Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022–2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Diagnostic Screening
2.2. DNA Extraction and PCR Diagnosis
2.3. Statistical Analysis
3. Results
3.1. Prevalence of Plasmodia
3.2. Performance of BIOCREDIT Pf/Pv (pLDH/pLDH) RDT
3.2.1. Diagnostic Performance of BIOCREDIT Pf/Pv (pLDH/pLDH) RDT to Detect P. falciparum
3.2.2. Diagnostic Performance of BIOCREDIT Pf/Pv (pLDH/pLDH) RDT to Detect P. vivax
3.3. Comparison of the Performance of HRP2- and pLDH-Based RDTs
3.4. Relative Quantification of Plasmodial DNA
4. Discussion
4.1. P. falciparum
4.2. Plasmodium vivax
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Programme National de Lutte contre le Paludisme. Plan Stratégique National de Lutte Contre le Paludisme, 2020–2024. Republic of Djibouti, Ministry of Health, 2020. Available online: https://erc.undp.org/evaluation/managementresponses/keyaction/documents/download/3685 (accessed on 27 June 2023).
- World Health Organization. World Malaria Report 2022. World Health Organization: Geneva, Switzerland, 2022. Available online: https://www.who.int/publications/i/item/9789240064898 (accessed on 22 November 2023).
- World Health Organization. Microscopy for the Detection, Identification and Quantification of Malaria Parasites on Stained Thick and Thin Blood Films in Research Settings. World Health Organization: Geneva, Switzerland, 2015. Available online: https://fctc.who.int/publications/i/item/2015-04-28-microscopy-for-the-detection-identification-and-quantification-of-malaria-parasites-on-stained-thick-and-thin-blood-films-in-research-settings (accessed on 22 November 2023).
- Moody, A. Rapid diagnostic tests for malaria parasites. Clin. Microbiol. Rev. 2002, 15, 66–78. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Recommended Selection Criteria for Procurement of Malaria Rapid Diagnostic Tests. WHO/CDS/GMP/2018.01. World Health Organization: Geneva, Switzerland, 2018. Available online: https://iris.who.int/handle/10665/259870 (accessed on 22 November 2023).
- Allen, E.N.; Wiyeh, A.B.; McCaul, M. Adding rapid diagnostic tests to community-based programmes for treating malaria. Cochrane Database Syst. Rev. 2022, 9, CD009527. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.; Jones, S.; Gatton, M.L.; Barnwell, J.W.; Cheng, Q.; Chiodini, P.L.; Glenn, J.; Incardona, S.; Kosack, C.; Luchavez, J.; et al. A review of the WHO malaria rapid diagnostic test product testing programme (2008–2018): Performance, procurement and policy. Malar. J. 2019, 18, 387. [Google Scholar] [CrossRef] [PubMed]
- Piper, R.; Lebras, J.; Wentworth, L.; Hunt-Cooke, A.; Houzé, S.; Chiodini, P.; Makler, M. Immunocapture diagnostic assays for malaria using Plasmodium lactate dehydrogenase (pLDH). Am. J. Trop. Med. Hyg. 1999, 60, 109–118. [Google Scholar] [CrossRef] [PubMed]
- UNICEF/UNDP/World Bank/WHO. Special Programme for Research and Training in Tropical Diseases, Centers for Disease Control (U.S.) & Foundation for Innovative New Diagnostics. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaria RDTs: Round 2 (2009). World Health Organization: Geneva, Switzerland, 2010. Available online: https://iris.who.int/handle/10665/44329 (accessed on 22 November 2023).
- Ashton, R.A.; Kefyalew, T.; Tesfaye, G.; Counihan, H.; Yadeta, D.; Cundill, B.; Reithinger, R.; Kolaczinski, J.H. Performance of three multi-species rapid diagnostic tests for diagnosis of Plasmodium falciparum and Plasmodium vivax malaria in Oromia Regional State, Ethiopia. Malar. J. 2010, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Sharew, B.; Legesse, M.; Animut, A.; Jima, D.; Medhin, G.; Erko, B. Evaluation of the performance of CareStart Malaria Pf/Pv Combo and Paracheck Pf tests for the diagnosis of malaria in Wondo Genet, southern Ethiopia. Acta Trop. 2009, 111, 321–324. [Google Scholar] [CrossRef]
- Woyessa, A.; Deressa, W.; Ali, A.; Lindtjørn, B. Evaluation of CareStart™ malaria Pf/Pv combo test for Plasmodium falciparum and Plasmodium vivax malaria diagnosis in Butajira area, south-central Ethiopia. Malar. J. 2013, 12, 218. [Google Scholar] [CrossRef]
- Dejazmach, Z.; Alemu, G.; Yimer, M.; Tegegne, B.; Getaneh, A. Assessing the performance of CareStart™ malaria rapid diagnostic tests in northwest Ethiopia: A cross-sectional study. J. Parasitol. Res. 2021, 2021, 7919984. [Google Scholar] [CrossRef]
- Moussa, R.A.; Papa Mze, N.; Arreh, H.Y.; Hamoud, A.A.; Alaleh, K.M.; Omar, A.Y.; Abdi, W.O.; Guelleh, S.K.; Abdi, A.A.; Aboubaker, M.H.; et al. Molecular investigation of malaria-infected patients in Djibouti city (2018–2021). Malar. J. 2023, 22, 147, Erratum in: Malar. J. 2023, 22, 168. [Google Scholar] [CrossRef]
- Iriart, X.; Menard, S.; Chauvin, P.; Mohamed, H.S.; Charpentier, E.; Mohamed, M.A.; Berry, A.; Aboubaker, M.H. Misdiagnosis of imported falciparum malaria from African areas due to an increased prevalence of pfhrp2/pfhrp3 gene deletion: The Djibouti case. Emerg. Microbes Infect. 2020, 9, 1984–1987. [Google Scholar] [CrossRef]
- Foundation for Innovative New Diagnostics. RapiGEN BIOCREDIT Malaria Ag RDTs WHO Prequalification Study. Foundation for Innovative New Diagnostics: Genf, Switzerland, 2021. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05085301 (accessed on 22 November 2023).
- Cnops, L.; Boderie, M.; Gillet, P.; Van Esbroeck, M.; Jacobs, J. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR. Malar. J. 2011, 10, 67. [Google Scholar] [CrossRef]
- Demas, A.; Oberstaller, J.; DeBarry, J.; Lucchi, N.W.; Srinivasamoorthy, G.; Sumari, D.; Kabanywanyi, A.M.; Villegas, L.; Escalante, A.A.; Kachur, S.P.; et al. Applied genomics: Data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA. J. Clin. Microbiol. 2011, 49, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 22 November 2023).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics. 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.; Zaccara, S.; Nolan, T. An Introduction to the Real-Time Polymerase Chain Reaction. In Quantitative Real-Time PCR in Applied Microbiology; Caister Academic Press: Norfolk, UK, 2012; pp. 3–25. [Google Scholar]
- Lusted, L.B. Decision-making studies in patient management. N. Engl. J. Med. 1971, 284, 416–424. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Watson, O.J.; Slater, H.C.; Verity, R.; Parr, J.B.; Mwandagalirwa, M.K.; Tshefu, A.; Meshnick, S.R.; Ghani, A.C. Modelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan Africa. eLife 2017, 6, e25008. [Google Scholar] [CrossRef]
- Gatton, M.L.; Dunn, J.; Chaudhry, A.; Ciketic, S.; Cunningham, J.; Cheng, Q. Implications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on malaria morbidity and control when rapid diagnostic tests are used for diagnosis. J. Infect. Dis. 2017, 215, 1156–1166. [Google Scholar] [CrossRef]
- Nair, S.; Li, X.; Nkhoma, S.C.; Anderson, T. Fitness costs of pfhrp2 and pfhrp3 deletions underlying diagnostic evasion in malaria parasites. J. Infect. Dis. 2022, 226, 1637–1645. [Google Scholar] [CrossRef]
- Rogier, E.; McCaffery, J.N.; Mohamed, M.A.; Herman, C.; Nace, D.; Daniels, R.; Lucchi, N.; Jones, S.; Goldman, I.; Aidoo, M.; et al. Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions and relatedness to other global isolates, Djibouti, 2019-2020. Emerg Infect Dis. 2022, 28, 2043–2050. [Google Scholar] [CrossRef]
- Mihreteab, S.; Anderson, K.; Pasay, C.; Smith, D.; Gatton, M.L.; Cunningham, J.; Berhane, A.; Cheng, Q. Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 genes in Eritrea 2 years after switching from HRP2-based RDTs. Sci. Rep. 2021, 11, 21082. [Google Scholar] [CrossRef]
- Feleke, S.M.; Reichert, E.N.; Mohammed, H.; Brhane, B.G.; Mekete, K.; Mamo, H.; Petros, B.; Solomon, H.; Abate, E.; Hennelly, C.; et al. Plasmodium falciparum is evolving to escape malaria rapid diagnostic tests in Ethiopia. Nat. Microbiol. 2021, 6, 1289–1299. [Google Scholar] [CrossRef]
- World Health Organization. False-Negative RDT Results and Implications of New Reports of P. falciparum Histidine-Rich Protein 2/3 Gene Deletions. Available online: https://www.who.int/publications-detail-redirect/WHO-HTM-GMP-2017.18 (accessed on 2 November 2023).
- Park, S.H.; Jegal, S.; Ahn, S.K.; Jung, H.; Lee, J.; Na, B.K.; Hong, S.J.; Bahk, Y.Y.; Kim, T.S. Diagnostic performance of three rapid diagnostic test kits for malaria parasite Plasmodium falciparum. Korean J. Parasitol. 2020, 58, 147–152. [Google Scholar] [CrossRef]
- Bahk, Y.Y.; Park, S.H.; Lee, W.; Jin, K.; Ahn, S.K.; Na, B.K.; Kim, T.S. Comparative assessment of diagnostic performances of two commercial rapid diagnostic test kits for detection of Plasmodium spp. in Ugandan patients with malaria. Korean J. Parasitol. 2018, 56, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Wongsrichanalai, C.; Barcus, M.J.; Muth, S.; Sutamihardja, A.; Wernsdorfer, W.H. A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT). Am. J. Trop. Med. Hyg. 2007, 77 (Suppl 6), 119–127. [Google Scholar] [CrossRef]
- World Health Organization. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaria RDTs: Round 8 (2016–2018). Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://iris.who.int/handle/10665/276190 (accessed on 1 January 2024).
- World Health Organization. Roll Back Malaria, and United States Agency for International Development. New Perspectives: Malaria Diagnosis: Report of a Joint WHO/USAID Informal Consultation, 25–27 October 1999. Report No. WHO/CDS/RBM/2000.14, WHO/MAL/2000.1091. World Health Organization: Geneva, Switzerland, 2000. Available online: https://iris.who.int/handle/10665/66321 (accessed on 22 November 2023).
- Moody, A.; Hunt-Cooke, A.; Gabbett, E.; Chiodini, P. Performance of the OptiMAL malaria antigen capture dipstick for malaria diagnosis and treatment monitoring at the Hospital for Tropical Diseases, London. Br. J. Haematol. 2000, 109, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.K.; Gasser, R.A., Jr.; Magill, A.J.; Miller, R.S. Update on rapid diagnostic testing for malaria. Clin. Microbiol. Rev. 2008, 21, 97–110. [Google Scholar] [CrossRef]
- Coleman, R.E.; Maneechai, N.; Ponlawat, A.; Kumpitak, C.; Rachapaew, N.; Miller, R.S.; Sattabongkot, J. Failure of the OptiMAL rapid malaria test as a tool for the detection of asymptomatic malaria in an area of Thailand endemic for Plasmodium falciparum and P. vivax. Am. J. Trop. Med. Hyg. 2002, 67, 563–565. [Google Scholar] [CrossRef]
- Wang, C.Y.T.; Ballard, E.L.; Pava, Z.; Marquart, L.; Gaydon, J.; Murphy, S.C.; Whiley, D.; O’Rourke, P.; McCarthy, J.S. Analytical validation of a real-time hydrolysis probe PCR assay for quantifying Plasmodium falciparum parasites in experimentally infected human adults. Malar. J. 2021, 20, 181. [Google Scholar] [CrossRef]
- Tahar, R.; Sayang, C.; Ngane Foumane, V.; Soula, G.; Moyou-Somo, R.; Delmont, J.; Basco, L.K. Field evaluation of rapid diagnostic tests for malaria in Yaounde, Cameroon. Acta Trop. 2013, 125, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Grobusch, M.P.; Alpermann, U.; Schwenke, S.; Jelinek, T.; Warhurst, D.C. False-positive rapid tests for malaria in patients with rheumatoid factor. Lancet. 1999, 353, 297. [Google Scholar] [CrossRef]
- Palmer, C.J.; Lindo, J.F.; Klaskala, W.I.; Quesada, J.A.; Kaminsky, R.; Baum, M.K.; Ager, A.L. Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J. Clin. Microbiol. 1998, 36, 203–206. [Google Scholar] [CrossRef]
- Min-Naing, C.; Gatton, M.L. Performance appraisal of rapid on-site malaria diagnosis (ICT malaria Pf/Pv test) in relation to human resources at village level in Myanmar. Acta Trop. 2002, 81, 13–19. [Google Scholar] [CrossRef] [PubMed]
Diagnostic Result | n (%) | |
---|---|---|
RDT | qPCR | |
P. falciparum | 102 (29.2) | 121 (34.6) |
P. vivax | 22 (6.3) | 21 (6.0) |
P. falciparum/P. vivax mixed infection | 5 (1.4) | 8 (2.3) |
Negative * | 221 (63.1) | 200 (57.1) |
Total | 350 (100) | 350 (100) |
Performance | Year | |||
---|---|---|---|---|
2022 | 2023 | |||
n | % [95% CI] | n | % [95% CI] | |
P. falciparum | ||||
True positive | 37 | 18.7 | 67 | 44.1 |
False positive | 3 | 1.5 | 0 | 0 |
True negative | 142 | 72.0 | 76 | 50.0 |
False negative | 16 | 8.1 | 9 | 5.9 |
Total | 198 | 100 | 152 | 100 |
Sensitivity | – | 69.8 [55.7–81.7] | – | 88.2 * [78.7–94.4] |
Specificity | – | 97.8 [93.7–99.5] | – | 100 [95.3–100] |
PPV | – | 92.5 [79.9–97.5] | – | 100 [94.6–100] |
NPV | – | 89.3 [84.6–92.6] | – | 89.4 [80.8–95.0] |
Accuracy | – | 89.9 [84.7–93.8] | – | 94.1 [89.1–97.3] |
P. vivax | ||||
True positive | 14 | 7.0 | 13 | 8.6 |
False positive | 0 | 0 | 0 | 0 |
True negative | 184 | 93.0 | 137 | 90.1 |
False negative | 0 | 0 | 2 | 1.3 |
Total | 198 | 100 | 152 | 100.0 |
Sensitivity | – | 100 [76.8–100] | – | 86.7 [59.5–98.3] |
Specificity | – | 100 [98.0–100] | – | 100 [97.3–100] |
PPV | – | 100.0 | – | 100 [75.3–100] |
NPV | – | 100.0 | – | 98.6 [94.9–99.8] |
Accuracy | – | 100 [98.1–100] | – | 98.7 [95.3–99.8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdi Moussa, R.; Papa Mze, N.; Yonis Arreh, H.; Abdillahi Hamoud, A.; Mohamed Alaleh, K.; