Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Search Strategy Employed to Identify Relevant Studies
2.4. Data Extraction and Quality Assessment
2.5. Screening and Study Selection
3. Results
3.1. Characteristics of Included Studies
3.2. Study Outcomes
3.3. Quality Assessment of Included Studies
4. Discussion
Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
FirstAuthor (Surname) | Journal | Year |
---|---|---|
Study Design | ||
Sample Size | ||
Population Characteristics | ||
Intervention/Exposure | ||
Comparator | ||
Outcome (s) | ||
Effect Size/Results | Quality/Risk of Bias | Comments |
References
- Leslie, S.W.; Soon-Sutton, T.L.; Skelton, W.P. Prostate Cancer. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470550/ (accessed on 3 April 2024).
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- Alpert, P.F. New Evidence for the Benefit of Prostate-specific Antigen Screening: Data From 400,887 Kaiser Permanente Patients. Urology 2018, 118, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Serdà-Ferrer, B.C.; Sanvisens, A.; Fuentes-Raspall, R.; Puigdemont, M.; Farré, X.; Vidal-Vila, A.; Rispau-Pagès, M.; Baltasar-Bagué, A.; Marcos-Gragera, R. Significantly reduced incidence and improved survival from prostate cancer over 25 years. BMC Public Health 2023, 23, 2552. [Google Scholar] [CrossRef] [PubMed]
- Khalid, T.; Yousuf, M.A.; Iqbal, M.T.; Memon, S.M.; Abdullah, A.; Faridi, N.; Irfan, M. Incidental finding of prostate cancer in Transurethral Resection of Prostate (TURP) specimens: A retrospective analysis from a Tertiary Care Hospital in Pakistan. Pan Afr. Med. J. 2021, 39, 20. [Google Scholar] [CrossRef]
- Quon, J.S.; Moosavi, B.; Khanna, M.; Flood, T.A.; Lim, C.S.; Schieda, N. False positive and false negative diagnoses of prostate cancer at multi-parametric prostate MRI in active surveillance. Insights Imaging 2015, 6, 449–463. [Google Scholar] [CrossRef]
- Israël, B.; van der Leest, M.; Sedelaar, M.; Padhani, A.R.; Zámecnik, P.; Barentsz, J.O. Multiparametric Magnetic Resonance Imaging for the Detection of Clinically Significant Prostate Cancer: What Urologists Need to Know. Eur. Urol. 2020, 77, 469–480. [Google Scholar] [CrossRef]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef]
- van der Leest, M.; Cornel, E.; Israel, B.; Hendriks, R.; Padhani, A.R.; Hoogenboom, M.; Zamecnik, P.; Bakker, D.; Setiasti, A.Y.; Veltman, J.; et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate MRI with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: A large prospective multicenter clinical study. Eur. Urol. 2019, 75, 570–578. [Google Scholar]
- Zhu, M.; Liang, Z.; Feng, T.; Mai, Z.; Jin, S.; Wu, L.; Zhou, H.; Chen, Y.; Yan, W. Up-to-Date Imaging and Diagnostic Techniques for Prostate Cancer: A Literature Review. Diagnostics 2023, 13, 2283. [Google Scholar] [CrossRef]
- Harmon, S.A.; Tuncer, S.; Sanford, T.; Choyke, P.L.; Turkbey, B. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagn. Interv. Radiol. 2019, 25, 183–188. [Google Scholar] [CrossRef]
- Van Booven, D.J.; Kuchakulla, M.; Pai, R.; Frech, F.S.; Ramasahayam, R.; Reddy, P.; Parmar, M.; Ramasamy, R.; Arora, H. A Systematic Review of Artificial Intelligence in Prostate Cancer. Res. Rep. Urol. 2021, 13, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Shmueli, L.; Davidovitch, N.; Pliskin, J.S.; Balicer, R.D.; Hekselman, I.; Greenfield, G. Seeking a second medical opinion: Composition, reasons and perceived outcomes in Israel. Isr. J. Health Policy Res. 2017, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Geller, B.M.; Frederick, P.D.M.; Knezevich, S.R.; Lott, J.P.M.; Nelson, H.D.; Titus, L.J.P.; Carney, P.A.; Tosteson, A.N.S.; Onega, T.L.P.; Barnhill, R.L.M.; et al. Pathologists’ Use of Second Opinions in Interpretation of Melanocytic Cutaneous Lesions: Policies, Practices, and Perceptions. Dermatol. Surg. 2018, 44, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, G.; Shmueli, L.; Harvey, A.; Quezada-Yamamoto, H.; Davidovitch, N.; Pliskin, J.S.; Rawaf, S.; Majeed, A.; Hayhoe, B. Patient-initiated second medical consultations-patient characteristics and motivating factors, impact on care and satisfaction: A systematic review. BMJ Open 2021, 11, e044033. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, C. Seeking a Second Medical Opinion—Will It Make a Difference? HealthMatch. 2022. Available online: https://healthmatch.io/blog/seeking-a-second-medical-opinion-will-it-make-a-difference (accessed on 3 April 2024).
