The Immediate Effect of a Single Treatment of Neuromuscular Electrical Stimulation with the StimaWELL 120MTRS System on Multifidus Stiffness in Patients with Chronic Low Back Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Chronic non-specific LBP (>3 months), defined as pain in the region between the lower ribs and gluteal folds, with or without leg pain.
- Aged between 18 to 60 years old.
- English or French speakers.
- Have at least score of ‘moderate’ on the Modified Oswestry Disability Index (ODI).
- Able to undergo MRI exam.
- Currently undergoing or having received physical therapy treatment in the previous month.
- Consistent motor control training for the low back and/or consistent weightlifting, powerlifting, bodybuilding, or strongman training in the previous 6 weeks.
- History of lumbar surgery.
- Presence of positive lumbosacral dermatomes or myotomes.
- Presence of disease which could affect the stiffness of muscle tissue (collagen tissue disease, hemiplegia, multiple sclerosis, or blood clots).
- Presence of systemic disease (cancer, metabolic syndrome).
- Presence of spinal abnormality (spinal stenosis, fracture, infection, tumor, or lumbar scoliosis greater than 10 degrees).
- BMI > 30.
- Presence of cardiac arrhythmia.
- Pregnant and breastfeeding women.
- Individuals with epilepsy.
- Individuals at risk for serious bleeding.
- Individuals with pacemakers or metal implants.
- Individuals with aneurysms or heart valve clips.
- Individuals who have taken prescribed muscle relaxants more than once a week in the previous month.
2.2. Study Setting, Ethics Approval, and Intervention
2.3. Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Elevated Resting Muscle Stiffness–Is It a Good Thing?
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- De Simone, M.; Choucha, A.; Ciaglia, E.; Conti, V.; Pecoraro, G.; Santurro, A.; Puca, A.A.; Cascella, M.; Iaconetta, G. Discogenic low back pain: Anatomic and pathophysiologic characterization, clinical evaluation, biomarkers, AI, and treatment options. J. Clin. Med. 2024, 13, 5915. [Google Scholar] [CrossRef] [PubMed]
- Määttä, J.H.; Karppinen, J.; Paananen, M.; Bow, C.; Luk, K.D.K.; Cheung, K.M.C.; Samartzis, D. Refined phenotyping of modic changes: Imaging biomarkers of prolonged severe low back pain and disability. Medicine 2016, 95, e3495. [Google Scholar] [CrossRef] [PubMed]
- Goubert, D.; Oosterwijck, J.V.; Meeus, M.; Danneels, L. Structural changes of lumbar muscles in non-specific low back pain: A systematic review. Pain. Physician. 2016, 19, E985–E1000. [Google Scholar]
- Murillo, C.; Falla, D.; Sanderson, A.; Rushton, A.; Heneghan, N.R. Shear wave elastography investigation of multifidus stiffness in individuals with low back pain. J. Electromyogr. Kinesiol. 2019, 47, 19–24. [Google Scholar] [CrossRef]
- Wallwork, T.L.; Stanton, W.R.; Freke, M.; Hides, J.A. The effect of chronic low back pain on size and contraction of the lumbar multifidus muscle. Man. Ther. 2009, 14, 496–500. [Google Scholar] [CrossRef]
- MacDonald, D.A.; Lorimer Moseley, G.; Hodges, P.W. The lumbar multifidus: Does the evidence support clinical beliefs? Man. Ther. 2006, 11, 254–263. [Google Scholar] [CrossRef]
