Predictive Value of Clinical and Dual-Energy Computed Tomography Parameters for Hemorrhagic Transformation and Long-Term Outcomes Following Endovascular Thrombectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Imaging and Endovascular Treatment Protocols
2.3. Image Analysis
2.4. Clinical Variables
2.5. Outcome Measures
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics and Clinical and Image Profiles
3.2. Clinical and Image Parameters: Hemorrhagic Transformation Development Analysis
3.3. Predictive Factors of Hemorrhagic Transformation Development: Univariate and Multivariate Analysis
3.4. In-Hospital Mortality Analysis
3.5. Predictive Factors of a 3-Month Favorable Functional Outcome: Univariate and Multivariate Analysis
4. Discussion
4.1. VNC-ASPECT Score
4.2. HDA Volume, HDA Iodine Concentration, and HDA Density
4.3. Caudate Nucleus and Superior Sagittal Sinus Iodine Concentration and Density
4.4. Post-EVT NIHSS
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.J.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.L.M.; Van Der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Fiorelli, M.; Bastianello, S.; von Kummer, R.; del Zoppo, G.J.; Larrue, V.; Lesaffre, E.; Ringleb, A.P.; Lorenzano, S.; Manelfe, C.; Bozzao, L.; et al. Hemorrhagic transformation within 36 hours of a cerebral infarct: Relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke 1999, 30, 2280–2284. [Google Scholar] [CrossRef] [PubMed]
- Khatri, P.; Wechsler, L.R.; Broderick, J.P. Intracranial hemorrhage associated with revascularization therapies. Stroke 2007, 38, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [PubMed]
- Bonatti, M.; Lombardo, F.; Zamboni, G.; Vittadello, F.; Dossi, R.C.; Bonetti, B.; Mucelli, R.P.; Bonatti, G. Iodine extravasation quantification on dual-energy CT of the brain performed after mechanical thrombectomy for acute ischemic stroke can predict hemorrhagic complications. Am. J. Neuroradiol. 2018, 39, 441–447. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Quan, X.; Xie, Y.; Deng, X.; Zhang, Y.; Shi, S.; Liang, Z. Diagnostic accuracy of dual-energy computed tomography to differentiate intracerebral hemorrhage from contrast extravasation after endovascular thrombectomy for acute ischemic stroke: Systematic review and meta-analysis. Eur. Radiol. 2022, 32, 432–441. [Google Scholar] [CrossRef]
- Gariani, J.; Cuvinciuc, V.; Courvoisier, D.; Krauss, B.; Pereira, V.M.; Sztajzel, R.; Lovblad, K.-O.; Vargas, M.I. Diagnosis of acute ischemia using dual energy CT after mechanical thrombectomy. J. Neurointerv. Surg. 2016, 8, 996–1000. [Google Scholar] [CrossRef]
- Byrne, D.; Walsh, J.; Schmiedeskamp, H.; Settecase, F.; Heran, M.; Niu, B.; Salmeen, A.; Rohr, B.; Field, T.; Murray, N.; et al. Prediction of hemorrhage after successful recanalization in patients with acute ischemic stroke: Improved risk stratification using dual-energy CT parenchymal iodine concentration ratio relative to the superior sagittal sinus. Am. J. Neuroradiol. 2020, 41, 64–70. [Google Scholar] [CrossRef]
