Identification of Pre-Heart Failure in Early Stages: The Role of Six Stages of Heart Failure
Abstract
:1. Introduction
2. Risk Factors of Pre-Heart Failure (PHF)
3. Effects of Behavioral Risk Factors on Development of Pre-Heart Failure
4. Mechanisms and Pathophysiology of Pre-Heart Failure (PHF)
5. Effect of Biological Risk Factor on Pre-Heart Failure
6. Speckle-Tracking Echocardiography via 2D and 3D Echocardiography
7. Effects of Hypertension (HTN) on Development of Pre-Heart Failure (PHF)
8. Effects of Obesity, Diabetes, and Metabolic Syndrome on Pre-Heart Failure
9. Oxidative Function and Dysfunction in the Pathogenesis of Pre-Heart Failure
10. Modalities in Assessing Heart Failure
11. Limitations and Disadvantages
12. Prevention Strategies for Pre-Heart Failure and Consequences for Clinical Cardiologists
13. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [PubMed]
- Singh, R.B.; Fedacko, J.; Pella, D.; Fatima, G.; Elkilany, G.; Moshiri, M.; Hristova, K.; Jakabcin, P.; Vaňova, N. High Exogenous Antioxidant, Restorative Treatment (Heart) for Prevention of the Six Stages of Heart Failure: The Heart Diet. Antioxidants 2022, 11, 1464. [Google Scholar] [CrossRef] [PubMed]
- Stages of Heart Failure. Available online: https://my.clevelandclinic.org/health/diseases/17069-heart-failure-understanding-heart-failure#management-and-treatment (accessed on 1 January 2024).
- Muraru, D.; Niero, A.; Rodriguez-Zanella, H.; Cherata, D.; Badano, L. Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three dimensional imaging. Cardiovasc. Diagn. Ther. 2018, 8, 101–117. [Google Scholar] [CrossRef]
- Congestive Heart Failure: Symptoms, Causes, Treatment, Types, Stages. Available online: https://www.webmd.com/heart-disease/guide-heart-failure (accessed on 2 January 2024).
- Mann, D.L.; Bristow, M.R. Mechanisms and models in heart failure: The biomechanical model and beyond. Circulation 2005, 111, 2837–2849. [Google Scholar] [CrossRef] [PubMed]
- Halabi, A.; Yang, H.; Wright, L.; Potter, E.; Huynh, Q.; Negishi, K.; Marwick, T.H. Evolution of myocardial dysfunction in asymptomatic patients at risk of heart failure. JACC Cardiovasc. Imaging 2021, 14, 350–361. [Google Scholar] [CrossRef]
- Rahamim, E.; Nachman, D.; Yagel, O.; Yarkoni, M.; Elbaz-Greener, G.; Amir, O.; Asleh, R. Contemporary Pillars of heart failure with reduced ejection fraction medical therapy. J. Clin. Med. 2021, 10, 4409. [Google Scholar] [CrossRef]
- Singh, R.B.; Elkilany, G.; Fedacko, J.; Hristova, K. (Eds.) The Six Stages of Chronic Heart Failure. In Chronic Heart Failure; Pathophysiology and Management; Elsevier: Cambridge, MA, USA, 2024. [Google Scholar]
- Singh, R.B.; Komatsu, T.; Lee, M.C.; Dewi, M.; Watanabe, S. Effects of behavioral risk factors, with reference to smoking on cardiomyocyte dysfunction. World Heart J. 2020, 11, 191–196. [Google Scholar]
- Elkilany, G.N.; Merril, E.; Ajash, H.; Singh, R.B.; Elkilany, G.Y.; Allah, S.B.; Nanda, N.C.; Singh, J.; Kabbash, I.; Sozzi, F. Prediction of preclinical myocardial dysfunction among obese diabetics with preserved ejection fraction using tissue doppler imaging and speckle tracking echocardiography. World Heart J. 2020, 12, 31–40. [Google Scholar]
