Four-Dimensional Flow MRI for Cardiovascular Evaluation (4DCarE): A Prospective Non-Inferiority Study of a Rapid Cardiac MRI Exam: Study Protocol and Pilot Analysis
Abstract
:1. Key Messages Regarding Feasibility
- (1)
- What uncertainties existed regarding the feasibility?
- (2)
- What are the key feasibility findings?
- (3)
- What are the implications of the feasibility findings for the design of the main study?
2. Background
- Four-dimensional flow MRI is non-inferior to 2D-PC flow for the quantification of aortic and pulmonary artery flow in a routine clinical setting.
- Three-dimensional cine is non-inferior to the conventional SAX cine for cardiac volume measurements in a routine clinical setting.
- The overall functional characterisation of the whole heart using CMRFAST is non-inferior to the conventional (CMRSTD) protocol within defined clinical parameters.
3. Methods
3.1. Protocol
3.1.1. Study Design
3.1.2. Ethical Considerations
3.1.3. Site Selection
3.1.4. Study Participants
3.1.5. CMR Acquisition
3.2. Clinical Reporting
3.3. Analytic Strategy
- This phase includes the initial 25% of the recruited 4DCarE cohort at the Sydney sites and the results are reported in this paper.
- The main focus is to perform a pilot validation of 4D-flow measurement of AscAo and MPA flows against 2D-PC measurements and compare the measurement accuracy of trained annotators against CMR experts to evaluate the feasibility of the standardised contouring process.
- Lessons learned will help improve the analytical approach in subsequent phases.
- This phase will test the hypothesis that 4D-flow is non-inferior to 2D-PC for quantification of aortic and pulmonary flows powered by a larger analysis cohort.
- The analysis will employ the first 50% of the entire 4DCarE study cohort.
- As a secondary goal, non-CMR specialist annotators will be trained using standardised contouring protocols developed from Phase 1 feasibility analysis. The performance of the trained annotators will be formally evaluated against CMR experts to demonstrate the feasibility of training annotators to perform at clinically acceptable levels of accuracy and reproducibility.
- The aim of this phase is to test the hypothesis that 3D-cine is non-inferior to SAX cine for the quantification of cardiac volumes powered by a larger analysis cohort.
- The analysis will employ the first 50% of the entire 4DCarE study cohort.
- As a secondary goal, non-CMR specialist annotators will be trained using standardised contouring protocols. The performance of the trained annotators will be formally evaluated against CMR experts to demonstrate the feasibility of training annotators to perform at clinically acceptable levels of accuracy and reproducibility.
- The aim of this phase is to ascertain the non-inferiority of CMRFAST to CMRSTD in the cardiac function diagnostic evaluation, intention-to-treat analysis, and subgroup analyses stratified by diagnostic and severity categories.
- The analysis will include the entire 4DCarE study cohort, divided evenly into test and replication cohorts. The separation of Phase 4 from Phases 2 and 3 and the exclusive use of the replication cohort only in Phase 4 will enable the use of the test cohort for optimising the standardised contouring training process and the replication cohort for repeating the validation and non-inferiority testing.
- A secondary analysis will formally evaluate the benefits and shortcomings of the CMRFAST approach, including ascertaining any clinical or imaging parameters that may limit the clinical use of CMRFAST.
- The feasibility and any clinical or imaging limitations of using trained annotators to perform standard contouring will also be formally evaluated.
- Recognising the potential of 4D-flow MRI to derive novel flow parameters to quantify cardiac function [13,14], this phase will aim to investigate the clinical utility of some of these parameters. Potential studies may include but are not limited to (1) wall shear stress analysis in patients with aortic valve pathology or aortopathy [16]; (2) transaortic flow kinetic energy quantification to risk-stratify pathological aortic valve impact on LV dysfunction; and (3) LV vorticity to quantify and risk-stratify early diastolic dysfunction [17].
- Three-dimensional cine provides a structural whole heart measurement that is suitable for automated approaches to evaluating a global function and regional wall motion abnormalities. Volumetric data are also suitable for more direct use in whole-heart modelling approaches [18]. Further studies will explore these aspects both in isolation and in combination with other imaging datasets.