- Foster, N.E.; Anema, J.R.; Cherkin, D.; Chou, R.; Cohen, S.P.; Gross, D.P.; Ferreira, P.H.; Fritz, J.M.; Koes, B.W.; Peul, W.; et al. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet 2018, 391, 2368–2383. [Google Scholar] [CrossRef]
- Baig, A.A.M.; Ansari, B. Bilateral asymmetrical limb proprioceptive neuromuscular facilitation effects on pain, multifidus activity, range of motion, and disability in low back pain: A randomized controlled trial. J. Manipulative Physiol. Ther. 2022, 45, 604–613. [Google Scholar] [CrossRef]
- Kim, N.; Yoon, S.H.; Kim, M.; Lee, S.H.; Kim, D.H.; Kim, K.H. Effect of direct vibration on the activity of deep trunk muscles of patients with non-specific chronic low back pain. J. Back. Musculoskelet. Rehabil. 2022, 35, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Shekelle, P. Will this patient develop persistent disabling low back pain? JAMA. 2010, 303, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Knight, K.L.; Draper, D.O. Application procedures: Electrotherapy. In Therapeutic Modalities: The Art and Science, 2nd ed.; Lippincott Williams & Williams: Baltimore, MD, USA, 2013; pp. 339–346. [Google Scholar]
- Alrwaily, M.; Schneider, M.; Sowa, G.; Timko, M.; Whitney, S.L.; Delitto, A. Stabilization exercises combined with neuromuscular electrical stimulation for patients with chronic low back pain: A randomized controlled trial. Braz. J. Phys. Ther. 2019, 23, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Songjaroen, S.; Sungnak, P.; Piriyaprasarth, P.; Wang, H.K.; Laskin, J.J.; Wattananon, P. Combined neuromuscular electrical stimulation with motor control exercise can improve lumbar multifidus activation in individuals with recurrent low back pain. Sci. Rep. 2021, 11, 14815. [Google Scholar] [CrossRef] [PubMed]
- Doucet, B.M.; Lam, A.; Griffin, L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 2012, 85, 201–215. [Google Scholar] [PubMed]
- Kumamoto, T.; Seko, T.; Matsuda, R.; Miura, S. Repeated standing back extension exercise: Influence on muscle shear modulus change after lumbodorsal muscle fatigue. Work 2021, 68, 1229–1237. [Google Scholar] [CrossRef]
- Vatovec, R.; Kozinc, Ž.; Voglar, M. The effects of isometric fatigue on trunk muscle stiffness: Implications for shear-wave elastography measurements. Sensors 2022, 22, 9476. [Google Scholar] [CrossRef]
- Creze, M.; Bedretdinova, D.; Soubeyrand, M.; Rocher, L.; Gennisson, J.L.; Gagey, O.; Maître, X.; Bellin, M. Posture-related stiffness mapping of paraspinal muscles. J. Anat. 2019, 234, 787–799. [Google Scholar] [CrossRef]
- Koppenhaver, S.; Gaffney, E.; Oates, A.; Eberle, L.; Young, B.; Hebert, J.; Proulx, L.; Shinohara, M. Lumbar muscle stiffness is different in individuals with low back pain than asymptomatic controls and is associated with pain and disability, but not common physical examination findings. Musculoskelet. Sci. Pract. 2020, 45, 102078. [Google Scholar] [CrossRef]
- Masaki, M.; Aoyama, T.; Murakami, T.; Yanase, K.; Ji, X.; Tateuchi, H.; Ichihashi, N. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers. Clin. Biomech. 2017, 49, 128–133. [Google Scholar] [CrossRef]
- Fortin, M.; Wolfe, D.; Dover, G.; Boily, M. The effect of phasic versus combined neuromuscular electrical stimulation using the StimaWELL 120MTRS system on multifidus muscle morphology and function in patients with chronic low back pain: A randomized controlled trial protocol. BMC Musculoskelet. Disord. 2022, 23, 627. [Google Scholar] [CrossRef] [PubMed]