- Baath, A.S.; Singh, J.; Elsaady, A.; Singh, R.B.; Elmahal, M.; Lohana, P.; Elkilany, G.E. Advances in cardiac imaging via speckle tracking echocardiography and allied techniques: Early diagnosis of heart failure. World Heart J. 2021, 13, 391–406. [Google Scholar]
- Singh, R.B.; Fedacko, J.; Elkilany, G.; Hristova, K.; Palmiero, P.; Pella, D.; Cornelissen, G.; Isaza, A.; Pella, D. 2020 Guidelines on Pre-Heart Failure in the Light of 2D and 3D Speckle Tracking Echocardiography. A Scientific Statement of the International College of Cardiology. World Heart J. 2020, 12, 51–70. [Google Scholar]
- Singh, R.B.; Sozzi, F.B.; Fedacko, J.; Hristova, K.; Fatima, G.; Pella, D.; Cornelissen, G.; Isaza, A.; Pella, D.; Singh, J.; et al. Pre-heart failure at 2D- and 3D-speckle tracking echocardiography: A comprehensive review. Echocardiography 2022, 39, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Singh, R.B.; Haruichi, R.; Takahashi, T. Can high sugar diets induce chronic heart failure? World Heart J. 2017, 9, 189–192. [Google Scholar]
- Tikellis, C.; Thomas, M.C.; Harcourt, B.E.; Coughlan, M.T.; Pete, J.; Bialkowski, K.; Tan, A.; Bierhaus, A.; Cooper, M.E.; Forbes, J.M. Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E323–E330. [Google Scholar] [CrossRef]
- Ilgenli, T.F.; Akpinar, O. Acute effects of smoking on right ventricular function. Swiss Med. Wkly. 2007, 137, 91–96. [Google Scholar]
- van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Fedacko, J.; Goyal, R.; Rai, R.H.; Nandave, M.; Tonk, R.K.; Gaur, S.S.; Gautam, R.; Chibisov, S. Pathophysiology and significance of troponin t, in heart failure, with reference to behavioural risk factors. World Heart J. 2020, 12, 15–22. [Google Scholar]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Impact of Mental Stress on cardiovascular Health—Part II. J. Clin. Med. 2022, 11, 4405. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Matsumoto, Y.; Kaneta, T.; Sugimura, K.; Takahashi, J.; Fukumoto, Y.; Takahashi, S.; Shimokawa, H. Evidence for brain. activation in patients with Takotsubo cardiomyopathy. Circ. J. 2014, 78, 256–258. [Google Scholar] [CrossRef]
- Pimple, P.; Lima, B.B.; Hammadah, M. Psychological distress and subsequent cardiovascular events in individuals with coronary artery disease. J. Am. Heart Assoc. 2019, 8, e011866. [Google Scholar] [CrossRef]
- Song, H.; Fang, F.; Arnberg, F.K.; Mataix-Cols, D.; de la Cruz, L.F.; Almqvist, C.; Fall, K.; Lichtenstein, P.; Thorgeirsson, G.; Valdimarsdóttir, U.A. Stress related disorders and risk of cardiovascular disease: Population based, sibling controlled cohort study. BMJ 2019, 365, l1255, Correction BMJ 2019, 365, l1850. [Google Scholar] [CrossRef]
- Barbiero, S.; Aimo, A.; Castiglione, V.; Giannoni, A.; Vergaro, G.; Passino, C.; Emdin, M. Healthy hearts at hectic pace: From daily life stress to abnormal cardiomyocyte function and arrhythmias. Eur. J. Prev. Cardiol. 2018, 25, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Aweimer, A.; Engemann, L.; Amar, S.; Ewers, A.; Afshari, F.; Maiß, C.; Kern, K.; Lücke, T.; Mügge, A.; El-Battrawy, I.; et al. Stress-Mediated Abnormalities in Regional Myocardial Wall Motion in Young Women with a History of Psychological Trauma. J. Clin. Med. 2023, 12, 6702. [Google Scholar] [CrossRef] [PubMed]
