarkers for diagnosing chronic kidney disease in pediatric patients. Sci. Rep. 2024, 14, 11549. [Google Scholar] [CrossRef] [PubMed]
- Supruniuk, E.; Baczewska, M.; Żebrowska, E.; Maciejczyk, M.; Lauko, K.; Dajnowicz-Brzezik, P.; Milewska, P.; Knapp, P.; Zalewska, A.; Chabowski, A. Redox biomarkers and matrix remodeling molecules in ovarian cancer. Antioxidants 2024, 13, 200. [Google Scholar] [CrossRef]
- Dorf, J.; Zaręba, K.; Pryczynicz, A.; Matowicka-Karna, J.; Kędra, B.; Żukowski, P.; Zalewska, A.; Maciejczyk, M. Diagnostic significance and utility of circulating redox biomarkers in patients with gastric cancer-preliminary study. Ann. Med. 2023, 55, 2241472. [Google Scholar] [CrossRef]
- Izumino, H.; Tajima, G.; Tasaki, O.; Inokuma, T.; Hatachi, G.; Takagi, K.; Miyazaki, T.; Matsumoto, K.; Tsuchiya, T.; Sato, S.; et al. Balance of the prooxidant and antioxidant system is associated with mortality in critically ill patients. J. Clin. Biochem. Nutr. 2023, 72, 157–164. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Taranta-Janusz, K.; Wasilewska, A.; Kossakowska, A.; Zalewska, A. A case-control study of salivary redox homeostasis in hypertensive children. Can salivary Uric acid be a marker of hypertension? J. Clin. Med. 2020, 9, 837. [Google Scholar] [CrossRef]
- Peluso, I.; Raguzzini, A. Salivary and Urinary Total Antioxidant Capacity as Biomarkers of Oxidative Stress in Humans. Pathol. Res. Int. 2016, 2016, 5480267. [Google Scholar] [CrossRef]
- Kościuczuk, U.; Jakubów, P.; Czyżewska, J.; Knapp, P.; Rynkiewicz-Szczepańska, E. Plasma brain-derived neurotrophic factor and opioid therapy: Results of pilot cross-sectional study. Clin. Med. Res. 2022, 20, 195–203. [Google Scholar] [CrossRef]
- Aisa-Alvarez, A.; Perez-Torres, I.; Guarner-Lans, V.; Manzano-Pech, L.; Cruz-Soto, R.; Marquez-Velasco, R.; Cesarez-Alvarado, S.; Franco-Granillo, J.; Ninez-Martinez, M.; Soto, E. Randomized Clinical Trial of antioxidant therapy patients with septic shock and organ dysfunction in the ICU: SOFA score reduction by improvement of the enzymatic and non-enzymatic antioxidant system. Cells 2023, 12, 1330. [Google Scholar] [CrossRef]
- Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative Stress: Major Threat in Traumatic Brain Injury. CNS Neurol. Disord. Drug Targets 2018, 17, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, A.; Egea-Guerrero, J.J.; Murillo-Cabezas, F.; Carrillo-Vico, A. Oxidative stress in traumatic brain injury. Curr. Med. Chem. 2014, 21, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Servia, L.; Serrano, J.; Pampiona, R.; Badia, M.; Montserrat, N.; Portero-Otin, M.; Trujliano, J. Location-dependent effects of trauma on oxidative stress in humans. PLoS ONE 2018, 13, e0205519. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.; Almeida, T.; Gonzales, P.; Ramos, L.; Argueso, M.; Riano-Ruiz, M.; Sole-Violan, J.; Jimenez, A. Total antioxidant capacity is associated with mortality of patients with severe traumatic brain injury. BMC Neurol. 2015, 15, 115. [Google Scholar] [CrossRef] [PubMed]
- Bjugstad, K.; Rael, L.; Levy, S.; Carrick, M.; Mains, C.; Slone, D.; Bar-Or, D. Oxidation-Reduction potential as a biomarker for severity and acute outcome in Traumatic Brain Injury. Oxidative Med. Cell. Longev. 2016, 2016, 6974257. [Google Scholar] [CrossRef]
- Robateau, Z.; Lin, V.; Wahlster, S. Acute Respiratory Failure in severe acute brain injury. Crit. Care Clin. 2024, 40, 367–390. [Google Scholar] [CrossRef]
- Matin, N.; Sarhai, K.; Crooks, C.; Lele, A.; Srinivasan, V.; Johnson, N.; Town, J.; Wahlster, S. Brain-Lung cross talk: Management of concomitant severe acute brain injury and acute respiratory distress syndrome. Curr. Treat Options Neurol. 2022, 24, 383–408. [Google Scholar] [CrossRef]