- Childs, J.D.; Piva, S.R.; Fritz, J.M. Responsiveness of the numeric pain rating scale in patients with low back pain. Spine 2005, 30, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Moreau, B.; Vergari, C.; Gad, H.; Sandoz, B.; Skalli, W.; Laporte, S. Non-invasive assessment of human multifidus muscle stiffness using ultrasound shear wave elastography: A feasibility study. Proc. Inst. Mech. Eng, H. 2016, 230, 809–814. [Google Scholar] [CrossRef]
- Yoshitake, Y.; Takai, Y.; Kanehisa, H.; Shinohara, M. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity. Muscle Nerve 2014, 50, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-wave elastography: Basic physics and musculoskeletal applications. Radiographics. 2017, 37, 855–870. [Google Scholar] [CrossRef]
- Seyedhoseinpoor, T.; Taghipour, M.; Dadgoo, M.; Sanjari, M.A.; Takamjani, I.E.; Kazemnejad, A.; Khoshamooz, Y.; Hides, J. Alteration of lumbar muscle morphology and composition in relation to low back pain: A systematic review and meta-analysis. Spine J. 2022, 22, 660–676. [Google Scholar] [CrossRef]
- Leung, W.K.C.; Chu, K.L.; Lai, C. Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography. PeerJ. 2017, 5, e3592. [Google Scholar] [CrossRef]
- Chalchat, E.; Gennisson, J.L.; Peñailillo, L.; Oger, M.; Malgoyre, A.; Charlot, K.; Bourrilhon, C.; Siracusa, J.; Garcia-Vicencio, S. Changes in the viscoelastic properties of the vastus lateralis muscle with fatigue. Front. Physiol. 2020, 11, 307. [Google Scholar] [CrossRef]
- Allen, D.; Lannergren, J.; Westerblad, H. Limits to human performance caused by muscle fatigue. Phys. News Mag. 2003, 53, 7–10. [Google Scholar] [CrossRef]
- Gilmore, S.L.; Brilla, L.R.; Suprak, D.N.; Chalmers, G.R.; Dahlquist, D.T. Effect of a high-intensity isometric potentiating warm-up on bat velocity. J. Strength. Cond. Res. 2019, 33, 152–158. [Google Scholar] [CrossRef]
- Stewart, D.; Macaluso, A.; De Vito, G. The effect of an active warm-up on surface EMG and muscle performance in healthy humans. Eur. J. Appl. Physiol. 2003, 89, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Cagnie, B.; Dhooge, F.; Schumacher, C.; De Meulemeester, K.; Petrovic, M.; van Oosterwijck, J.; Danneels, L. Fiber typing of the erector spinae and multifidus muscles in healthy controls and back pain patients: A systematic literature review. J. Manipulative Physiol. Ther. 2015, 38, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Retortillo, S.; Ivanov, P.C. Inter-muscular networks of synchronous muscle fiber activation. Front. Netw. Physiol. 2022, 2, 1059793. [Google Scholar] [CrossRef] [PubMed]
- Tytell, E.D.; Holmes, P.; Cohen, A.H. Spikes alone do not behavior make: Why neuroscience needs biomechanics. Curr. Opin. Neurobiol. 2011, 21, 816–822. [Google Scholar] [CrossRef]
- Ting, L.H.; Chiel, H.J.; Trumbower, R.D.; Allen, J.L.; McKay, J.L.; Hackney, M.E.; Kesar, T.M. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 2015, 86, 38–54. [Google Scholar] [CrossRef]
- Tier, L.; Salomoni, S.E.; Hug, F.; Besomi, M.; Hodges, P.W. Adaptability of the load sharing between the longissimus and components of the multifidus muscle during isometric trunk extension in healthy individuals. Eur. J. Appl. Physiol. 2023, 123, 1879–1893. [Google Scholar] [CrossRef]