- Li, L.; Huo, M.; Zuo, T.; Wang, Y.; Chen, Y.; Bao, Y. Prediction of intracerebral hemorrhage after endovascular treatment of acute ischemic stroke: Combining quantitative parameters on dual-energy CT with clinical related factors. J. Stroke Cerebrovasc. Dis. 2021, 30, 106001. [Google Scholar] [CrossRef]
- Ahn, S.; Roth, S.G.; Mummareddy, N.; Ko, Y.; Bhamidipati, A.; Jo, J.; DiNitto, J.; Fusco, M.R.; Chitale, R.V.; Froehler, M.T. The clinical utility of dual-energy CT in post-thrombectomy care: Part 2, the predictive value of contrast density and volume for delayed hemorrhagic transformation. J. Stroke Cerebrovasc. Dis. 2023, 32, 107216. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, L.; Ruan, J.; Xia, W.; Huang, H.; Niu, G.; Yan, S.; Yin, C. The role of dual energy CT in evaluating hemorrhagic complications at different stages after thrombectomy. Front. Neurol. 2020, 11, 583411. [Google Scholar] [CrossRef] [PubMed]
- Almqvist, H.; Holmin, S.; Mazya, M.V. Dual energy CT after stroke thrombectomy alters assessment of hemorrhagic complications. Neurology 2019, 93, e1068–e1075. [Google Scholar] [CrossRef] [PubMed]
- Higashida, R.T.; Furlan, A.J. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 2003, 34, e109–e137. [Google Scholar] [CrossRef] [PubMed]
- Barber, P.A.; Demchuk, A.M.; Zhang, J.; Buchan, A.M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 2000, 355, 1670–1674. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef]
- Ahn, S.; Mummareddy, N.; Roth, S.G.; Jo, J.; Bhamidipati, A.; Ko, Y.; DiNitto, J.; Chitale, R.V.; Fusco, M.R.; Froehler, M.T. The clinical utility of dual-energy CT in post-thrombectomy care: Part 1, predictors and outcomes of subarachnoid and intraparenchymal hemorrhage. J. Stroke Cerebrovasc. Dis. 2023, 32, 107217. [Google Scholar] [CrossRef]
- Leker, R.R.; Honig, A.; Filioglo, A.; Simaan, N.; Gomori, J.M.; Cohen, J.E. Post-stroke ASPECTS predicts outcome after thrombectomy. Neuroradiology 2021, 63, 769–775. [Google Scholar] [CrossRef]
- Tijssen, M.P.M.; Hofman, P.A.M.; Stadler, A.A.R.; van Zwam, W.; de Graaf, R.; van Oostenbrugge, R.J.; Klotz, E.; Wildberger, J.E.; Postma, A.A. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur. Radiol. 2014, 24, 834–840. [Google Scholar] [CrossRef]
- Riederer, I.; Fingerle, A.A.; Baum, T.; Kirschke, J.S.; Rummeny, E.J.; Noël, P.B.; Pfeiffer, D. Acute infarction after mechanical thrombectomy is better delineable in virtual non-contrast compared to conventional images using a dual-layer spectral CT. Sci. Rep. 2018, 8, 9329. [Google Scholar] [CrossRef]
- Grkovski, R.; Acu, L.; Ahmadli, U.; Nakhostin, D.; Thurner, P.; Wacht, L.; Kulcsár, Z.; Alkadhi, H.; Winklhofer, S. Dual-energy computed tomography in stroke imaging: Value of a new image acquisition technique for ischemia detection after mechanical thrombectomy. Clin. Neuroradiol. 2023, 33, 747–754. [Google Scholar] [CrossRef]