3.4. Evaluation of Image Quality
3.5. Image Analysis
3.6. Power Calculations
3.7. Statistical Analysis
4. Results
4.1. Clinical Characteristics and Data Quality—Pilot Cohort
4.1.1. Clinical Characteristics
4.1.2. Evaluation of Imaging Quality
4.2. Intra-/Inter-Observer Reproducibility
4.3. Inter-Observer Reproducibility
4.4. Pilot Cohort Analysis
4.5. Standardisation of Image Analysis Process—Initial Experience
Application of Standard Contouring Protocols
- 2D-PC
- 4D-flow
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
4D | four-dimensional |
AscAo | ascending aorta |
AV | aortic valve |
CMR | cardiac magnetic resonance |
CT | computer tomography |
DGE | delayed gadolinium enhancement |
EDV | end-diastolic volume |
EF | ejection fraction |
ESV | end-systolic volume |
ICC | intraclass correlation coefficient |
KE | kinetic energy |
LV | left ventricle |
MD | mean difference |
MPA | main pulmonary artery |
MRA | magnetic resonance angiography |
PC | phase contrast |
ROI | region of interest |
RPC | reproducibility coefficient |
SAX | short-axis |
SV | stroke volume |
TTE | transthoracic echocardiogram |
WSS | wall shear stress |
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar]
- Salerno, M.; Sharif, B.; Arheden, H.; Kumar, A.; Axel, L.; Li, D.; Neubauer, S. Recent advances in cardiovascular magnetic resonance: Techniques and applications. Circ. Cardiovasc. Imaging 2017, 10, e003951. [Google Scholar] [CrossRef]
- Stankovic, Z.; Allen, B.D.; Garcia, J.; Jarvis, K.B.; Markl, M. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 2014, 4, 173–192. [Google Scholar]
- Grothues, F.; Smith, G.C.; Moon, J.C.C.; Bellenger, N.G.; Collins, P.; Klein, H.U.; Pennell, D.J. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am. J. Cardiol. 2002, 90, 29–34. [Google Scholar] [CrossRef]
- Plein, S.; Kozerke, S. Are we there yet? JACC Cardiovasc. Imaging 2021, 14, 1755–1757. [Google Scholar] [CrossRef]
- Nussbaumer, C.; Bouchardy, J.; Blanche, C.; Piccini, D.; Pavon, A.G.; Monney, P.; Stuber, M.; Schwitter, J.; Rutz, T. 2D cine vs. 3D self-navigated free-breathing high-resolution whole heart cardiovascular magnetic resonance for aortic root measurements in congenital heart disease. J. Cardiovasc. Magn. Reson. 2021, 23, 65. [Google Scholar] [CrossRef]
- Pruitt, A.; Rich, A.; Liu, Y.; Jin, N.; Potter, L.; Tong, M.; Rajpal, S.; Simonetti, O.; Ahmad, R. Fully self-gated whole-heart 4D flow imaging from a 5-minute scan. Magn. Reson. Med. 2021, 85, 1222–1236. [Google Scholar] [CrossRef]
- Bissell, M.M.; Raimondi, F.; Ait Ali, L.; Allen, B.D.; Barker, A.J.; Bolger, A.; Burris, N.; Carhäll, C.-J.; Collins, J.D.; Ebbers, T.; et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J. Cardiovasc. Magn. Reson. 2023, 25, 40. [Google Scholar] [CrossRef]