- Cristine, J.R.; Tami, A.M. Disruption of circadian rhythms and sleep on critical illness and the impact on cardiovascular events. Curr. Pharm. Des. 2015, 21, 3505–3511. [Google Scholar]
- Khayat, R.; Abraham, W.; Patt, B. Central sleep apnea is a predictor of cardiac readmission in hospitalised patients with systolic heart failure. J. Card. Fail. 2012, 18, 534–540. [Google Scholar] [CrossRef]
- Seyedian, S.M.; Majididi, S.; Asgharinejad, L.; Esmaeili, M.; Ahmadi, F.; Salemzadeh, M. Acute and chronic effect of cigarette on right and left ventricular diastolic function. Jentashapir J. Health Res. 2015, 6, e25889. [Google Scholar] [CrossRef]
- Morimoto, A.; Tatsumi, Y.; Deura, K.; Mizuno, S.; Ohno, Y.; Watanabe, S. Impact of cigarette smoking on impaired insulin secretion and insulin resistance in Japanese men: The Saku Study. J. Diabetes Investig. 2013, 4, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Meng, Y.H.; Chang, S.; Zhang, R.Y.; Shi, C. High fructose causes cardiac hypertrophy via mitochondrial signalling pathway. Am. J. Transl. Res. 2016, 8, 4869–4880. [Google Scholar] [PubMed]
- Santos, C.X.; Anilkumar, N.; Zhang, M.; Brewer, A.C.; Shah, A.M. Redox signalling in cardiac myocytes. Free Radic. Biol. Med. 2011, 50, 777–793. [Google Scholar] [CrossRef]
- Butler, T.J.; Ashford, D.; Seymour, A.M. Western diet increases cardiac ceramide content in healthy and hypertrophied hearts. Nutr. Metab. Cardiovas. Dis. 2017, 27, 991–998. [Google Scholar] [CrossRef]
- Singh, R.B.; Hristova, K.; Fedacko, J.; Singhal, S.; Khan, S.; Wilson, D.W.; Takahashi, T.; Sharma, Z. Antioxidant vitamins and oxidative stress in chronic heart failure. World Heart J. 2015, 7, 257–264. [Google Scholar]
- Weir, R.A.P.; Tsorlalis, I.K.; Steedman, T.; Dargie, H.J.; Fraser, R.; McMurray, J.J.V.; Connell, J.M.C. Aldosterone and cortisol predict medium-term left ventricular remodelling following myocardial infarction. Eur. J. Heart Fail. 2011, 13, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Elkilany, G.; Visen, A.S.; Visen, S.S. The puzzle of diastole and imbalance of risk factors and protective factors. World Heart J. 2021, 13, 487–497. [Google Scholar]
- Snelder, S.M.; de Groot-de Laat, L.E.; Biter, L.U.; Castro Cabezas, M.; Pouw, N.; Birnie, E.; Boxma-de Klerk, B.M.; Klaassen, R.A.; Zijlstra, F.; van Dalen, B.M. Subclinical cardiac dysfunction in obesity patients is linked to autonomic dysfunction: Findings from the CARDIOBESE study. ESC Heart Fail. 2020, 7, 3726–3737. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, G.A.; Wang, J.; Jiao, Y.W.; Qian, Z.F.; Fan, L.; Tang, L.M. Evaluation of subclinical left ventricular systolic dysfunction in obese patients by global myocardial work. Diabetol. Metab. Syndr. 2023, 15, 254. [Google Scholar] [CrossRef]
- Elkilany, G.E.; Ghobashi, A.S.; Salama, M.; Singh, J.; Allah, S.B.; Elmahal, M.; Singh, R.; Nanda, N.C. Prevalence and sub clinical detection of concomitant dilated cardiomyopathy in subjects with bicuspid aortic valves. J. Cardiol. Cardiovasc. Ther. 2020, 16, 4–8. [Google Scholar]
- Elkilany, G.N.; Baath Allah, S.; Lohana, P.; Sozzi, F.; Singh, J.; Khorshid, M.; Singh, R.B.; Aiash, H. Sub-clinical detection of left ventricular myocardial dysfunction in valvular heart diseases: A state-of-the-art review in a speckle tracking echocardiography and myocardial performance. J. Cardiol. Res. Rev. Rep. 2020, 1, 11–13. [Google Scholar] [CrossRef]
- Oh, J.K.; Park, J.H. Role of strain echocardiography in patients with hypertension. Clin. Hypertens. 2022, 28, 6. [Google Scholar] [CrossRef]
- Imbalzano, E.; Zito, C.; Carerj, S.; Oreto, G.; Mandraffino, G.; Cusmà-Piccione, M.; di Bella, G.; Saitta, C.; Saitta, A. Left ventricular function in hypertension: New insight by speckle tracking echocardiography. Echocardiography 2011, 28, 649–657. [Google Scholar] [CrossRef]
- Kang, S.J.; Lim, H.S.; Choi, B.J.; Choi, S.Y.; Hwang, G.S.; Yoon, M.H.; Tahk, S.J.; Shin, J.H. Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J. Am. Soc. Echocardiogr. 2008, 21, 907–911. [Google Scholar] [CrossRef]
- Ghoreyshi-Hefzabad, S.M.; Jeyaprakash, P.; Vo, H.Q.; Gupta, A.; Ozawa, K.; Pathan, F.; Negishi, K. Subclinical systolic dysfunction detected by 2D speckle tracking echocardiography in adults with diabetes mellitus: Systematic review and meta-analysis of 6668 individuals with diabetes mellitus and 7218 controls. Int. J. Cardiovasc. Imaging 2023, 39, 977–989. [Google Scholar] [CrossRef]
- Apostu, A.; Malita, D.; Arnautu, S.F.; Tomescu, M.C.; Gaiță, D.; Popescu, A.; Mare, R.; Gidea, R.; Arnautu, D.A. Significant Association between Subclinical Left Cardiac Dysfunction and Liver Stiffness in Metabolic Syndrome Patients with Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. Medicina (Kaunas) 2023, 59, 328. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, V.A.; Krutikov, E.S.; Chistyakova, S.I. Subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Probl. Endokrinol. 2020, 66, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E.A.V. Cellular and molecular differences between HFpEF and HFrEF: A step ahead in an improved pathological understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Suh, Y.J.; Baek, Y.S.; Lee, M.J.; Park, S.D.; Kwon, S.W.; Woo, S.I.; Kim, D.H.; Park, K.S.; Kwan, J. Impact of area strain by 3D speckle tracking on clinical outcome in patients after acute myocardial infarction. Echocardiography 2016, 33, 1854–1859. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.P.; Tajik, A.J.; Chandrasekaran, K.; Khandheria, B.K. Twist mechanics of the left ventricle: Principles and application. JACC Cardiovasc. Imaging 2008, 1, 366–376. [Google Scholar] [CrossRef]
- Haugaa, K.H.; Dejgaard, L.A. Global longitudinal strain: Ready for clinical use and guideline implementation. J. Am. Coll. Cardiol. 2018, 71, 1958–1959. [Google Scholar] [CrossRef]
- Santoro, C.; Arpino, G.; Esposito, R.; Lembo, M.; Paciolla, I.; Cardalesi, C.; de Simone, G.; Trimarco, B.; De Placido, S.; Galderisi, M. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: A balance with feasibility. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 930–936. [Google Scholar] [CrossRef]
- Takimoto, E.; Kass, D.A. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 2007, 49, 241–248. [Google Scholar] [CrossRef]