- O’Sullivan, P. Diagnosis and classification of chronic low back pain disorders: Maladaptive movement and motor control impairments as underlying mechanism. Man. Ther. 2005, 10, 242–255. [Google Scholar] [CrossRef]
- De Ridder, E.M.; Van Oosterwijck, J.O.; Vleeming, A.; Vanderstraeten, G.G.; Danneels, L.A. Posterior muscle chain activity during various extension exercises: An observational study. BMC Musculoskelet. Disord. 2013, 14, 204. [Google Scholar] [CrossRef]
- Vanderthommen, M.; Duchateau, J. Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc. Sport. Sci. Rev. 2007, 35, 180–185. [Google Scholar] [CrossRef]
- Doix, A.C.M.; Matkowski, B.; Martin, A.; Roeleveld, K.; Colson, S.S. Effect of neuromuscular electrical stimulation intensity over the tibial nerve trunk on triceps surae muscle fatigue. Eur. J. Appl. Physiol. 2014, 114, 317–329. [Google Scholar] [CrossRef]
- Iwata, M.; Yamamoto, A.; Matsuo, S.; Hatano, G.; Miyazaki, M.; Fukaya, T.; Fujiwara, M.; Asai, Y.; Suzuki, S. Stretching has sustained effects on range of motion and passive stiffness of the hamstring muscles. J. Sports Sci. Med. 2019, 18, 13–20. [Google Scholar] [PubMed]
- Dieterich, A.V.; Yavuz, U.Ş.; Petzke, F.; Nordez, A.; Falla, D. Neck muscle stiffness measured with shear wave elastography in women with chronic nonspecific neck pain. J. Orthop. Sports Phys. Ther. 2020, 50, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Batistella, C.E.; Bidin, F.; Giacomelli, I.; Nunez, M.A.; Gasoto, E.; de Albuquerque, C.E.; Flores, L.J.F.; Bertolini, G.R.F. Effects of the russian current in the treatment of low back pain in women: A randomized clinical trial. J. Bodyw. Mov. Ther. 2020, 24, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Dimer da Luz, R.; da Silva Santos, M.; Steffen Evaldt, A.; da Silva Matos, L.; Boff Daitx, R.; Döhnert, M.B. Neuromuscular electrical stimulation associated with core stability exercises in nonspecific postural low back pain: A randomized clinical trial. Muscles Ligaments Tendons J. 2019, 9, 446–456. [Google Scholar] [CrossRef]
- Pelegrini, A.C.A.; Gasoto, E.; Bussolaro, J.M.; Segatti, G.; de Albuquerque, C.E.; Bertolini, G.R.F. The analgesic action of Aussie current in women with non-specific chronic lumbar pain. Int. J. Ther. Rehabil. 2019, 26, 1–10. [Google Scholar] [CrossRef]
- Caldas, V.V.A.; Maciel, D.G.; Cerqueira, M.S.; Barboza, J.A.M.; Neto, J.B.V.; Dantas, G.; de Melo, R.R.; de Souza, R.N.; de Brito Vieira, W.H. Effect of pain education, cryotherapy, and transcutaneous electrical nerve stimulation on the pain, functional capacity, and quality of life in patients with nonspecific chronic low back pain: A single-blind randomized controlled trial. Am. J. Phys. Med. Rehabil. 2021, 100, 243–249. [Google Scholar] [CrossRef]
Combined Group (n = 16) | Phasic Group (n = 14) | Significance | |
---|---|---|---|
Sex | 7 male; 9 female | 6 male; 8 female | 0.961 & |
Age (yrs) | 42.2 ± 12.5 | 42.6 ± 12 | 0.760 ^ |
BMI | 24.7 ± 2.3 | 24.2 ± 3 | 0.609 ^ |
Duration of LBP (months) | 113.5 ± 112.9 | 77.3 ± 80.6 | 0.327 ^ |
Combined Group (n = 16) | Phasic Group (n = 14) | Between-Group Difference (Combined Minus Phasic) | |
---|---|---|---|
L4 level | |||