- Feneis, J.F.; Kyubwa, E.; Atianzar, K.; Cheng, J.Y.; Alley, M.T.; Vasanawala, S.S.; Demaris, A.N.; Hsiao, A. 4D flow MRI quantification of mitral and tricuspid regurgitation: Reproducibility and consistency relative to conventional MRI. J. Magn. Reson. Imaging 2018, 48, 1147–1158. [Google Scholar] [CrossRef]
- Funk, E.; Thunberg, P.; Anderzen-Carlsson, A. Patients’ experiences in magnetic resonance imaging (MRI) and their experiences of breath holding techniques. J. Adv. Nurs. 2014, 70, 1880–1890. [Google Scholar] [CrossRef]
- Küstner, T.; Bustin, A.; Jaubert, O.; Hajhosseiny, R.; Masci, P.G.; Neji, R.; Botnar, R.; Prieto, C. Isotropic 3D Cartesian single breath-hold CINE MRI with multi-bin patch-based low-rank reconstruction. Magn. Reson. Med. 2020, 84, 2018–2033. [Google Scholar] [CrossRef]
- Gómez-Talavera, S.; Fernandez-Jimenez, R.; Fuster, V.; Nothnagel, N.D.; Kouwenhoven, M.; Clemence, M.; Garcia-Lunar, I.; Gomez-Rupin, M.C.; Navarro, F.; Perez-Asenjo, B.; et al. Clinical Validation of a 3-Dimensional Ultrafast Cardiac Magnetic Resonance Protocol Including Single Breath-Hold 3-Dimensional Sequences. Cardiovasc. Imaging 2021, 14, 1742–1754. [Google Scholar] [CrossRef]
- Azarine, A.; Garçon, P.; Stansal, A.; Canepa, N.; Angelopoulos, G.; Silvera, S.; Sidi, D.; Marteau, V.; Zins, M. Four-dimensional Flow MRI: Principles and Cardiovascular Applications. Radiographics 2019, 39, 632–648. [Google Scholar] [CrossRef]
- Zhuang, B.; Sirajuddin, A.; Zhao, S.; Lu, M. The role of 4D flow MRI for clinical applications in cardiovascular disease: Current status and future perspectives. Quant. Imaging Med. Surg. 2021, 11, 4193–4210. Available online: https://qims.amegroups.com/article/view/71234 (accessed on 1 January 2021). [CrossRef]
- McDonald, R.J.; Schwartz, K.M.; Eckel, L.J.; Diehn, F.E.; Hunt, C.H.; Bartholmai, B.J.; Erickson, B.J.; Kallmes, D.F. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 2015, 22, 1191–1198. [Google Scholar] [CrossRef]
- Qin, J.J.; Obeidy, P.; Gok, M.; Gholipour, A.; Grieve, S.M. 4D-flow MRI derived wall shear stress for the risk stratification of bicuspid aortic valve aortopathy: A systematic review. Front. Cardiovasc. Med. 2022, 9, 1075833. [Google Scholar] [CrossRef]
- Qin, J.J.; Indja, B.; Gholipour, A.; Gök, M.; Grieve, S.M. Evaluation of Left Ventricular Function Using Four-Dimensional Flow Cardiovascular Magnetic Resonance: A Systematic Review. J. Cardiovasc. Dev. Dis. 2022, 9, 304. [Google Scholar] [CrossRef]
- Moghari, M.H.; van der Geest, R.J.; Brighenti, M.; Powell, A. Cardiac magnetic resonance using fused 3D cine and 4D flow sequences: Validation of ventricular and blood flow measurements. Magn. Reson. Imaging 2020, 74, 203–212. [Google Scholar] [CrossRef]
- Klinke, V.; Muzzarelli, S.; Lauriers, N.; Locca, D.; Vincenti, G.; Monney, P.; Lu, C.; Nothnagel, D.; Pilz, G.; Lombardi, M.; et al. Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: Description and validation of standardized criteria. J. Cardiovasc. Magn. Reson. 2013, 15, 55. [Google Scholar] [CrossRef]