- van den Broek, M.; Byrne, D.; Lyndon, D.; Niu, B.; Yu, S.M.; Rohr, A.; Settecase, F. ASPECTS estimation using dual-energy CTA-derived virtual non-contrast in large vessel occlusion acute ischemic stroke: A dose reduction opportunity for patients undergoing repeat CT? Neuroradiology 2022, 64, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Baik, M.; Cha, J.; Ahn, S.S.; Lee, S.-K.; Kim, Y.D.; Nam, H.S.; Jeon, S.; Lee, H.S.; Heo, J.H. Dual-energy computed tomography quantification of extravasated iodine and hemorrhagic transformation after thrombectomy. J. Stroke 2022, 24, 152–155. [Google Scholar] [CrossRef]
- Renú, A.; Amaro, S.; Laredo, C.; Román, L.S.; Llull, L.; Lopez, A.; Urra, X.; Blasco, J.; Oleaga, L.; Chamorro, Á. Relevance of blood–brain barrier disruption after endovascular treatment of ischemic stroke: Dual-energy computed tomographic study. Stroke 2015, 46, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Hamann, G.F.; Okada, Y.; del Zoppo, G.J. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J. Cereb. Blood Flow Metab. 1996, 16, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Del Zoppo, G.J.; Von Kummer, R.; Hamann, G.F. Ischaemic damage of brain microvessels: Inherent risks for thrombolytic treatment in stroke. J. Neurol. Neurosurg. Psychiatry 1998, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mokin, M.; Kan, P.; Kass-Hout, T.; Abla, A.A.; Dumont, T.M.; Snyder, K.V.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I. Intracerebral hemorrhage secondary to intravenous and endovascular intraarterial revascularization therapies in acute ischemic stroke: An update on risk factors, predictors, and management. Neurosurg. Focus 2012, 32, E2. [Google Scholar] [CrossRef]
- Bae, K.T. Intravenous contrast medium administration and scan timing at CT: Considerations and approaches. Radiology 2010, 256, 32–61. [Google Scholar] [CrossRef]
- Parrilla, G.; García-Villalba, B.; de Rueda, M.E.; Zamarro, J.; Carrión, E.; Hernández-Fernández, F.; Martín, J.; Hernández-Clares, R.; Morales, A.; Moreno, A. Hemorrhage/contrast staining areas after mechanical intra-arterial thrombectomy in acute ischemic stroke: Imaging findings and clinical significance. Am. J. Neuroradiol. 2012, 33, 1791–1796. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Ye, Z. Iodine quantification to characterize primary lesions, metastatic and non-metastatic lymph nodes in lung cancers by dual energy computed tomography: An initial experience. Eur. J. Radiol. 2016, 85, 1219–1223. [Google Scholar] [CrossRef]
- Sun, J.; Lam, C.; Christie, L.; Blair, C.; Li, X.; Werdiger, F.; Yang, Q.; Bivard, A.; Lin, L.; Parsons, M. Risk factors of hemorrhagic transformation in acute ischaemic stroke: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1079205. [Google Scholar] [CrossRef]
- Jeong, H.-G.; Kim, B.J.; Choi, J.C.; Hong, K.-S.; Yang, M.H.; Jung, C.; Han, M.-K.; Bae, H.-J. Posttreatment national institutes of health stroke scale is superior to the initial score or thrombolysis in cerebral ischemia for 3-month outcome. Stroke 2018, 49, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Sajobi, T.T.; Menon, B.K.; Wang, M.; Lawal, O.; Shuaib, A.; Williams, D.; Poppe, A.Y.; Jovin, T.G.; Casaubon, L.K.; Devlin, T.; et al. Early trajectory of stroke severity predicts long-term functional outcomes in ischemic stroke subjects: Results from the ESCAPE Trial (Endovascular Treatment for Small Core and Anterior Circulation Proximal Occlusion With Emphasis on Minimizing CT to Recanalization Times). Stroke 2017, 48, 105–110. [Google Scholar] [PubMed]