Right Pre | 4.1 ± 1.4 | 5.3 ± 2.2 | NA, p < 0.001 # |
Right Post | 6.0 ± 2.3 | 4.8 ± 1.9 | |
Difference (post-pre) | 1.9 [0.8, 3.0], p = 0.001 $ | −0.4 [−1.3, 0.3], p = 0.224 a | |
Left Pre | 4.5 ± 1.8 | 6.5 ± 2.6 | 0.63 {−1.2, 2.4}, p = 0.493 ^ |
Left Post | 4.9 ± 1.8 | 6.4 ± 2.8 | |
Difference (post-pre) | 0.4 [−0.6, 1.5] p = 0.304 a | −0.1 [−1.7, 1.5] p = 0.908 a | |
L5 level | |||
Right Pre | 4.2 ± 1.2 | 4.8 ± 2.4 | NA, p = 0.525 # |
Right Post | 5.3 ± 2.6 | 5.2 ± 1.9 | |
Difference (post-pre) | 1.2 [0.1, 2.3] p = 0.017 $ | 0.45 [−0.3, 1.2] p = 0.226 a | |
Left Pre | 4.2 ± 2.1 | 4.9 ± 2.7 | NA, p = 0.608 # |
Left Post | 5.2 ± 2.6 | 5.3 ± 2.8 | |
Difference (post-pre) | 1.0 [−0.2, 2.2], p = 0.020 $ | 0.4 [−0.5, 1.5] p = 0.354 a |
Combined Group (n = 16) | Phasic Group (n = 14) | Between-Group Difference (Combined Minus Phasic) | |
---|---|---|---|
L4 level | |||
Right Pre | 18.2 ± 7.7 | 12.5 ± 8.5 | −1.0 [−5.3, 3.1], p = 0.596 ^ |
Right Post | 14.3 ± 7.2 | 9.8 ± 4.7 | |
Difference (post-pre) | −3.8 [−6.7, −0.8], p = 0.015 a | −2.7 [−5.9, 0.5], p = 0.097 a | |
Left Pre | 13.5 ± 7.3 | 11.7 ± 8.7 | NA, p = 0.812 # |
Left Post | 13.2 ± 6.6 | 10.8 ± 7.3 | |
Difference (post-pre) | −0.3 [−2.6, 2.0] p = 0.778 a | −0.9 [−2.9, 1.1] p = 0.345 $ | |
L5 level | |||
Right Pre | 19.3 ± 11.4 | 14.6 ± 9.3 | −2.6 [−7.2, 1.9], p = 0.255 ^ |
Right Post | 17.5 ± 12.1 | 15.8 ± 9.2 | |
Difference (post-pre) | −1.8 [−5.4, 1.7] p = 0.294 a | 0.7 [−2.3, 3.9] p = 0.426 a | |
Left Pre | 16.4 ± 10.1 | 14.7 ± 9.8 | −3.9 [−7.2, −0.7], p = 0.016 ^ |
Left Post | 14.3 ± 9.2 | 16.5 ± 12.0 | |
Difference (post-pre) | −2.1 [−4.1, −0.1], p = 0.036 a | 1.8 [−0.8, 4.4] p = 0.165 a |
Combined Group (n = 16) | Phasic Group (n = 14) | Between-Group Difference (Combined Minus Phasic) | |
---|---|---|---|
Pain Pre-Treatment | 4.18 ± 1.72 | 4.57 ± 1.69 | NA, p = 0.637 # |
Pain Post-Treatment | 3.06 ± 1.91 | 3.14 ± 1.79 | |
Difference (pre-post) | 1.12 [0.34, 1.90] p = 0.011 $ | 1.42 [0.68, 2.16] p = 0.001 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolfe, D.; Dover, G.; Boily, M.; Fortin, M. The Immediate Effect of a Single Treatment of Neuromuscular Electrical Stimulation with the StimaWELL 120MTRS System on Multifidus Stiffness in Patients with Chronic Low Back Pain. Diagnostics 2024, 14, 2594. https://doi.org/10.3390/diagnostics14222594
Wolfe D, Dover G, Boily M, Fortin M. The Immediate Effect of a Single Treatment of Neuromuscular Electrical Stimulation with the StimaWELL 120MTRS System on Multifidus Stiffness in Patients with Chronic Low Back Pain. Diagnostics. 2024; 14(22):2594. https://doi.org/10.3390/diagnostics14222594
Chicago/Turabian StyleWolfe, Daniel, Geoffrey Dover, Mathieu Boily, and Maryse Fortin. 2024. "The Immediate Effect of a Single Treatment of Neuromuscular Electrical Stimulation with the StimaWELL 120MTRS System on Multifidus Stiffness in Patients with Chronic Low Back Pain" Diagnostics 14, no. 22: 2594. https://doi.org/10.3390/diagnostics14222594
APA StyleWolfe, D., Dover, G., Boily, M., & Fortin, M. (2024). The Immediate Effect of a Single Treatment of Neuromuscular Electrical Stimulation with the StimaWELL 120MTRS System on Multifidus Stiffness in Patients with Chronic Low Back Pain. Diagnostics, 14(22), 2594. https://doi.org/10.3390/diagnostics14222594