- Prakken, N.H.; Velthuis, B.K.; Vonken, E.-J.J.; Mali, W.P.; Cramer, M.J.J. Cardiac MRI: Standardized right and left ventricular quantification by briefly coaching inexperienced personnel. Open Magn. Reson. J. 2008, 1, 104–111. [Google Scholar] [CrossRef]
- Liu, J.; Hsueh, H.; Hsieh, E.; Chen, J.J. Tests for equivalence or non-inferiority for paired binary data. Stat. Med. 2002, 21, 231–245. [Google Scholar] [CrossRef]
- Nayak, K.S.; Nielsen, J.-F.; Bernstein, M.A.; Markl, M.; Gatehouse, P.D.; Botnar, R.M.; Saloner, D.; Lorenz, C.; Wen, H.; Hu, B.S.; et al. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson. 2015, 17, 71. [Google Scholar] [CrossRef]
- Greil, G.; Geva, T.; Maier, S.E.; Powell, A.J. Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J. Magn. Reson. Imaging 2002, 15, 47–54. [Google Scholar] [CrossRef]
- Casciaro, M.E.; Pascaner, A.F.; Guilenea, F.N.; Alcibar, J.; Gencer, U.; Soulat, G.; Mousseaux, E.; Craiem, D. 4D flow MRI: Impact of region of interest size, angulation and spatial resolution on aortic flow assessment. Physiol. Meas. 2021, 42, 035004. [Google Scholar] [CrossRef]
- Callaghan, F.M.; Bannon, P.; Barin, E.; Celemajer, D.; Jeremy, R.; Figtree, G.; Grieve, S.M. Age-related changes of shape and flow dynamics in healthy adult aortas: A 4D flow MRI study. J. Magn. Reson. Imaging 2019, 49, 90–100. [Google Scholar] [CrossRef]
- Soulat, G.; Scott, M.B.; Allen, B.D.; Avery, R.; Bonow, R.O.; Malaisrie, S.C.; McCarthy, P.; Fedak, P.V.M.; Baker, A.J.; Markl, M. Association of regional wall shear stress and progressive ascending aorta dilation in bicuspid aortic valve. JACC Cardiovasc. Imaging 2022, 15, 33–42. [Google Scholar] [CrossRef]
- Kaur, H.; Assadi, H.; Alabed, S.; Cameron, D.; Vassiliou, V.S.; Westenberg, J.J.M.; van der Geest, R.; Zhong, L.; Dastidar, A.; Swift, A.J.; et al. Left ventricular blood flow kinetic energy assessment by 4D flow cardiovascular magnetic resonance: A systematic review of the clinical relevance. J. Cardiovasc. Dev. Dis. 2020, 7, 37. [Google Scholar] [CrossRef]
n = 196 | |||
---|---|---|---|
Basic Clinical Parameters | Mean ± Std (Range) | Indication | % Total |
Age (years) | 54 ± 18 (16–89) | Cardiomyopathy | 26.0% |
Female (%) | 46.1% | Viability | 11.2% |
LVEF (%) | 60 ± 14% (15–86%) | ARVC | 10.7% |
LVEDV (mL) | 153.03 ± 43.40 (67–297) | Perimyocarditis | 9.2% |
LVSV (mL) | 88.50 ± 23.52 (37–179) | Aortopathy | 8.2% |
RVEF (%) | 59 ± 9% (31–86%) | Hypertrophic cardiomyopathy | 7.1% |
RVEDV (mL) | 148.34 ± 43.40 (63–284) | Valvular disease | 5.6% |
RVSV (mL) | 85.26 ± 22.15 (22–148) | Shunt | 3.6% |
AscAo net flow (mL/beat) | 78.56 ± 22.91 (22–142) | Iron overload | 3.6% |
MPA net flow (mL/beat) | 85.27 ± 24.12 (26–150) | Congenital | 3.6% |
Infiltration | 3.6% | ||