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Belue, M.J.; Turkbey, B. Tasks for artificial intelligence in prostate MRI. Eur. Radiol. Exp. 2022, 6, 33. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Khandwala, Y.S.; Vesal, S.; Shao, W.; Yang, Q.; Soerensen, S.J.; Fan, R.E.; Ghanouni, P.; Kunder, C.A.; Brooks, J.D.; et al. A review of artificial intelligence in prostate cancer detection on imaging. Ther. Adv. Urol. 2022, 14, 17562872221128791. [Google Scholar] [CrossRef]
- Twilt, J.J.; van Leeuwen, K.G.; Huisman, H.J.; Fütterer, J.J.; de Rooij, M. Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review. Diagnostics 2021, 11, 959. [Google Scholar] [CrossRef]
- Ahn, E.; Kang, H. Introduction to systematic review and meta-analysis. Korean J. Anesthesiol. 2018, 71, 103–112. [Google Scholar] [CrossRef]
- Rosen, D.; Reiter, N.L.; Vogel, B.; Prill, R. The use of systematic reviews for conducting new studies in physiotherapy research: A meta-research study comparing author guidelines of physiotherapy-related journals. Syst. Rev. 2024, 13, 28. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- İlhan, B.; Gürses, B.O.; Güneri, P. Addressing Inequalities in Science: The Role of Language Learning Models in Bridging the Gap. Int. Dent. J. 2024, 74, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Kaizik, M.A.; Garcia, A.N.; Hancock, M.J.; Herbert, R.D. Measurement properties of quality assessment tools for studies of diagnostic accuracy. Braz. J. Phys. Ther. 2020, 24, 177–184. [Google Scholar] [CrossRef]
- Liu, J.; Santucci, J.; Woon, D.T.S.; Catterwell, R.; Perera, M.; Murphy, D.G.; Lawrentschuk, N. A Systematic Review on Prostate-Specific Membrane Antigen Positron Emission Tomography (PSMA PET) Evaluating Localized Low- to Intermediate-Risk Prostate Cancer: A Tool to Improve Risk Stratification for Active Surveillance? Life 2024, 14, 76. [Google Scholar] [CrossRef]
- Ström, P.; Kartasalo, K.; Olsson, H.; Solorzano, L.; Delahunt, B.; Berney, D.M.; Bostwick, D.G.; Evans, A.J.; Grignon, D.J.; Humphrey, P.A.; et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: A population-based, diagnostic study. Lancet Oncol. 2020, 21, 222–232. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, Y.J.; Moon, M.H.; Kim, K.G.; Park, J.H.; Sung, C.K.; Jeong, H.; Son, H. Transitional zone prostate cancer: Performance of texture-based machine learning and image-based deep learning. Medicine 2023, 102, e35039. [Google Scholar] [CrossRef]
- Yu, R.; Jiang, K.-W.; Bao, J.; Hou, Y.; Yi, Y.; Wu, D.; Song, Y.; Hu, C.-H.; Yang, G.; Zhang, Y.-D. PI-RADSAI: Introducing a new human-in-the-loop AI model for prostate cancer diagnosis based on MRI. Br. J. Cancer 2023, 128, 1019–1029. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Saha, A.; Brand, P.; Slootweg, I.; de Rooij, M.; Huisman, H. Deep learning-assisted prostate cancer detection on bi-parametric MRI: Minimum training data size requirements and effect of prior knowledge. Eur. Radiol. 2022, 32, 2224–2234. [Google Scholar] [CrossRef]
- Salman, M.E.; Çakar, G.Ç.; Azimjonov, J.; Kösem, M.; Cedi̇moğlu, İ.H. Automated prostate cancer grading and diagnosis system using deep learning-based Yolo object detection algorithm. Expert Syst. Appl. 2022, 201, 117148. [Google Scholar] [CrossRef]
- Hectors, S.J.; Chen, C.; Chen, J.; Wang, J.; Gordon, S.; Yu, M.; Awamlh, B.A.H.A.; Sabuncu, M.R.; Margolis, D.J.; Hu, J.C. Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions. J. Magn. Reson. Imaging 2021, 54, 1466–1473. [Google Scholar] [CrossRef]
- Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Brendel, M.; Barnes, J.; Ricketts, C.; et al. A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion. J. Magn. Reson. Imaging 2021, 54, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, A.; Phillips, L.R.; Moore, A.; Kumaran, S.D.; Sampath, K.K.; Migliorini, F.; Maffulli, N.; Ranganadhababu, B.N.; Hegazy, F.; Bemden, A.B.-V. Patient and public involvement in research: A review of practical resources for young investigators. BMC Rheumatol. 2023, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Koay, E.J.; Borowsky, A.D.; De Marzo, A.M.; Ghosh, S.; Wagner, P.D.; Kramer, B.S. Cancer overdiagnosis: A biological challenge and clinical dilemma. Nat. Rev. Cancer 2019, 19, 349–358. [Google Scholar] [CrossRef]