- Lai, Y.; Jou, E.; Mofatteh, M.; Nguyen, T.N.; Ho, J.S.Y.; Diana, F.; Dmytriw, A.A.; He, J.; Yan, W.; Chen, Y.; et al. 7-Day National Institutes of Health Stroke Scale as a surrogate marker predicting ischemic stroke patients’ outcome following endovascular therapy. Transl. Neurosci. 2023, 14, 20220307. [Google Scholar] [CrossRef] [PubMed]
Total (n = 152) | Hemorrhagic Transformation | p Value | |||||
---|---|---|---|---|---|---|---|
No (n = 58) | Yes (n = 94) | ||||||
Median | (IQR) | Median | (IQR) | Median | (IQR) | ||
Age | 71.00 | (62.3–79) | 71.00 | (62.8–80) | 71.50 | (61.3–78.3) | 0.627 |
Gender, n (%) | 0.344 | ||||||
Female | 65 | (42.76%) | 22 | (37.93%) | 43 | (45.74%) | |
Male | 87 | (57.24%) | 36 | (62.07%) | 51 | (54.26%) | |
Atrial fibrillation, n (%) | 89 | (58.55%) | 32 | (55.17%) | 57 | (60.64%) | 0.506 |
Coronary artery disease, n (%) | 28 | (18.42%) | 10 | (17.24%) | 18 | (19.15%) | 0.768 |
Previous usage of antiplatelet, n (%) | 27 | (17.76%) | 7 | (12.07%) | 18 | (19.15%) | 0.253 |
Previous tPA, n (%) | 61 | (40.13%) | 27 | (46.55%) | 34 | (36.17%) | 0.205 |
BMI (kg/m2) | 23.96 | (21.8–26.3) | 24.61 | (21.7–26.7) | 23.42 | (21.8–26.1) | 0.434 |
PT | 10.90 | (10.5–11.4) | 10.60 | (10.3–11.2) | 10.90 | (10.6–11.5) | 0.007 ** |
APTT | 26.20 | (24.5–28.3) | 26.50 | (24.7–28.5) | 25.90 | (24.3–28.3) | 0.321 |
ER NIHSS | 17.00 | (14–22) | 16.50 | (12.8–21) | 18.00 | (14–22) | 0.273 |
Post-EVT 24 h NIHSS | 13.00 | (7–18) | 11.00 | (5–16) | 15.00 | (8–19.5) | 0.007 ** |
Circulation of vessel occluded n (%) | 0.008 ** | ||||||
Anterior | 136 | (89.47%) | 47 | (81.03%) | 89 | (94.68%) | |
Posterior | 16 | (10.53%) | 11 | (18.97%) | 5 | (5.32%) | |
3-month favorable mRS, n (%) | 45 | (32.37%) | 20 | (37.74%) | 25 | (29.07%) | 0.289 |
Surgical intervention, n (%) | 12 | (7.89%) | 0 | (0%) | 12 | (12.77%) | 0.004 ** |
Total (n = 152) | Hemorrhagic Transformation | p Value | |||||
---|---|---|---|---|---|---|---|
No (n = 58) | Yes (n = 94) | ||||||
Median | (IQR) | Median | (IQR) | Median | (IQR) | ||
Pre-procedural CT | |||||||
CBF < 30% of CTP | 12 | (0–32.1) | 0 | (0–24.5) | 20 | (0–37) | 0.067 |
Tmax > 6 sec of CTP | 84 | (35.3–124.8) | 72 | (21.5–113) | 89 | (50–131) | 0.046 * |
Procedural | |||||||
mTICI, n (%) | 0.126 | ||||||
0 | 18 | (11.84%) | 5 | (8.62%) | 13 | (13.83%) | |
1 | 5 | (3.29%) | 2 | (3.45%) | 3 | (3.19%) | |
2A | 10 | (6.58%) | 1 | (1.72%) | 9 | (9.57%) | |
2B | 29 | (19.08%) | 9 | (15.52%) | 20 | (21.28%) | |
2C | 13 | (8.55%) | 8 | (13.79%) | 5 | (5.32%) | |
3 | 77 | (50.66%) | 33 | (56.90%) | 44 | (46.81%) | |
Cone beam CT, n (%) | 0.008 ** | ||||||
Hemorrhage | 14 | (9.21%) | 1 | (1.72%) | 13 | (13.83%) | |
