Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review
Abstract
:1. Introduction
2. Methods
3. HFpEF: Definition, Overview of Pathophysiology, and Biomarkers
4. Adipokines in the Context of Cardiometabolic HFpEF
4.1. Leptin
- ▪
- The first focuses on improving leptin sensitivity in the hypothalamus to promote satiety and in peripheral extracardiac tissues to enhance insulin sensitivity. Weight loss through restrictive diets and lifestyle modifications has been shown to improve leptin sensitivity, aiding in sustained weight management and reducing the risk of obesity-related comorbidities, including CVD. Leptin-sensitizing agents enhance leptin signaling and can counteract leptin resistance. Potential drugs include celastrol, which improves hypothalamic leptin signaling and energy expenditure via interleukin-1 receptor 1 (IL1R1) upregulation, and withaferin A, which reduces fat mass and improves leptin sensitivity by promoting LEP-R signaling and the signal transducer and activator of transcription 3 (STAT3) phosphorylation. Other agents, such as metformin, resveratrol, and glucagon-like peptide-1 receptor agonists (GLP-1RAs), restore endogenous leptin function and enhance anorectic (appetite-suppressing) effects. Additionally, inhibitors of leptin signaling suppressors, like the suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) (e.g., trodusquemine), show promise in preclinical models. Strategies to improve leptin transport across the blood–brain barrier or modulate leptin receptor endocytosis also offer potential. While some therapies, such as metreleptin combined with pramlintide, have shown weight loss benefits, challenges include variability in clinical efficacy, adverse effects, and the need for further research to optimize therapeutic use in hyperleptinemic patients [18,56].
- ▪
- The second approach focuses on inhibiting leptin signaling specifically in cardiovascular tissues. The development of cardioselective leptin receptor antagonists holds potential for mitigating the adverse effects of chronic hyperleptinemia on the cardiovascular system. However, since leptin also exerts beneficial effects on cardiac metabolism and lipid regulation, interventions targeting leptin’s actions in the heart must be approached with caution. This is particularly important considering the findings from the GENOA study, which underscore the complex and context-dependent roles of leptin in cardiovascular health [18,54,55].
4.2. Adiponectin
4.3. Resistin
4.4. Implications in Exercise Capacity in HFpEF
4.5. Other Adipokines
5. Gaps in Evidence and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosano, G.M.C.; Seferovic, P.; Savarese, G.; Spoletini, I.; Lopatin, Y.; Gustafsson, F.; Bayes-Genis, A.; Jaarsma, T.; Abdelhamid, M.; Miqueo, A.G.; et al. Impact Analysis of Heart Failure Across European Countries: An ESC-HFA Position Paper. ESC Heart Fail. 2022, 9, 2767–2778. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.A.A.; Reinhardt, S.W.; Chouairi, F.; Miller, P.E.; Kay, B.; Fuery, M.; Guha, A.; Ahmad, T.; Desai, N.R. Trends in Heart Failure Hospitalizations in the US from 2008 to 2018. J. Card. Fail. 2022, 28, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Gavina, C.; Carvalho, D.S.; Valente, F.; Bernardo, F.; Dinis-Oliveira, R.J.; Santos-Araújo, C.; Taveira-Gomes, T. 20 Years of Real-World Data to Estimate the Prevalence of Heart Failure and Its Subtypes in an Unselected Population of Integrated Care Units. J. Cardiovasc. Dev. Dis. 2022, 9, 149. [Google Scholar] [CrossRef]
- Capone, F.; Vettor, R.; Schiattarella, G.G. Cardiometabolic HFpEF: NASH of the Heart. Circulation 2023, 147, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J. Card. Fail. 2021, 27, 387–413. [Google Scholar]
- Saw, E.L.; Ramachandran, S.; Valero-Muñoz, M.; Sam, F. Skeletal Muscle (Dys)Function in Heart Failure with Preserved Ejection Fraction. Curr. Opin. Cardiol. 2021, 36, 219–226. [Google Scholar] [CrossRef]
- Liu, D.; Li, N.; Zhou, Y.; Wang, M.; Song, P.; Yuan, C.; Shi, Q.; Chen, H.; Zhou, K.; Wang, H.; et al. Sex-Specific Associations Between Skeletal Muscle Mass and Incident Diabetes: A Population-Based Cohort Study. Diabetes Obes. Metab. 2024, 26, 820–828. [Google Scholar] [CrossRef]
- de Boer, R.A.; Nayor, M.; de Filippi, C.R.; Enserro, D.; Bhambhani, V.; Kizer, J.R.; Blaha, M.J.; Brouwers, F.P.; Cushman, M.; Lima, J.A.C.; et al. Association of Cardiovascular Biomarkers with Incident Heart Failure with Preserved and Reduced Ejection Fraction. JAMA Cardiol. 2018, 3, 215–224. [Google Scholar] [CrossRef]
- Takvorian, K.S.; Wang, D.; Courchesne, P.; Vasan, R.S.; Benjamin, E.J.; Cheng, S.; Larson, M.G.; Levy, D.; Ho, J.E. The Association of Protein Biomarkers with Incident Heart Failure with Preserved and Reduced Ejection Fraction. Circ. Heart Fail. 2023, 16, e009446. [Google Scholar] [CrossRef]
- Liu, D.; Liu, L.; Li, N.; Zhou, Y.; Huang, H.; He, J.; Yao, H.; Chen, X.; Tang, X.; Wang, M.; et al. Aspartate Aminotransferase to Alanine Aminotransferase Ratio and Short-Term Prognosis of Patients with Type 2 Diabetes Hospitalized for Heart Failure. Arch. Med. Sci. 2024, 20, 1416–1425. [Google Scholar] [CrossRef]
- Packer, M. Leptin-Aldosterone-Neprilysin Axis: Identification of Its Distinctive Role in the Pathogenesis of the Three Phenotypes of Heart Failure in People with Obesity. Circulation 2018, 137, 1614–1631. [Google Scholar] [CrossRef]
- Zwick, R.K.; Guerrero-Juarez, C.F.; Horsley, V.; Plikus, M.V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab. 2018, 27, 68–83. [Google Scholar] [CrossRef]
- Hemat Jouy, S.; Mohan, S.; Scichilone, G.; Mostafa, A.; Mahmoud, A.M. Adipokines in the Crosstalk Between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024, 12, 2129. [Google Scholar] [CrossRef]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J.; et al. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 2338. [Google Scholar] [CrossRef]
- Poetsch, M.S.; Strano, A.; Guan, K. Role of Leptin in Cardiovascular Diseases. Front. Endocrinol. 2020, 11, 354. [Google Scholar] [CrossRef]
- Evans, M.C.; Lord, R.A.; Anderson, G.M. Multiple Leptin Signaling Pathways in the Control of Metabolism and Fertility: A Means to Different Ends? Int. J. Mol. Sci. 2021, 22, 9210. [Google Scholar] [CrossRef]
- Hall, M.E.; Harmancey, R.; Stec, D.E. Lean Heart: Role of Leptin in Cardiac Hypertrophy and Metabolism. World J. Cardiol. 2015, 7, 511–524. [Google Scholar] [CrossRef]
- Mark, A.L. Selective Leptin Resistance Revisited. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R566–R581. [Google Scholar] [CrossRef]
- Faulkner, J.L.; Bruder-Nascimento, T.; Belin de Chantemele, E.J. The Regulation of Aldosterone Secretion by Leptin: Implications in Obesity-Related Cardiovascular Disease. Curr. Opin. Nephrol. Hypertens. 2018, 27, 63–69. [Google Scholar] [CrossRef]
- Packer, M. Derangements in Adrenergic-Adipokine Signaling Establish a Neurohormonal Basis for Obesity-Related Heart Failure with a Preserved Ejection Fraction. Eur. J. Heart Fail. 2018, 20, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Vaduganathan, M.; Claggett, B.; Jhund, P.S.; Desai, A.S.; Henderson, A.D.; Lam, C.S.; Pitt, B.; Senni, M.; et al. Finerenone in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2024, 391, 1475–1485. [Google Scholar] [CrossRef]
- Correia, M.L.; Morgan, D.A.; Sivitz, W.I.; Mark, A.L.; Haynes, W.G. Leptin Acts in the Central Nervous System to Produce Dose-Dependent Changes in Arterial Pressure. Hypertension 2001, 37, 936–942. [Google Scholar] [CrossRef]
- Martinez-Martinez, E.; Jurado-Lopez, R.; Valero-Munoz, M.; María Bartolomé, V.; Ballesteros, S.; Luaces, M.; Briones, A.M.; López-Andrés, N.; Miana, M.; Cachofeiro, V. Leptin Induces Cardiac Fibrosis through Galectin-3, mTOR and Oxidative Stress: Potential Role in Obesity. J. Hypertens. 2014, 32, 1104–1114. [Google Scholar] [CrossRef]
- Na, T.; Dai, D.Z.; Tang, X.Y.; Dai, Y. Upregulation of Leptin Pathway Correlates with Abnormal Expression of SERCA2a, Phospholamban and the Endothelin Pathway in Heart Failure and Reversal by CPU86017. Naunyn-Schmiedebergs Arch. Pharmacol. 2007, 375, 39–49. [Google Scholar] [CrossRef]
- Jia, G.; Hill, M.A.; Sowers, J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ. Res. 2018, 122, 624–638. [Google Scholar] [CrossRef]
- Nakamura, K.; Miyoshi, T.; Yoshida, M.; Akagi, S.; Saito, Y.; Ejiri, K.; Matsuo, N.; Ichikawa, K.; Iwasaki, K.; Naito, T.; et al. Pathophysiology and Treatment of Diabetic Cardiomyopathy and Heart Failure in Patients with Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 3587. [Google Scholar] [CrossRef]
- Lourenco, A.P.; Leite-Moreira, A.F.; Balligand, J.L.; Bauersachs, J.; Dawson, D.; de Boer, R.A.; de Windt, L.J.; Falcão-Pires, I.; Fontes-Carvalho, R.; Franz, S.; et al. An Integrative Translational Approach to Study Heart Failure with Preserved Ejection Fraction: A Position Paper from the Working Group on Myocardial Function of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 216–227. [Google Scholar] [CrossRef]
- D’Elia, L.; Giaquinto, A.; de Simone, G.; Iacone, R.; Russo, O.; Strazzullo, P.; Galletti, F. Leptin Levels Predict the Development of Left Ventricular Hypertrophy in a Sample of Adult Men: The Olivetti Heart Study. J. Hypertens. 2021, 39, 692–697. [Google Scholar] [CrossRef]