Aortic regurgitation grade | % total | Arrythmia | 2.6% |
None | 80.0% | Cardiac tumour | 1.5% |
Trivial | 9.1% | Heart failure | 1.0% |
Mild | 7.3% | Pulmonary hypertension | 1.0% |
Moderate | 3.6% | Right heart function | 1.0% |
Pulmonary Regurgitation | 0.5% |
Expert 1 | |||||
n = 19 | 2D-PC | ||||
Measurement 1 | Measurement 2 | ICC (95% CI) | MD ± Std | RPC | |
AscAo | (mean ± std), mL/beat | mL/beat | mL/beat | ||
Forward flow | 85.45 ± 19.93 | 85.63 ± 19.40 | 1.00 (0.99–1.00) | 0.18 ± 1.49 | 2.92 |
Backward flow | 4.34 ± 4.64 | 3.85 ± 3.84 | 0.95 (0.87–0.98) | −0.49 ± 1.23 | 2.41 |
Net flow | 81.11 ± 21.19 | 81.78 ± 20.12 | 0.99 (0.98–1.00) | 0.66 ± 2.55 | 5.00 |
MPA | |||||
Forward flow | 98.42 ± 19.94 | 97.33 ± 19.53 | 0.99 (0.98–1.00) | −1.09 ± 1.85 | 3.63 |
Backward flow | 1.99 ± 2.58 | 1.90 ± 2.54 | 1.00 (0.99–1.00) | −0.09 ± 0.17 | 0.34 |
Net flow | 96.43 ± 19.56 | 95.43 ± 19.12 | 0.99 (0.98–1.00) | −0.99 ± 1.87 | 3.67 |
n = 19 | 4D-flow | ||||
Measurement 1 | Measurement 2 | ICC (95% CI) | MD ± Std | RPC | |
AscAo | (mean ± std), mL/beat | mL/beat | mL/beat | ||
Forward flow | 82.08 ± 17.49 | 83.53 ± 17.40 | 0.98 (0.94–0.99) | 1.45 ± 3.50 | 6.86 |
Backward flow | 1.29 ± 1.47 | 1.17 ± 2.17 | 0.72 (0.35–0.9) | −0.12 ± 1.42 | 2.78 |
Net flow | 80.80 ± 17.33 | 82.36 ± 17.13 | 0.96 (0.90–0.99) | 1.56 ± 4.46 | 8.75 |
MPA | |||||
Forward flow | 95.21 ± 20.51 | 93.51 ± 18.26 | 0.97 (0.91–0.99) | −1.70 ± 4.83 | 9.46 |
Backward flow | 1.54 ± 2.21 | 1.84 ± 3.35 | 0.88 (0.69–0.96) | 0.30 ± 1.39 | 2.73 |
Net flow | 93.67 ± 19.93 | 91.67 ± 17.60 | 0.95 (0.86–0.98) | −2.00 ± 5.82 | 11.41 |
Expert 2 | |||||
n = 19 | 2D-PC | ||||
Measurement 1 | Measurement 2 | ICC (95% CI) | MD ± Std | RPC | |
AscAo | (mean ± std), mL/beat | mL/beat | mL/beat | ||
Forward flow | 83.24 ± 19.66 | 82.97 ± 19.69 | 1.00 (0.99–1.00) | −0.26 ± 1.62 | 3.18 |
Backward flow | 3.27 ± 3.11 | 3.45 ± 3.56 | 0.96 (0.89–0.99) | 0.18 ± 0.94 | 1.85 |
Net flow | 79.96 ± 20.15 | 79.52 ± 20.35 | 1.00 (0.99–1.00) | −0.44 ± 1.85 | 3.63 |
MPA | |||||
Forward flow | 93.35 ± 19.99 | 92.03 ± 19.73 | 0.99 (0.97–1.00) | −1.32 ± 2.31 | 4.53 |
Backward flow | 1.74 ± 2.40 | 1.71 ± 2.40 | 1.00 (1.00–1.00) | −0.03 ± 0.08 | 0.16 |
Net flow | 91.62 ± 19.50 | 90.33 ± 19.19 | 0.99 (0.97–1.00) | −1.29 ± 2.27 | 4.46 |
n = 19 | 4D-flow | ||||
Measurement 1 | Measurement 2 | ICC (95% CI) | MD ± Std | RPC | |
AscAo | (mean ± std), mL/beat | mL/beat | mL/beat | ||
Forward flow | 83.70 ± 17.25 | 82.54 ± 17.73 | 0.95 (0.87–0.98) | −1.16 ± 5.40 | 10.59 |
Backward flow | 1.02 ± 2.85 | 1.08 ± 1.46 | 0.60 (0.15–0.84) | 0.06 ± 2.08 | 4.08 |
Net flow | 82.68 ± 17.20 | 81.46 ± 17.55 | 0.93 (0.80–0.97) | −1.22 ± 6.71 | 13.16 |
MPA | |||||
Forward flow | 91.17 ± 18.41 | 94.09 ± 18.76 | 0.96 (0.89–0.99) | 2.92 ± 4.37 | 8.56 |
Backward flow | 1.79 ± 2.85 | 1.88 ± 3.31 | 0.97 (0.91–0.99) | 0.09 ± 0.78 | 1.53 |