- Giganti, F.; Kasivisvanathan, V.; Kirkham, A.; Punwani, S.; Emberton, M.; Moore, C.M.; Allen, C. Prostate MRI quality: A critical review of the last 5 years and the role of the PI-QUAL score. Br. J. Radiol. 2022, 95, 20210415. [Google Scholar] [CrossRef]
- He, M.; Cao, Y.; Chi, C.; Yang, X.; Ramin, R.; Wang, S.; Yang, G.; Mukhtorov, O.; Zhang, L.; Kazantsev, A.; et al. Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: A review on the current status and perspectives. Front. Oncol. 2023, 13, 1189370. [Google Scholar] [CrossRef]
- Najjar, R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef]
- Pepe, P.; Candiano, G.; Pepe, L.; Pennisi, M.; Fraggetta, F. mpMRI PI-RADS score 3 lesions diagnosed by reference vs affiliated radiological centers: Our experience in 950 cases. Arch. Ital. Urol. Androl. 2021, 93, 139–142. [Google Scholar] [CrossRef]
- López, D.M.; Rico-Olarte, C.; Blobel, B.; Hullin, C. Challenges and solutions for transforming health ecosystems in low- and middle-income countries through artificial intelligence. Front. Med. 2022, 9, 958097. [Google Scholar] [CrossRef]
- Talaat, F.M.; El-Sappagh, S.; Alnowaiser, K.; Hassan, E. Improved prostate cancer diagnosis using a modified ResNet50-based deep learning architecture. BMC Med. Inform. Decis. Mak. 2024, 24, 23. [Google Scholar] [CrossRef]
- Jiang, K.; Song, Y.; Hou, Y.; Zhi, R.; Zhang, J.; Bao, M.; Li, H.; Yan, X.; Xi, W.; Zhang, C.; et al. Performance of Artificial Intelligence-Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study. J. Magn. Reson. Imaging 2023, 57, 1352–1364. [Google Scholar] [CrossRef]
- Schelb, P.; Kohl, S.; Radtke, J.P.; Wiesenfarth, M.; Kickingereder, P.V.; Bickelhaupt, S.; Kuder, T.A.; Stenzinger, A.; Hohenfellner, M.; Schlemmer, H.-P.; et al. Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS Assessment. Radiology 2019, 293, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Bajgiran, A.M.; Mirak, S.A.; Shakeri, S.; Zhong, X.; Enzmann, D.; Raman, S.; Sung, K. Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet. IEEE Trans. Med. Imaging 2019, 38, 2496–2506. [Google Scholar] [CrossRef] [PubMed]
- Rouvière, O.; Jaouen, T.; Baseilhac, P.; Benomar, M.L.; Escande, R.; Crouzet, S.; Souchon, R. Artificial intelligence algorithms aimed at characterizing or detecting prostate cancer on MRI: How accurate are they when tested on independent cohorts?—A systematic review. Diagn. Interv. Imaging 2023, 104, 221–234. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.M.; Pereira, E.M.; Salles, P.G.; Godrich, R.; Ceballos, R.; Kunz, J.D.; Casson, A.; Viret, J.; Chandarlapaty, S.; Gil Ferreira, C.; et al. Independent real-world application of a clinical-grade automated prostate cancer detection system. J. Pathol. 2021, 254, 147–158. [Google Scholar] [CrossRef]
- Cuocolo, R.; Cipullo, M.B.; Stanzione, A.; Romeo, V.; Green, R.; Cantoni, V.; Ponsiglione, A.; Ugga, L.; Imbriaco, M. Machine learning for the identification of clinically significant prostate cancer on MRI: A meta-analysis. Eur. Radiol. 2020, 30, 6877–6887. [Google Scholar] [CrossRef]
- Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur. J. Radiol. 2020, 129, 109095. [Google Scholar] [CrossRef]
- Mata, C.; Walker, P.; Oliver, A.; Martí, J.; Lalande, A. Usefulness of Collaborative Work in the Evaluation of Prostate Cancer from MRI. Clin. Pract. 2022, 12, 350–362. [Google Scholar] [CrossRef]
Population | Adult Patients Diagnosed with Prostate Cancer or at Risk |
---|---|
Intervention | AI-based technologies for the detection and diagnosis of prostate cancer |
Comparison | Traditional diagnostic approaches such as digital rectal examination (DRE), prostate-specific antigen (PSA) testing, transrectal ultrasound (TRUS), and prostate biopsy. |
Outcome | Diagnostic accuracy, specificity, sensitivity, or improvements in overall clinical management. |
Author Name and Year | Objectives | Study Design | Types of Artificial Intelligence Model | Algorithm Performance | Conclusions |
---|---|---|---|---|---|