- Packer, M. Do Sodium-Glucose Co-Transporter-2 Inhibitors Prevent Heart Failure with a Preserved Ejection Fraction by Counterbalancing the Effects of Leptin? A Novel Hypothesis. Diabetes Obes. Metab. 2018, 20, 1361–1366. [Google Scholar] [CrossRef]
- Martens, P.; Mathieu, C.; Verbrugge, F.H. Promise of SGLT2 Inhibitors in Heart Failure: Diabetes and Beyond. Curr. Treat. Options Cardiovasc. Med. 2017, 19, 23. [Google Scholar] [CrossRef]
- Xu, L.; Ota, T. Emerging Roles of SGLT2 Inhibitors in Obesity and Insulin Resistance: Focus on Fat Browning and Macrophage Polarization. Adipocyte 2018, 7, 121–128. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomized Controlled Trials. Lancet 2022, 400, 757–767. [Google Scholar] [CrossRef]
- Martínez-Martínez, E.; Miana, M.; Jurado-López, R.; Bartolomé, M.V.; Neto, F.V.S.; Salaices, M.; López-Andrés, N.; Cachofeiro, V. The Potential Role of Leptin in the Vascular Remodeling Associated with Obesity. Int. J. Obes. 2014, 38, 1565–1572. [Google Scholar] [CrossRef]
- Mellott, E.; Faulkner, J.L. Mechanisms of Leptin-Induced Endothelial Dysfunction. Curr. Opin. Nephrol. Hypertens. 2023, 32, 118–123. [Google Scholar] [CrossRef]
- Kirichenko, T.V.; Markina, Y.V.; Bogatyreva, A.I.; Tolstik, T.V.; Varaeva, Y.R.; Starodubova, A.V. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int. J. Mol. Sci. 2022, 23, 14982. [Google Scholar] [CrossRef]
- Su, X.; Peng, D. Emerging Functions of Adipokines in Linking the Development of Obesity and Cardiovascular Diseases. Mol. Biol. Rep. 2020, 47, 7991–8006. [Google Scholar] [CrossRef]
- Singhal, A.; Farooqi, I.S.; Cole, T.J.; O’Rahilly, S.; Fewtrell, M.; Kattenhorn, M.; Lucas, A.; Deanfield, J. Influence of Leptin on Arterial Distensibility: A Novel Link between Obesity and Cardiovascular Disease? Circulation 2002, 106, 1919–1924. [Google Scholar] [CrossRef]
- Tsai, J.P.; Wang, J.H.; Chen, M.L.; Yang, C.-F.; Chen, Y.-C.; Hsu, B.-G. Association of Serum Leptin Levels with Central Arterial Stiffness in Coronary Artery Disease Patients. BMC Cardiovasc. Disord. 2016, 16, 80. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Sánchez-Jiménez, F.; Vilariño-García, T.; Sánchez-Margalet, V. Role of Leptin in Inflammation and Vice Versa. Int. J. Mol. Sci. 2020, 21, 5887. [Google Scholar] [CrossRef]
- Feijóo-Bandín, S.; Aragón-Herrera, A.; Moraña-Fernández, S.; Anido-Varela, L.; Tarazón, E.; Roselló-Lletí, E.; Portolés, M.; Moscoso, I.; Gualillo, O.; González-Juanatey, J.R.; et al. Adipokines and Inflammation: Focus on Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 7711. [Google Scholar] [CrossRef] [PubMed]
- Son, M.; Oh, S.; Choi, J.; Jang, J.T.; Choi, C.H.; Park, K.Y.; Son, K.H.; Byun, K. Attenuation of Inflammation and Leptin Resistance by Pyrogallol-Phloroglucinol-6,6-Bieckol on in the Brain of Obese Animal Models. Nutrients 2019, 11, 2773. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, A.G.; Crujeiras, A.B.; Casanueva, F.F.; Carreira, M.C. Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later? Nutrients 2019, 11, 2704. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Whincup, P.H.; Lennon, L.; Sattar, N. Obesity and Risk of Incident Heart Failure in Older Men with and without Pre-Existing Coronary Heart Disease: Does Leptin Have a Role? J. Am. Coll. Cardiol. 2011, 58, 1870–1877. [Google Scholar] [CrossRef]
- Lieb, W.; Sullivan, L.M.; Harris, T.B.; Roubenoff, R.; Benjamin, E.J.; Levy, D.; Fox, C.S.; Wang, T.J.; Wilson, P.W.; Kannel, W.B.; et al. Plasma Leptin Levels and Incidence of Heart Failure, Cardiovascular Disease, and Total Mortality in Elderly Individuals. Diabetes Care 2009, 32, 612–616. [Google Scholar] [CrossRef]
- Abd El-Aziz, T.A.; Mohamed, R.H.; Mohamed, R.H.; Pasha, H.F. Leptin, Leptin Gene and Leptin Receptor Gene Polymorphism in Heart Failure with Preserved Ejection Fraction. Heart Vessel. 2012, 27, 271–279. [Google Scholar] [CrossRef]
- Hegyi, B.; Mira Hernandez, J.; Ko, C.Y.; Hong, J.; Shen, E.Y.; Spencer, E.R.; Smoliarchuk, D.; Navedo, M.F.; Bers, D.M.; Bossuyt, J. Diabetes and Excess Aldosterone Promote Heart Failure with Preserved Ejection Fraction. J. Am. Heart Assoc. 2022, 11, e027164. [Google Scholar] [CrossRef]
- Bickel, C.; Schnabel, R.B.; Zeller, T.; Lackner, K.J.; Rupprecht, H.J.; Blankenberg, S.; Sinning, C.; Westermann, D. Predictors of Leptin Concentration and Association with Cardiovascular Risk in Patients with Coronary Artery Disease: Results from the AtheroGene Study. Biomarkers 2017, 22, 210–218. [Google Scholar] [CrossRef]
- Packer, M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J. Am. Coll. Cardiol. 2018, 71, 2360–2372. [Google Scholar] [CrossRef]