- Singh, R.B.; Elkilany, G.; Fedacko, J.; Hristova, K.; Palmiero, P.; Singh, J.; Manal, M.A.; Badran, H.M. Evolution of the natural history of myocardial twist and diastolic dysfunction as cardiac dysfunction. In Chronic Heart Failure, Pathophysiology and Management; Singh, R.B., Fedacko, J., Elkilany, G., Hristova, K., Eds.; Elsevier: Cambridge, MA, USA, 2024. [Google Scholar]
- Marwick, T.H. Methods used for the assessment of LV systolic function: Common currency or tower of Babel? Heart 2013, 99, 1078–1086. [Google Scholar] [CrossRef]
- Baath Allah, S.; Elmahal, M.; Askar, M.H.; Singh, J.; Khorshid, M.H.; Lohana, P.; Fedacko, J.; Elkilany, G.E.N. Myocardial deformation imaging meta-analysis in two cohorts of patients from UAE and Heart Hospital Hamad Medical Corporation: A potential role in assessment of coronary artery disease severity and myocardial viability. J. Clin. Exp. Cardiolog. 2020, 11, 1–10. [Google Scholar]
- Johnson, C.; Kuyt, K.; Oxborough, D.; Stout, M. Practical tips and tricks in measuring strain, strain rate and twist for the left and right ventricles. Echo. Res. Pract. 2019, 6, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Abou, R.; van der Bijl, P.; Bax, J.J.; Delgado, V. Global longitudinal strain: Clinical use and prognostic implications in contemporary practice. Heart 2020, 106, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Torshin, V.I.; Chibisov, S.; Goyal, R.K.; Watanabe, S.; Nakagami, H.; Mogi, M.; Nayak, B.N. Can protective factors inculcate molecular adaptations of cardiomyocyte in the prevention of chronic heart failure? World Heart J. 2019, 11, 149–157. [Google Scholar]
- ICC; ICN; ISCN Committee. 2023 ICC/ICN/ISC Guideline for the Management of Heart Failure: A Report of the International College of Cardiology/International College of Nutrition and Indian Society of Chrono Medicine, Joint Committee on Guidelines, for Developing and Newly Industrialized Countries. ICC, ICN, ISCN Committee. World Heart J. 2023, 14, 127–151. [Google Scholar]
- Aggrawal, M.; Bozkurt, B.; Panjrath, G.; Aggrawal, B.; Ostfield, R.J.; Barnard, N.D.; Gaggin, H.; Freemen, A.; Allen, K.; Madan, S.; et al. Lifestyle modifications for preventing and treating heart failure. J. Amer. Coll. Cardiol. 2018, 72, 2391–2405. [Google Scholar] [CrossRef]
- Singh, R.B.; Elkilany, G.; Hristova, K.; Fedacko, J.; Elmarghi, O.; Chakravorty, S.; Shukla, A.K.; Jain, M.; Agarwal, A.; Yaduvanshi, A.; et al. Current controversies persisting in the recent guidelines for identification and classification of chronic heart failure. World Heart J. 2022, 14, 257–263. [Google Scholar]
- Khouri, M.G.; Peshock, R.M.; Ayers, C.R.; de Lemos, J.A.; Drazner, M.H. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: The Dallas heart study. Circ. Cardiovasc. Imaging 2010, 3, 164–171. [Google Scholar] [CrossRef]
- Yuda, S. Current clinical applications of speckle tracking echocardiography for assessment of left atrial function. J. Echocardiogr. 2021, 19, 129–140. [Google Scholar] [CrossRef]
- Lacalzada, J.; de la Rosa, A.; Izquierdo, M.M.; Jiménez, J.J.; Iribarren, J.L.; García-González, M.J.; López, B.M.; Duque, M.A.; Barragán, A.; Hernández, C.; et al. Left ventricular global longitudinal systolic strain predicts adverse remodeling and subsequent cardiac events in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Int. J. Cardiovasc. Imaging 2015, 31, 575–584. [Google Scholar] [CrossRef]