Contrast Staining | 27 | (17.76%) | 7 | (12.07%) | 20 | (21.28%) | |
Normal finding | 111 | (73.03%) | 50 | (86.21%) | 61 | (64.89%) | |
Post-procedural DECT | |||||||
DECT condition, n (%) | <0.001 ** | ||||||
sNCCT (−) | 80 | (52.63%) | 45 | (77.59%) | 35 | (37.23%) | |
IOM (+) VNC (−) | 14 | (9.21%) | 8 | (13.79%) | 6 | (6.38%) | |
IOM (−) VNC (+) | 27 | (17.76%) | 2 | (3.45%) | 25 | (26.60%) | |
IOM (+) VNC (+) | 31 | (20.39%) | 3 | (5.17%) | 28 | (29.79%) | |
HT type of VNC, n (%) | <0.001 ** | ||||||
no HT | 95 | (62.50%) | 53 | (91.38%) | 42 | (44.68%) | |
HI1 | 12 | (7.89%) | 5 | (8.62%) | 7 | (7.45%) | |
HI2 | 6 | (3.95%) | 0 | (0%) | 6 | (6.38%) | |
PH1 | 9 | (5.92%) | 0 | (0%) | 9 | (9.57%) | |
PH2 | 1 | (0.66%) | 0 | (0%) | 1 | (1.06%) | |
SAH | 7 | (4.61%) | 0 | (0%) | 7 | (7.45%) | |
IVH | 1 | (0.66%) | 0 | (0%) | 1 | (1.06%) | |
Combination of 2 HT types | 16 | (10.53%) | 0 | (0%) | 16 | (17.02%) | |
Combination of 3 HT types | 5 | (3.29%) | 0 | (0%) | 5 | (5.32%) | |
Hyperdense area on sNCCT (+) volume (mm3) | 2895 | (1086.3–7953.8) | 1765 | (510–19,422.5) | 2925 | (1220–7470) | 0.392 |
Hyperdense area on sNCCT (+) density (HU) | 46 | (39–53) | 46 | (39.5–53) | 46 | (39–53) | 0.895 |
IOM (+) area iodine concentration (mg/mL) | 0.85 | (0.7–1.4) | 1.20 | (0.9–1.5) | 0.80 | (0.6–1.1) | 0.071 |
IOM (+) area density (HU) | 48.20 | (42.1–59.3) | 50.90 | (44.4–59.8) | 47.10 | (41.7–59.3) | 0.491 |
Caudate nucleus iodine concentration (mg/mL) | 0.26 | (0.2–0.3) | 0.27 | (0.2–0.3) | 0.26 | (0.2–0.3) | 0.699 |
Caudate nucleus density (HU) | 35.30 | (33.8–37.2) | 36 | (34.1–37.6) | 35.05 | (33.5–36.3) | 0.044 * |
Superior sagittal sinus iodine concentration (mg/mL) | 0.32 | (0.2–0.4) | 0.34 | (0.2–0.6) | 0.30 | (0.2–0.4) | 0.078 |
Superior sagittal sinus density (HU) | 43.25 | (39.6–46.6) | 44.60 | (41.3–49.8) | 42.20 | (39.2–45.6) | 0.003 ** |
VNC ASPECT score | 7 | (6–8) | 8 | (7–9) | 7 | (5–8) | <0.001 ** |
Post-procedural MRI | |||||||
Ischemic volume (mm3) by MRI | 15,390 | (4731–47,556) | 9510 | (2652–26,280) | 20,730 | (5862–56,430) | 0.006 ** |
Simple Model | Multiple Model (n = 121) | ||||||
---|---|---|---|---|---|---|---|
OR | (95% CI) | p Value | OR | (95% CI) | p Value | ||
Age | 0.99 | (0.96–1.02) | 0.545 | ||||
Gender | |||||||
Female | 1.00 | ||||||
Male | 0.72 | (0.37–1.41) | 0.345 | ||||
Previous tPA | 0.65 | (0.33–1.27) | 0.206 | ||||
ER NIHSS | 1.02 | (0.97–1.08) | 0.422 | ||||
Post-EVT 24 h NIHSS | 1.06 | (1.01–1.11) | 0.012 * | 1.02 | (0.96–1.09) | 0.475 | |
Improvement of NIHSS | 0.63 | (0.30–1.35) | 0.240 | ||||
CBF < 30% of CTP | 1.01 | (0.99–1.03) | 0.243 | ||||
Tmax > 6 s of CTP | 1.00 | (1.00–1.01) | 0.300 | ||||
VNC ASPECT score | 0.52 | (0.38–0.70) | <0.001 ** | 0.60 | (0.43–0.83) | 0.002 ** | |
Hyperdense area on sNCCT (+) volume (mm3) | 1.00 | (1.00–1.00) | 0.183 | ||||
IOM (+) area density (HU) | 1.00 | (0.97–1.04) | 0.919 | ||||
Caudate nucleus density (HU) | 0.89 | (0.79–1.00) | 0.052 | ||||
Superior sagittal sinus density (HU) | 0.91 | (0.85–0.97) | 0.002 ** | 0.90 | (0.83–0.98) | 0.010 * |