- Faxén, U.L.; Hage, C.; Andreasson, A.; Donal, E.; Daubert, J.-C.; Linde, C.; Brismar, K.; Lund, L.H. HFpEF and HFrEF Exhibit Different Phenotypes as Assessed by Leptin and Adiponectin. Int. J. Cardiol. 2017, 228, 709–716. [Google Scholar] [CrossRef]
- Chiu, C.Z.; Wang, B.W.; Shyu, K.G. Molecular Regulation of the Expression of Leptin by Hypoxia in Human Coronary Artery Smooth Muscle Cells. J. Biomed. Sci. 2015, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Rausch, L.K.; Hofer, M.; Pramsohler, S.; Kaser, S.; Ebenbichler, C.; Haacke, S.; Gatterer, H.; Netzer, N.C. Adiponectin, Leptin and Visfatin in Hypoxia and its Effect for Weight Loss in Obesity. Front. Endocrinol. 2018, 9, 615. [Google Scholar] [CrossRef]
- Shimada, Y.J. Is Leptin Protective Against Heart Failure with Preserved Ejection Fraction? A Complex Interrelationship Among Leptin, Obesity, and Left Ventricular Hypertrophy. Hypertens. Res. 2019, 42, 141–142. [Google Scholar] [CrossRef]
- Kamimura, D.; Suzuki, T.; Wang, W.; Deshazo, M.; Hall, J.E.; Winniford, M.D.; Kullo, I.J.; Mosley, T.H.; Butler, K.R.; Hall, M.E. Higher Plasma Leptin Levels Are Associated with Reduced Left Ventricular Mass and Left Ventricular Diastolic Stiffness in Black Women: Insights from the Genetic Epidemiology Network of Arteriopathy (GENOA) Study. Hypertens. Res. 2018, 41, 629–638. [Google Scholar] [CrossRef]
- Martin, S.S.; Blaha, M.J.; Muse, E.D.; Qasim, A.N.; Reilly, M.P.; Blumenthal, R.S.; Nasir, K.; Criqui, M.H.; McClelland, R.L.; Hughes-Austin, J.M.; et al. Leptin and Incident Cardiovascular Disease: The Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2015, 239, 67–72. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Ramirez, M.F.; Lau, E.S.; Parekh, J.K.; Pan, A.S.; Owunna, N.; Wang, D.; McNeill, J.N.; Malhotra, R.; Nayor, M.; Lewis, G.D.; et al. Obesity-Related Biomarkers Are Associated with Exercise Intolerance and HFpEF. Circ. Heart Fail. 2023, 16, e010618. [Google Scholar] [CrossRef]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef]
- Kim, Y.; Park, C.W. Mechanisms of Adiponectin Action: Implication of Adiponectin Receptor Agonism in Diabetic Kidney Disease. Int. J. Mol. Sci. 2019, 20, 1782. [Google Scholar] [CrossRef]
- Yanai, H.; Yoshida, H. Beneficial Effects of Adiponectin on Glucose and Lipid Metabolism and Atherosclerotic Progression: Mechanisms and Perspectives. Int. J. Mol. Sci. 2019, 20, 1190. [Google Scholar] [CrossRef]
- Zhang, H.; Park, Y.; Zhang, C. Coronary and Aortic Endothelial Function Affected by Feedback Between Adiponectin and Tumor Necrosis Factor α in Type 2 Diabetic Mice. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2156–2163. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Tao, L.; Yuan, Y.; Jiao, X.; Lau, W.B.; Wang, Y.; Christopher, T.; Lopez, B.; Chan, L.; Goldstein, B.; et al. Endothelial Dysfunction in Adiponectin Deficiency and Its Mechanisms Involved. J. Mol. Cell. Cardiol. 2009, 46, 413–419. [Google Scholar] [CrossRef]
- Deng, G.; Long, Y.; Yu, Y.R.; Li, M.R. Adiponectin Directly Improves Endothelial Dysfunction in Obese Rats Through the AMPK-eNOS Pathway. Int. J. Obes. 2010, 34, 165–171. [Google Scholar] [CrossRef]
- Cohen, K.E.; Katunaric, B.; Schulz, M.E.; SenthilKumar, G.; Young, M.S.; Mace, J.E.; Freed, J.K. Role of Adiponectin Receptor 1 in Promoting Nitric Oxide-Mediated Flow-Induced Dilation in the Human Microvasculature. Front. Pharmacol. 2022, 13, 875900. [Google Scholar] [CrossRef]
- Jang, A.Y.; Scherer, P.E.; Kim, J.Y.; Lim, S.; Koh, K.K. Adiponectin and Cardiometabolic Traits and Mortality: Where Do We Go? Cardiovasc. Res. 2022, 118, 2074–2084. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, L.; Zhang, F.; Zhu, D.; Xin, C.; Wang, H.; Zhang, F.; Guo, X.; Lee, Y.; Zhang, L.; et al. A Novel Mechanism of Diabetic Vascular Endothelial Dysfunction: Hypoadiponectinemia-Induced NLRP3 Inflammasome Activation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1556–1567. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef]
- Roy, B.; Pan, G.; Giri, S.; Thandavarayan, R.A.; Palaniyandi, S.S. Aldehyde Dehydrogenase 2 Augments Adiponectin Signaling in Coronary Angiogenesis in HFpEF Associated with Diabetes. FASEB J. 2022, 36, e22440. [Google Scholar] [CrossRef]
- Shibata, R.; Sato, K.; Pimentel, D.R.; Takemura, Y.; Kihara, S.; Ohashi, K.; Funahashi, T.; Ouchi, N.; Walsh, K. Adiponectin Protects Against Myocardial Ischemia-Reperfusion Injury through AMPK- and COX-2-Dependent Mechanisms. Nat. Med. 2005, 11, 1096–1103. [Google Scholar] [CrossRef]
- Fujita, K.; Maeda, N.; Sonoda, M.; Ohashi, K.; Hibuse, T.; Nishizawa, H.; Nishida, M.; Hiuge, A.; Kurata, A.; Kihara, S.; et al. Adiponectin Protects Against Angiotensin II-Induced Cardiac Fibrosis through Activation of PPAR-Alpha. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 863–870. [Google Scholar] [CrossRef]