- Khalid, F.; Yang, G.; McGuire, J.; Robson, M.; Foreman, B.; Ngwenya, L.; Lorenz, J. Autonomic dysfunction following traumatic brain injury: Translational insights. Neurosurg. Focus 2019, 47, E8. [Google Scholar] [CrossRef]
- Muehlschlegel, S.; Rajajee, V.; Wartenberg, K.; Alexander, S.; Busl, K.; Creutzfeldt, C.; Fontaine, G.; Hocker, S.; Hwang, D.; Kim, K.; et al. Guidlines for neuroprognostication in critically ill adults with moderate-severe traumatic brain injury. Neurocrit. Care 2024, 40, 448–476. [Google Scholar] [CrossRef]
- Hwang, D.; Kim, K.; Muehlschlegel, S.; Wartenberg, K.; Rajajee, V.; Alexander, S.; Busl, K.; Creutzfeldt, C.; Fontaine, G.; Hocker, S.; et al. Guidelines for neuroprognistication in critically ill adults with intracebral hemorrhage. Neurocrit. Care 2024, 40, 395–414. [Google Scholar] [CrossRef]
- Robba, C.; Zanier, E.; Soto, C.; Park, S.; Sonneville, R.; Helbok, R.; Sarwal, A.; Newcombe, V.; der Jagt, M.; Gunst, J.; et al. Mastering the brain in critical conditions: An update. Intensive Care Med. Exp. 2024, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Mihaljevic, O.; Zivancevic-Simonovic, S.; Jovanovic, D.; Drakulic, S.; Vukajlovic, J.; Markovic, A.; Pirkovic, M.; Srejovic, I.; Jakovljevic, V.; Milosevic-Djordevic, O. Oxidative stress and DNA damage in critically ill patients with sepsis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2023, 889, 503655. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.; Almeida, T.; Abreu-Gonzales, P.; Ferreres, J.; Sole-Violan, J.; Labarta, L.; Diaz, C.; Jimenez, A. Association between serum Total antioxidant capa city and mortality in severe septic patients. J. Crit. Care 2015, 30, 217.e7–217.e12. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, Y.; Shih, F.; Chang, H.; Su, Y.; Cheng, B.; Su, C.; Tsai, N.; Chang, Y.; Kwan, A.; et al. The role of serial oxidative stress levels In acute traumatic brain injury and as predictors of outcome. World Neurosurg. 2016, 87, 463–470. [Google Scholar] [CrossRef]
- Visser, K.; Der Horn, H.; Bourgonje, A.; Jacobs, B.; de Borst, M.; Vos, P.; Bulthuis, M.; van Goor, H.; der Naalt, J. Acute serum free thiols: A potentially modifiable biomarker of oxidative stress following traumatic brain injury. J. Neurol. 2022, 269, 5883–5892. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Bielas, M.; Zalewska, A.; Gerreth, K. Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: From Basic Research to Clinical Practice. Oxidative Med. Cell. Longev. 2021, 2021, 5545330. [Google Scholar] [CrossRef]
- De Almeida, A.; de Oliviera, J.; Pontes, L.; de Souza, J.; Goncavales, T.; Dantas, S.; Feitosa, M.; Silva, A.; de Medeiros, I. ROS: Basic concepts, sources, cellular signaling, and its implications in aging pathways. Oxidative Med. Cell. Longevoty 2022, 2022, 1225578. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: Koncept and some practical aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Aranda-Rivera, A.; Cruz-Gregorio, A.; Arancibia-Hernandez, Y.; Hernandez-Cruz, E.; Perdraza-Chaverri, J. RONS and Oxidative Stress: An overview of basic concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Silvestrini, A.; Meuci, E.; Ricerca, B.; Mancini, A. Total antioxidant CAPA city: Biochemical aspects and clinical. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef]
Exclusion Criteria | Inclusion Criteria |
---|---|
|
|
Authors | Publication | Type of Study and Sample Size | Methods, End-Point | Results |
---|---|---|---|---|
Muballe et al. [23] | Journal of Neurosurgery 2019 | prospective study n = 64 | serum and CSF TAC; FRAP day 1–7–14, neurological recovery | TAC in the CSF above 300 µmol/L was accounted for 95.5% of good neurological prognoses, with a mean hospitalization time of 34 days. Serum TAC ≥ 450 µmol/mL accounted for 72% sensitivity, 52% specificity, and AUC 0.662, TAC in the CSF ≥ 300 µmol/L equated to 70% sensitivity, 50% specificity, and AUC 0.577. |
Servia et al. [74] | PlosOne 2018 | prospective cohort study n = 66 | plasma TAC; comparing TAC based on FRAP and ABTS, at days 1–7 correlation with clinical scales | TAC values on day 1 based on FRAP were significantly lower in TBI—919 µM TE; on day 7, there was a TAC increase for the TBI. There were no significant differences in the TAC values between the groups on either day 1 or day 7 using the ABTS method. A positive correlation between uric acid and TAC using the FRAP method and a negative correlation between bilirubins and TAC using the ABTS method were noted. A negative correlation of the APACHE II scores with TAC and a positive correlation of the GCS classification with TAC according to FRAP. |
Lorente et al. [47] | Brain Science 2020 | multicenter, observational, prospective study n = 124 | serum TAC; ABTS; day 1–4–8; 30-day mortality | TAC was significantly higher in the nonsurvivor group on day 1, 5.60 mmol/L; on day 4, 4.43 mmol/L; and on day 8, 3.29 mmol/L. On day 30 after a TBI, the median TAC was 5.60 mmol/L. The 30-day mortality rates on day 1 corresponded to a sensitivity of 59%, a specificity of 93%, an NPV of 86%, and a PPV of 77%; on day 4, a sensitivity of 82%, a specificity of 76%, an NPV of 96%, and a PPV of 39%; on day 8, a sensitivity of 69%, a specificity of 93%, an NPV of 95%, and a PPV of 60% |
Lorente et al. [75] | BMC Neurology 2015 | multicenter, observational, prospective study n = 100 | serum TAC; ABTS; 30-day mortality; correlation with clinical scales | TAC values in patients with brain injuries were significantly higher in nonsurvivors (5.09 nmol/mL) than in survivors (2.31 nmol/mL). Serum TAC > 2.59 nmol/mL is an indicator of 30-day mortality, AUC of 0.83, a sensitivity of 78%, a specificity of 63%, a PPV of 44%, and an NPV of 66%. TAC is compared with mortality parameters based on GCS scores, age, CT-based radiological signs, and pupil reactivity. |
Bjugstad et al. [76] | Oxidative Medicine and Cellular Longevity 2016 | retrospective cohort study n = 132 | plasma oxidation–reduction potential (ORP); RedoxSys; day 1–2–7 weeks 2, 3, 4 surviving and severity of acute brain injury | Predicting acute outcomes—ORP ≥ 7.25 µC on day 4, 100% specificity, a positive predictive value of 97%, and AUC 0.87. A better predictor of mortality than clinical scales of injury ISS, AIS, and GSC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rynkiewicz-Szczepanska, E.; Kosciuczuk, U.; Maciejczyk, M. Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure—A Systematic Review. Diagnostics 2024, 14, 2561. https://doi.org/10.3390/diagnostics14222561
Rynkiewicz-Szczepanska E, Kosciuczuk U, Maciejczyk M. Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure—A Systematic Review. Diagnostics. 2024; 14(22):2561. https://doi.org/10.3390/diagnostics14222561
Chicago/Turabian StyleRynkiewicz-Szczepanska, Ewa, Urszula Kosciuczuk, and Mateusz Maciejczyk. 2024. "Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure—A Systematic Review" Diagnostics 14, no. 22: 2561. https://doi.org/10.3390/diagnostics14222561
APA StyleRynkiewicz-Szczepanska, E., Kosciuczuk, U., & Maciejczyk, M. (2024). Total Antioxidant Status in Critically Ill Patients with Traumatic Brain Injury and Secondary Organ Failure—A Systematic Review. Diagnostics, 14(22), 2561. https://doi.org/10.3390/diagnostics14222561