Lee et al., 2023 [28] | To explore the performance of machine learning and deep-learning for identification of prostate cancer in the setting of benign prostatic hyperplasia (BPH). | A retrospective study. | Texture-based machine learning (support vector machine, logistic regression, and random forest) and image-based deep learning model (Convolutional Neural Networks). | Texture-based machine learning algorithms’ AUC is 0.854–0.861 with high specificity (0.710–0.775). The image-based deep learning demonstrated high sensitivity (0.946), AUC (0.802), and moderate specificity (0.643). | Both AI models can serve as an important tool for the diagnosis of prostate cancer. |
Yu et al., 2023 [29] | To develop, as well as authenticate, an AI-based system for the diagnosis of prostate cancer using MRI. | A retrospective study. | Deep learning (DL)-based AI-aided Prostate Imaging Reporting and Data System (PI-RADSAI). | Outperformed (45.5%). | The AI-based system outperformed more than 70% of ordinary readers in the MRI-based diagnosis of prostate cancer. |
Hosseinzadeh et al., 2022 [30] | To evaluate the performance of a deep learning (DL) model based on the Prostate Imaging Reporting and Data System (PI-RADS) algorithm, for the detection of prostate cancer. | A retrospective analysis. | Deep Learning- Computer-Aided Diagnosis (DL-CAD) model. | The sensitivity of DL-CAD was 87% when identifying PI-RADS lesions which were ≥4. The DL sensitivity was 85% for the detection of Gleason lesions which were >6. | DL can correctly detect and localize prostate cancer. |
Salman et al., 2022 [31] | To develop an AI-based system for detecting prostate cancer that can automatically identify key areas and accurately classify them on a biopsy image. | A retrospective study. | CNN architecture of deep learning. | The developed tool achieved 97% accuracy on a test set of 50 similar images and 89% accuracy on a test set of 137 different real prostate tissue biopsy images. | AI-based computer vision methods, like object detection algorithms, can develop highly accurate prostate cancer diagnosis tools. |
Hectors et al., 2021 [32] | To evaluate a machine learning model’s ability to identify prostate cancer in PI-RADS 3 lesions, specifically targeting pathological grade group ≥2. | Single-center retrospective study. | A machine learning model (random forest classifier). | The trained random forest classifier achieved a significant AUC of 0.76 for predicting prostate cancer. | The machine learning classifier showed good performance for the identification of prostate cancer in PI-RADS 3 lesions. |
Khosravi et al., 2021 [33] | To develop an AI-based model for the early identification of prostate cancer using magnetic resonance (MR) images. | A retrospective study. | Convolutional neural networks-based AI-aided biopsy. | The AI techniques achieved AUCs of 0.89 for distinguishing cancer from benign cases and 0.78 for differentiating high-risk from low-risk prostate disease. | The trained model combined biopsy report data with MR images, enhancing predictions beyond what magnetic resonance images alone can achieve. |
Ström et al., 2020 [27] | To create an AI system with clinically reliable accuracy for detecting, localizing, and grading prostate cancer. | A prospective study. | Deep neural network (DNN) models. | The AI achieved an AUC of 0.997 for differentiating between benign and malignant tumor biopsies. | A DNN-based AI system successfully differentiated between benign and cancerous biopsy cores. |
Author (s) and Year | Patient Selection | Index Test | Reference Standard | Flow and Timing | Overall Quality |
---|---|---|---|---|---|
Lee et al., 2023 [28] | ± | + | + | ± | ± |
Yu et al., 2023 [29] | + | + | + | + | − |
Hosseinzadeh et al., 2022 [30] | + | + | + | ± | − |
Salman et al., 2022 [31] | + | + | + | ± | − |
Hectors et al., 2021 [32] | ± | + | + | ± | ± |
Khosravi et al., 2021 [33] | + | + | + | ± | − |
Ström et al., 2020 [27] | + | + | + | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, S. Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools. Diagnostics 2024, 14, 2576. https://doi.org/10.3390/diagnostics14222576
Alqahtani S. Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools. Diagnostics. 2024; 14(22):2576. https://doi.org/10.3390/diagnostics14222576
Chicago/Turabian StyleAlqahtani, Saeed. 2024. "Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools" Diagnostics 14, no. 22: 2576. https://doi.org/10.3390/diagnostics14222576
APA StyleAlqahtani, S. (2024). Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools. Diagnostics, 14(22), 2576. https://doi.org/10.3390/diagnostics14222576