- Fujioka, D.; Kawabata, K.I.; Saito, Y.; Kobayashi, T.; Nakamura, T.; Kodama, Y.; Takano, H.; Obata, J.-E.; Kitta, Y.; Umetani, K.; et al. Role of Adiponectin Receptors in Endothelin-Induced Cellular Hypertrophy in Cultured Cardiomyocytes and Their Expression in Infarcted Heart. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2409–H2416. [Google Scholar] [CrossRef] [PubMed]
- Sam, F.; Duhaney, T.A.; Sato, K.; Wilson, R.M.; Ohashi, K.; Sono-Romanelli, S.; Higuchi, A.; De Silva, D.S.; Qin, F.; Walsh, K.; et al. Adiponectin Deficiency, Diastolic Dysfunction, and Diastolic Heart Failure. Endocrinology 2010, 151, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Wilson, R.M.; Essick, E.E.; Duffen, J.L.; Scherer, P.E.; Ouchi, N.; Sam, F. Effects of Adiponectin on Calcium-Handling Proteins in Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2014, 7, 976–985. [Google Scholar] [CrossRef]
- Negi, S.I.; Jeong, E.M.; Shukrullah, I.; Raicu, M.; Dudley, J.S.C. Association of Low Plasma Adiponectin with Early Diastolic Dysfunction. Congest. Heart Fail. 2012, 18, 187–191. [Google Scholar] [CrossRef]
- Norvik, J.V.; Schirmer, H.; Ytrehus, K.; Jenssen, T.G.; Zykova, S.N.; Eggen, A.E.; Eriksen, B.O.; Solbu, M.D. Low Adiponectin is Associated with Diastolic Dysfunction in Women: A Cross-Sectional Study from the Tromsø Study. BMC Cardiovasc. Disord. 2017, 17, 79. [Google Scholar] [CrossRef]
- Bai, W.; Huang, J.; Zhu, M.; Liu, X.; Tao, J. Association Between Elevated Adiponectin Level and Adverse Outcomes in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Braz. J. Med. Biol. Res. 2019, 52, e8416. [Google Scholar] [CrossRef]
- Khan, R.S.; Kato, T.S.; Chokshi, A.; Chew, M.; Yu, S.; Wu, C.; Singh, P.; Cheema, F.H.; Takayama, H.; Harris, C.; et al. Adipose Tissue Inflammation and Adiponectin Resistance in Patients with Advanced Heart Failure: Correction After Ventricular Assist Device Implantation. Circ. Heart Fail. 2012, 5, 340–348. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Fujita, M.; Kato, M.; Yamazaki, S.; Asano, Y.; Ogai, A.; Okazaki, H.; Asai, M.; Nagamachi, Y.; Maeda, N.; et al. Natriuretic Peptides Enhance the Production of Adiponectin in Human Adipocytes and in Patients with Chronic Heart Failure. J. Am. Coll. Cardiol. 2009, 53, 2070–2077. [Google Scholar] [CrossRef]
- Masuch, A.; Pietzner, M.; Bahls, M.; Budde, K.; Kastenmüller, G.; Zylla, S.; Artati, A.; Adamski, J.; Völzke, H.; Dörr, M.; et al. Metabolomic Profiling Implicates Adiponectin as Mediator of a Favorable Lipoprotein Profile Associated with NT-proBNP. Cardiovasc. Diabetol. 2018, 17, 120. [Google Scholar] [CrossRef]
- Witberg, G.; Ayers, C.R.; Turer, A.T.; Lev, E.; Kornowski, R.; de Lemos, J.; Neeland, I.J. Relation of Adiponectin to All-Cause Mortality, Cardiovascular Mortality, and Major Adverse Cardiovascular Events (from the Dallas Heart Study). Am. J. Cardiol. 2016, 117, 574–579. [Google Scholar] [CrossRef]
- Tan, W.; Wang, Y.; Cheng, S.; Liu, Z.; Xie, M.; Song, L.; Qiu, Q.; Wang, X.; Li, Z.; Liu, T.; et al. AdipoRon Ameliorates the Progression of Heart Failure with Preserved Ejection Fraction via Mitigating Lipid Accumulation and Fibrosis. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Askin, L.; Abus, S.; Tanriverdi, O. Resistin and Cardiovascular Disease: A Review of the Current Literature Regarding Clinical and Pathological Relationships. Curr. Cardiol. Rev. 2022, 18, e290721195114. [Google Scholar] [CrossRef]
- Giandalia, A.; Alibrandi, A.; Giorgianni, L.; Piano, F.L.; Consolo, F.; Elia, G.L.; Asztalos, B.; Cucinotta, D.; Squadrito, G.; Russo, G.T. Resistin Levels and Inflammatory and Endothelial Dysfunction Markers in Obese Postmenopausal Women with Type 2 Diabetes Mellitus. Diabetol. Metab. Syndr. 2021, 13, 98. [Google Scholar] [CrossRef]
- Wang, B.W.; Hung, H.F.; Chang, H.; Kuan, P.; Shyu, K.-G. Mechanical Stretch Enhances the Expression of Resistin Gene in Cultured Cardiomyocytes via Tumor Necrosis Factor-Alpha. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H2305–H2312. [Google Scholar] [CrossRef]
- Gao, J.; Chang Chua, C.; Chen, Z.; Wang, H.; Xu, X.; Hamdy, R.C.; McMullen, J.R.; Shioi, T.; Izumo, S.; Chua, B.H. Resistin, an Adipocytokine, Offers Protection Against Acute Myocardial Infarction. J. Mol. Cell. Cardiol. 2007, 43, 601–609. [Google Scholar] [CrossRef]
- Gualillo, O.; González-Juanatey, J.R.; Lago, F. The Emerging Role of Adipokines as Mediators of Cardiovascular Function: Physiologic and Clinical Perspectives. Trends Cardiovasc. Med. 2007, 17, 275–283. [Google Scholar] [CrossRef]