- Cong, T.; Sun, Y.; Shang, Z.; Wang, K.; Su, D.; Zhong, L.; Zhang, S.; Yang, Y. Prognostic value of speckle tracking echocardiography in patients with ST-elevation myocardial infarction treated with late percutaneous intervention. Echocardiography 2015, 32, 1384–1391. [Google Scholar] [CrossRef]
- Hordern, M.D.; Coombes, J.S.; Cooney, L.M.; Jeffrises, L.; Prins, J.B.; Marwick, T.H. Effects of exercise intervention on myocardial function in type 2 diabetes. Heart 2009, 95, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Laffond, A.; Picon, C.R.; Rodriguez- Munoz, P.M.; Vela, R.J.; Vinhaspre-Hernandez, R.R.; Navas-Echavarria, N.; Sánchez-González, J.L. Mediterranean diet for primary and secondary prevention of cardiovascular disease and mortality: An updated systematic review. Nutrients 2023, 15, 3356. [Google Scholar] [CrossRef] [PubMed]
- American Heart Association. American Heart Association Recommendations for Physical Activity in Adults and Kids. Available online: https://www.heart.org/en/healthy-living/fitness/fitness-basics/aha-recs-for-physical-activity-in-adults (accessed on 28 January 2024).
Behavioral Risk Factors | Biological Risk Factors | Protective Factors |
---|---|---|
Western diet | Hypertension | Mediterranean-style diet |
Tobacco use | Diabetes mellitus | Exercise training |
Alcoholism | Coronary artery disease | Yoga posture |
Mental disorders | Metabolic syndrome | Circadian restricted, day eating |
Cardiotoxic drugs; cancer drugs | Rheumatic heart disease | Intermittent fasting |
Sleep disorders | Cardiomyopathy | Optimal sleep |
Sedentary behavior | Obesity | Meditation and prayer |
Stages of HF | Tobacco Smoking | Alcoholism | Western Diets | Sleep Disorders | Emotional Disorders | Sedentary Behaviors |
---|---|---|---|---|---|---|
Stage A | Normal GLS | Normal GLS | Normal GLS | Normal GLS | Normal GLS | Normal GLS |
Stage B | Normal GLS | Preserved GLS | Normal GLS | Preserved GLS | Normal GLS | Normal GLS |
Stage C | Preserved GLS | Preserved or reduced GLS | Preserved GLS | Preserved or reduced GLS | Preserved GLS | Preserved GLS |
Stage D | Slightly Reduced GLS | Reduced GLS | Slightly Reduced GLS | Reduced GLS | Slightly Reduced GLS | Slightly Reduced GLS |
Stage E | Moderately reduced GLS | Heavily reduced GLS | Moderately reduced GLS | Heavily reduced GLS | Heavily reduced GLS | Heavily reduced GLS |
Stage F | Heavily reduced GLS | Heavily reduced GLS | Heavily reduced GLS | Heavily reduced GLS | Heavily reduced GLS | Heavily reduced GLS |
Stages of Chronic Heart Failure | Obesity | Diabetes | Hypertension | CAD |
---|---|---|---|---|
Pre-heart Failure Stage 1 Dysfunction of the twist | Normal or slightly increased LVT, UNTR | Normal or slightly decreased GLS | Increased LVT | Slightly decreased LVT, UNTR |
Pre-heart failure Stage 2 Sub-endocardial dysfunction | Slightly decreased GLS, LVT, UNTR | Slightly decreased GLS, LVT, UNTR | Increased LVT, delayed UNTR Decreased GLS | Decreased LVT, GLS |
Pre-heart failure Stage 3 Asymptomatic physio-pathological remodeling+ | Slightly increased LVT, preserved GLS | Moderate decreased GLS, LVT, UNTR | slightly increased LVT, delayed UNTR, preserved GLS | Decreased LVT, GLS |