No (n = 139) | Yes (n = 13) | p Value | |||
---|---|---|---|---|---|
Median | (IQR) | Median | (IQR) | ||
Post-EVT 24 h NIHSS | 12 | (7–18) | 19 | (13–33) | 0.003 ** |
TOAST, n (%) | 0.012 * | ||||
CE | 94 | (67.63%) | 5 | (38.46%) | |
LAA | 21 | (15.11%) | 1 | (7.69%) | |
Unknown or Other | 24 | (17.27%) | 7 | (53.85%) | |
Triglyceride | 72 | (55–103.8) | 103 | (82–193.3) | 0.004 ** |
HDL | 47 | (41–58) | 37 | (29–44) | 0.002 ** |
PTA or Stent, n (%) | 0.021 * | ||||
PTA only | 21 | (77.78%) | 0 | (0%) | |
PTA with stent | 6 | (22.22%) | 3 | (100%) |
Simple Model | Multiple Model (n = 123) | ||||||
---|---|---|---|---|---|---|---|
OR | (95% CI) | p Value | OR | (95% CI) | p Value | ||
Age | 0.94 | (0.91–0.97) | <0.001 ** | 0.90 | (0.85–0.95) | <0.001 ** | |
Gender | |||||||
Female | 1.00 | ||||||
Male | 1.51 | (0.73–3.13) | 0.264 | ||||
Previous tPA | 2.80 | (1.35–5.83) | 0.006 ** | 3.67 | (1.26–10.68) | 0.017 * | |
ER NIHSS | 0.92 | (0.86–0.98) | 0.008 ** | 1.01 | (0.92–1.12) | 0.779 | |
Post-EVT 24 hr NIHSS | 0.82 | (0.76–0.89) | <0.001 ** | 0.84 | (0.76–0.93) | 0.001 ** | |
VNC ASPECT score | 1.86 | (1.36–2.54) | <0.001 ** | 1.95 | (1.25–3.04) | 0.003 ** | |
Hyperdense area on sNCCT (+) volume (mm3) | 1.00 | (1.00–1.00) | 0.359 | ||||
IOM (+) area iodine concentration | 0.62 | (0.15–2.52) | 0.504 | ||||
IOM (+) area density | 0.98 | (0.92–1.03) | 0.408 | ||||
Caudate nucleus iodine concentration | 0.28 | (0.00–36.00) | 0.606 | ||||
Caudate nucleus density | 1.08 | (0.96–1.21) | 0.216 | ||||
Superior sagittal sinus iodine concentration | 0.30 | (0.05–1.80) | 0.188 | ||||
Superior sagittal sinus density | 0.99 | (0.94–1.04) | 0.637 | ||||
Ischemic volume (mm3) by MRI | 1.00 | (1.00–1.00) | 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-Y.; Liao, N.-C.; Huang, J.-A.; Chen, W.-H.; Chen, H.-C. Predictive Value of Clinical and Dual-Energy Computed Tomography Parameters for Hemorrhagic Transformation and Long-Term Outcomes Following Endovascular Thrombectomy. Diagnostics 2024, 14, 2598. https://doi.org/10.3390/diagnostics14222598
Huang S-Y, Liao N-C, Huang J-A, Chen W-H, Chen H-C. Predictive Value of Clinical and Dual-Energy Computed Tomography Parameters for Hemorrhagic Transformation and Long-Term Outcomes Following Endovascular Thrombectomy. Diagnostics. 2024; 14(22):2598. https://doi.org/10.3390/diagnostics14222598
Chicago/Turabian StyleHuang, Shiu-Yuan, Nien-Chen Liao, Jin-An Huang, Wen-Hsien Chen, and Hung-Chieh Chen. 2024. "Predictive Value of Clinical and Dual-Energy Computed Tomography Parameters for Hemorrhagic Transformation and Long-Term Outcomes Following Endovascular Thrombectomy" Diagnostics 14, no. 22: 2598. https://doi.org/10.3390/diagnostics14222598
APA StyleHuang, S. -Y., Liao, N. -C., Huang, J. -A., Chen, W. -H., & Chen, H. -C. (2024). Predictive Value of Clinical and Dual-Energy Computed Tomography Parameters for Hemorrhagic Transformation and Long-Term Outcomes Following Endovascular Thrombectomy. Diagnostics, 14(22), 2598. https://doi.org/10.3390/diagnostics14222598