- Rothwell, S.E.; Richards, A.M.; Pemberton, C.J. Resistin Worsens Cardiac Ischaemia-Reperfusion Injury. Biochem. Biophys. Res. Commun. 2006, 349, 400–407. [Google Scholar] [CrossRef]
- Liu, D.; Zeng, F.; Chen, Z.; Qin, Z.; Liu, Z. Regulation of Cardiac Fibrosis in Mice with TAC/DOCA-Induced HFpEF by Resistin-Like Molecule Gamma and Adenylate Cyclase 1. FEBS Open Bio 2024, 14, 1101–1115. [Google Scholar] [CrossRef]
- Bobbert, P.; Jenke, A.; Bobbert, T.; Kühl, U.; Rauch, U.; Lassner, D.; Scheibenbogen, C.; Poller, W.; Schultheiss, H.; Skurk, C. High Leptin and Resistin Expression in Chronic Heart Failure: Adverse Outcome in Patients with Dilated and Inflammatory Cardiomyopathy. Eur. J. Heart Fail. 2012, 14, 1265–1275. [Google Scholar] [CrossRef]
- Karakikes, I.; Kim, M.; Hadri, L.; Sakata, S.; Sun, Y.; Zhang, W.; Chemaly, E.R.; Hajjar, R.J.; Lebeche, D. Gene Remodeling in Type 2 Diabetic Cardiomyopathy and Its Phenotypic Rescue with SERCA2a. PLoS ONE 2009, 4, e6474. [Google Scholar] [CrossRef]
- Kim, M.; Oh, J.K.; Sakata, S.; Liang, I.; Park, W.; Hajjar, R.J.; Lebeche, D. Role of Resistin in Cardiac Contractility and Hypertrophy. J. Mol. Cell. Cardiol. 2008, 45, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Chemaly, E.R.; Hadri, L.; Zhang, S.; Kim, M.; Kohlbrenner, E.; Sheng, J.; Liang, L.; Chen, J.; K-Raman, P.; Hajjar, R.J.; et al. Long-Term In Vivo Resistin Overexpression Induces Myocardial Dysfunction and Remodeling in Rats. J. Mol. Cell. Cardiol. 2011, 51, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Kajstura, J.; Chimenti, C.; Jakoniuk, I.; Leri, A.; Maseri, A.; Nadal-Ginard, B.; Anversa, P. Myocardial Cell Death in Human Diabetes. Circ. Res. 2000, 87, 1123–1132. [Google Scholar] [CrossRef]
- Carugo, S.; Giannattasio, C.; Calchera, I.; Paleari, F.; Gorgoglione, M.G.; Grappiolo, A.; Gamba, P.; Rovaris, G.; Failla, M.; Mancia, G. Progression of Functional and Structural Cardiac Alterations in Young Normotensive Uncomplicated Patients with Type 1 Diabetes Mellitus. J. Hypertens. 2001, 19, 1675–1680. [Google Scholar] [CrossRef]
- Takata, Y.; Osawa, H.; Kurata, M.; Kurokawa, M.; Yamauchi, J.; Ochi, M.; Nishida, W.; Okura, T.; Higaki, J.; Makino, H. Hyperresistinemia Is Associated with Coexistence of Hypertension and Type 2 Diabetes. Hypertension 2008, 51, 534–539. [Google Scholar] [CrossRef]
- Savoia, C.; Schiffrin, E.L. Vascular Inflammation in Hypertension and Diabetes: Molecular Mechanisms and Therapeutic Interventions. Clin. Sci. 2007, 112, 375–384. [Google Scholar] [CrossRef]
- Cai, X.; Allison, M.A.; Ambale-Venkatesh, B.; Jorgensen, N.W.; Lima, J.A.; Muse, E.D.; McClelland, R.L.; Shea, S.; Lebeche, D. Resistin and Risks of Incident Heart Failure Subtypes and Cardiac Fibrosis: The Multi-Ethnic Study of Atherosclerosis. ESC Heart Fail. 2022, 9, 3452–3460. [Google Scholar] [CrossRef]
- Li, X.Z.; Zhang, K.Z.; Yan, J.J.; Wang, L.; Wang, Y.; Shen, X.Y.; Sun, H.X.; Liu, L.; Zhao, C.; He, H.W.; et al. Serum Retinol-Binding Protein 4 as a Predictor of Cardiovascular Events in Elderly Patients with Chronic Heart Failure. ESC Heart Fail. 2020, 7, 542–550. [Google Scholar] [CrossRef]
- Su, Z.; Tian, S.; Liang, W.; Wu, L. Association Between Omentin-1 and Heart Failure with Preserved Ejection Fraction in Chinese Elderly Patients. Clin. Cardiol. 2023, 47, e24181. [Google Scholar] [CrossRef]
- Rafaqat, S. Adipokines and Their Role in Heart Failure: A Literature Review. J. Innov. Card. Rhythm. Manag. 2023, 14, 5657–5669. [Google Scholar] [CrossRef]
- Cittadini, A.; Salzano, A.; Iacoviello, M.; Triggiani, V.; Rengo, G.; Cacciatore, F.; Maiello, C.; Limongelli, G.; Masarone, D.; Perticone, F.; et al. Multiple Hormonal and Metabolic Deficiency Syndrome Predicts Outcome in Heart Failure: The T.O.S.CA. Registry. Eur. J. Prev. Cardiol. 2021, 28, 1691–1700. [Google Scholar] [CrossRef]
- Theodorakis, N.; Feretzakis, G.; Kreouzi, M.; Anagnostou, D.; Hitas, C.; Verykios, V.S.; Nikolaou, M. Growth Hormone Therapy in Chronic Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Theodorakis, N.; Feretzakis, G.; Vamvakou, G.; Verykios, V.S.; Polymeris, A.; Nikolaou, M. Testosterone Therapy for Functional Hypogonadism in Middle-Aged and Elderly Males: Current Evidence and Future Perspectives. Hormones 2024, 23, 801–817. [Google Scholar] [CrossRef]
Effects | Elaboration | References |
---|---|---|
Ventricular Hypertrophy | Promotes LV hypertrophy through direct effects on cardiomyocytes and activation of hypertrophic signaling pathways, like JAK/STAT, MAPK, and PI3K/Akt. Additionally, leptin increases ET-1 production, which amplifies pro-hypertrophic signaling and oxidative stress. However, some studies suggest leptin may reduce LV hypertrophy in certain preclinical models. | [16,18,23,24] |