Complete heart failure Stage 4, LVH, symptomatic, diastolic dysfunction | Decreased LVT, UNTR, depressed GLS | Decreased GLS, LVT, UNTR | Preserved LVT, delayed or decreased UNTR, decreased GLS | Decreased LVT, decreased and delayed UNTR, decreased GLS |
Complete heart failure Stage 5, Severe LVH | Decreased LVT, UNTR, GLS | Decreased LVT, UNTR, GLS | Decreased LVT UNTR, GLS | Decreased LVT, UNTR, GLS |
Complete heart failure Stage 6, Severe LVH | Decreased LVT, UNTR, GLS | Decreased LVT, UNTRGLS | Decreased LVT, UNTR, GLS | Decreased LVT, UNTR, GLS |
Stages (HT on HF) | Manifestations | 2D Echocardiography | 2D Speckle-Tracking Echo | 3D Speckle-Tracking Echo |
---|---|---|---|---|
Stage A | Mild to moderate Oxidative dysfunction, neuro-humoral dysfunction begins. | Increasing filling pressure with abnormal relaxation. | Dysfunctional untwist rate. LA strain reduced. | Dysfunctional untwist rate, LA strain reduced. |
Stage B | Moderate oxidative dysfunction, hyper-rotation. Sub-endocardial dysfunction. | Dysfunction of systole. | Dysfunctional untwist rate and increased diastolic pressure. LA strain decreased. | Dysfunctional untwist rate and increased diastolic pressure. LA strain decreased. |
Stage C, PHF | Asymptomatic Physio-Pathological remodeling+. | EF% normal > 53% | Normal GLS −20–−23% ≥−27.0% area strain | Normal GLS −17–21% Normal AS −31–−36% |
Stage D, PHF and HFpEF | Pathological remodeling disease without symptoms of HF but elevated Natriuretic peptide, dyspnea on exertion. | EF% ≥ 50% Systolic LV dysfunction. | EF% 40–49% Impaired GLS −16–20% Impaired GCS, GRS Impaired early diastolic SR, right ventricular LS, and global RV longitudinal SR. | Impaired GLS−16–20% Impaired AS −27–31% |
Stage E, HFmrEF | Structural heart disease with symptoms of HF. | EF% 40–49% Grade 1, diastolic dysfunction. | Reduced GLS−12–16%, reduced GCS, GRS, treat with ACE, ARB.ARNI. | GLS ≤ −16% AS ≤ −27% |
Stage F, HFrEF | Refractory class III HF. | EF% < 40% | All above GLS < −12%, treated with ARNI | GLS < −13% AS < −27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankajova, M.; Singh, R.B.; Hristova, K.; Elkilany, G.; Fatima, G.; Singh, J.; Fedacko, J. Identification of Pre-Heart Failure in Early Stages: The Role of Six Stages of Heart Failure. Diagnostics 2024, 14, 2618. https://doi.org/10.3390/diagnostics14232618
Jankajova M, Singh RB, Hristova K, Elkilany G, Fatima G, Singh J, Fedacko J. Identification of Pre-Heart Failure in Early Stages: The Role of Six Stages of Heart Failure. Diagnostics. 2024; 14(23):2618. https://doi.org/10.3390/diagnostics14232618
Chicago/Turabian StyleJankajova, Monika, Ram B. Singh, Krasimira Hristova, Galal Elkilany, Ghizal Fatima, Jaipaul Singh, and Jan Fedacko. 2024. "Identification of Pre-Heart Failure in Early Stages: The Role of Six Stages of Heart Failure" Diagnostics 14, no. 23: 2618. https://doi.org/10.3390/diagnostics14232618
APA StyleJankajova, M., Singh, R. B., Hristova, K., Elkilany, G., Fatima, G., Singh, J., & Fedacko, J. (2024). Identification of Pre-Heart Failure in Early Stages: The Role of Six Stages of Heart Failure. Diagnostics, 14(23), 2618. https://doi.org/10.3390/diagnostics14232618