Net flow | 89.38 ± 17.87 | 92.22 ± 18.17 | 0.96 (0.88–0.98) | 2.83 ± 4.67 | 9.15 |
n = 19 | 2D-PC | ||||
Expert 1 | Expert 2 | ICC (95% CI) | MD ± Std | RPC | |
AscAo | (mean ± std), mL/beat | mL/beat | mL/beat | ||
Forward flow | 85.63 ± 19.40 | 85.83 ± 20.23 | 1.00 (0.99–1.00) | 0.20 ± 1.99 | 3.91 |
Backward flow | 3.85 ± 3.84 | 4.04 ± 3.70 | 0.99 (0.97–1.00) | 0.19 ± 0.49 | 0.95 |
Net flow | 81.78 ± 20.12 | 81.79 ± 21.13 | 1.00 (0.99–1.00) | 0.01 ± 2.01 | 3.95 |
MPA | |||||
Forward flow | 97.33 ± 19.53 | 99.06 ± 20.37 | 0.99 (0.97–1.00) | 1.73 ± 2.33 | 4.56 |
Backward flow | 1.90 ± 2.54 | 1.83 ± 2.38 | 0.99 (0.98–1.00) | −0.08 ± 0.27 | 0.52 |
Net flow | 95.43 ± 19.12 | 97.24 ± 19.86 | 0.99 (0.97–1.00) | 1.80 ± 2.46 | 4.82 |
n = 19 | 4D-flow | ||||
Expert 1 | Expert 2 | ICC (95% CI) | MD ± std | RPC | |
AscAo | (mean ± std), mL/beat | mL/beat | mL/beat | ||
Forward flow | 82.08 ± 17.49 | 82.54 ± 17.73 | 0.99 (0.96–0.99) | 0.46 ± 3.09 | 6.05 |
Backward flow | 1.29 ± 1.47 | 1.08 ± 1.46 | 0.84 (0.59–0.94) | −0.21 ± 0.82 | 1.62 |
Net flow | 80.80 ± 17.33 | 81.46 ± 17.55 | 0.98 (0.94–0.99) | 0.67 ± 3.74 | 7.32 |
MPA | |||||
Forward flow | 95.21 ± 20.51 | 94.09 ± 18.76 | 0.99 (0.97–1) | −1.11 ± 2.87 | 5.63 |
Backward flow | 1.54 ± 2.21 | 1.88 ± 3.31 | 0.88 (0.68–0.96) | 0.34 ± 1.39 | 2.73 |
Net flow | 93.67 ± 19.93 | 92.22 ± 18.17 | 0.98 (0.94–0.99) | −1.45 ± 3.78 | 7.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.J.; Gok, M.; Gholipour, A.; LoPilato, J.; Kirkby, M.; Poole, C.; Smith, P.; Grover, R.; Grieve, S.M. Four-Dimensional Flow MRI for Cardiovascular Evaluation (4DCarE): A Prospective Non-Inferiority Study of a Rapid Cardiac MRI Exam: Study Protocol and Pilot Analysis. Diagnostics 2024, 14, 2590. https://doi.org/10.3390/diagnostics14222590
Qin JJ, Gok M, Gholipour A, LoPilato J, Kirkby M, Poole C, Smith P, Grover R, Grieve SM. Four-Dimensional Flow MRI for Cardiovascular Evaluation (4DCarE): A Prospective Non-Inferiority Study of a Rapid Cardiac MRI Exam: Study Protocol and Pilot Analysis. Diagnostics. 2024; 14(22):2590. https://doi.org/10.3390/diagnostics14222590
Chicago/Turabian StyleQin, Jiaxing Jason, Mustafa Gok, Alireza Gholipour, Jordan LoPilato, Max Kirkby, Christopher Poole, Paul Smith, Rominder Grover, and Stuart M. Grieve. 2024. "Four-Dimensional Flow MRI for Cardiovascular Evaluation (4DCarE): A Prospective Non-Inferiority Study of a Rapid Cardiac MRI Exam: Study Protocol and Pilot Analysis" Diagnostics 14, no. 22: 2590. https://doi.org/10.3390/diagnostics14222590
APA StyleQin, J. J., Gok, M., Gholipour, A., LoPilato, J., Kirkby, M., Poole, C., Smith, P., Grover, R., & Grieve, S. M. (2024). Four-Dimensional Flow MRI for Cardiovascular Evaluation (4DCarE): A Prospective Non-Inferiority Study of a Rapid Cardiac MRI Exam: Study Protocol and Pilot Analysis. Diagnostics, 14(22), 2590. https://doi.org/10.3390/diagnostics14222590