Cardiac Remodeling | Induces myocardial fibrosis and structural changes partly through aldosterone-mediated pathways and increased MMP-2 and collagen III production, leading to adverse cardiac remodeling and stiffness. Leptin-induced ET-1 production further contributes by stimulating fibroblast activation and collagen synthesis. | [16,18,23,24] |
Diastolic Dysfunction | Results from the combined effects of myocardial hypertrophy, interstitial fibrosis, and impaired calcium handling, affecting relaxation (lusitropy) and compliance. | [16,18,23,24,25] |
Increases Central Sympathetic Outflow | Increases SNS activity, elevating heart rate and potentially raising blood pressure and afterload. | [23] |
Vascular Remodeling and Arterial Stiffness | Promotes smooth muscle proliferation and collagen deposition in vessel walls, leading to vascular remodeling and increased arterial stiffness. However, some preclinical studies show conflicting results. | [34,35,36,37] |
Endothelial Dysfunction | Reduces NO bioavailability and promotes oxidative stress, impairing endothelium-dependent vasodilation and worsening cardiovascular outcomes. | [34,35,36,37] |
Low-Grade Inflammation | Activates inflammatory pathways, increasing cytokine levels (e.g., IL-6, TNF-α) and perpetuating systemic inflammation. | [40,41,42] |
Leptin Resistance | Leptin resistance impairs its normal metabolic effects, leading to systemic insulin resistance and exacerbating obesity-related metabolic dysfunction. Despite systemic resistance, cardiovascular tissues often retain sensitivity to leptin’s deleterious effects, a phenomenon called selective leptin resistance. | [19,43] |
Impaired Exercise Capacity | Leptin-driven mechanisms, including increased sympathetic tone, diastolic dysfunction, and vascular stiffness, contribute to reduced exercise tolerance in HFpEF. | [57] |
Potential Protective Effects in Certain Subgroups | Some studies report that higher leptin levels are associated with lower LV mass and reduced myocardial stiffness in specific populations, such as obese African American women, indicating possible cardioprotective effects. | [53,54] |
Effects | Elaboration | References |
---|---|---|
Metabolic Regulation | Activates AMPK signaling to increase glucose uptake and fatty acid oxidation, reducing lipid accumulation and oxidative stress in cardiomyocytes, thereby regulating cardiac metabolism. | [58,59] |
Endothelial Function | Improves endothelial function by increasing NO bioavailability through eNOS activation, counteracting endothelial dysfunction and promoting vasodilation. Some studies suggest that these beneficial effects may be attenuated in HF due to adiponectin resistance or may not correlate with improved outcomes in advanced disease stages. | [14,61,62,63,64,65,76,77,78,79] |
Anti-Inflammatory Effects | Inhibits NF-κB signaling, reduces pro-inflammatory cytokines (e.g., TNF-α, IL-6), and decreases adhesion molecules, like VCAM-1, limiting inflammatory cell recruitment to the vascular wall. Contradictory findings indicate that, in HF, elevated adiponectin levels may be associated with systemic inflammation and worse clinical outcomes; however, this is possibly just correlation rather than causation. | [14,41,61,62,63,64,65,66,67,70,76,77,78,79] |
Anti-Hypertrophic Effects | Prevents cardiomyocyte hypertrophy through AMPK-mediated inhibition of ERK activation. However, elevated adiponectin levels in HF patients have been linked to worse cardiac remodeling, while this is possibly just correlation rather than causation. | [14,66,69,70,71,76,77,78,79] |
Anti-Fibrotic Effects | Attenuates angiotensin II-induced cardiac fibrosis via PPAR-α activation, reducing extracellular matrix deposition and myocardial stiffening, improving diastolic function. Yet, in advanced HF, elevated adiponectin levels may reflect a state of adiponectin resistance, limiting these protective effects. | [14,66,69,70,71,76,77,78,79] |
Decreases Central Sympathetic Outflow | Decreases SNS activity, potentially lowering blood pressure. However, the impact on sympathetic activity may vary. | [78,79] |
Oxidative Stress Reduction | Lowers ROS production and improves calcium handling in cardiomyocytes, enhancing myocardial efficiency and diastolic function. In HF, the relationship between adiponectin levels and oxidative stress is complex, and elevated levels may indicate increased oxidative stress rather than protection. | [14,41,60,68,76,77,78,79] |
Improved Exercise Capacity | Adiponectin-driven cardioprotective mechanisms contribute to improved exercise tolerance in HFpEF. | [57] |
Adiponectin Paradox in HF | Elevated adiponectin levels in HF may reflect a compensatory maladaptive response or the presence of adiponectin resistance, often associated with worse clinical outcomes, cachexia, and systemic inflammation. This paradox suggests that high adiponectin levels do not always confer cardioprotective effects and may signify disease severity. | [14,76,77,78,79] |
Effects | Elaboration | References |
---|---|---|
Metabolic Dysregulation | Inhibits AMPK, reducing glucose uptake and increasing hepatic gluconeogenesis, contributing to hyperglycemia and insulin resistance. Also promotes dyslipidemia by altering lipid metabolism. However, clinical studies show inconsistent associations between resistin levels and insulin resistance, suggesting a complex role in metabolic regulation. | [5,59] |
Inflammation | Activates NF-κB, increasing the production of pro-inflammatory cytokines, such as TNF-α, IL-6, and MCP-1, perpetuating a chronic inflammatory state. Upregulates adhesion molecules, like VCAM-1 and ICAM-1, facilitating leukocyte infiltration and exacerbating vascular inflammation, contributing to atherosclerosis. Some studies indicate that resistin’s pro-inflammatory effects may vary between species and tissues, adding complexity to its role in inflammation. | [5,14,41,82,83] |
Endothelial Dysfunction | Reduces NO bioavailability by increasing ROS production and elevating ET-1 levels, impairing vasodilation and promoting vascular complications. However, conflicting evidence exists regarding resistin’s direct impact on endothelial function in humans, suggesting that other factors may modulate this effect. | [5,14,41,82,83] |
Fibrosis and Cardiac Remodeling | Stimulates collagen synthesis in cardiac fibroblasts via pro-fibrotic pathways, like TGF-β/Smad, increasing myocardial stiffness and promoting diastolic dysfunction. Yet, clinical studies have not consistently linked resistin levels with myocardial fibrosis in HFpEF patients, indicating potential differences between experimental models and human disease. | [84,85,86,87,88] |
Calcium Handling and Contractility | Disrupts calcium homeostasis in cardiomyocytes by impairing SERCA2a function and increasing calcium leak, reducing diastolic relaxation (lusitropy) and myocardial contractility. Limited clinical data are available to confirm these mechanisms in HFpEF patients, highlighting a gap between experimental findings and clinical observations. | [87,89,90,91] |
Oxidative Stress | Upregulates NADPH oxidase, increasing ROS production and causing mitochondrial dysfunction. This accelerates cardiomyocyte apoptosis and exacerbates cardiac tissue damage. However, the extent to which resistin contributes to oxidative stress in human HFpEF remains unclear due to inconsistent clinical evidence. | [5,14,41,82,83] |
Neurohormonal Activation | Enhances sympathetic nervous system activity, elevating blood pressure and heart rate, which increases myocardial afterload. Also modulates RAAS, contributing to hypertension and HF progression. Contradictory findings suggest that resistin’s role in neurohormonal activation may not be as significant in humans as observed in animal models. | [91,92,93] |
Impaired Exercise Capacity | Resistin-driven mechanisms, including increased sympathetic tone, diastolic dysfunction, and vascular stiffness, contribute to reduced exercise tolerance in HFpEF. | [57] |
Limited Association with HFpEF in Humans | Clinical studies have not consistently demonstrated a significant association between resistin levels and HFpEF incidence or progression. Some studies find a stronger link with HFrEF, suggesting that resistin’s role in HF may be subtype-specific or influenced by other comorbidities. | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodorakis, N.; Kreouzi, M.; Hitas, C.; Anagnostou, D.; Nikolaou, M. Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review. Diagnostics 2024, 14, 2677. https://doi.org/10.3390/diagnostics14232677
Theodorakis N, Kreouzi M, Hitas C, Anagnostou D, Nikolaou M. Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review. Diagnostics. 2024; 14(23):2677. https://doi.org/10.3390/diagnostics14232677
Chicago/Turabian StyleTheodorakis, Nikolaos, Magdalini Kreouzi, Christos Hitas, Dimitrios Anagnostou, and Maria Nikolaou. 2024. "Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review" Diagnostics 14, no. 23: 2677. https://doi.org/10.3390/diagnostics14232677
APA StyleTheodorakis, N., Kreouzi, M., Hitas, C., Anagnostou, D., & Nikolaou, M. (2024). Adipokines and Cardiometabolic Heart Failure with Preserved Ejection Fraction: A State-of-the-Art Review. Diagnostics, 14(23), 2677. https://doi.org/10.3390/diagnostics14232677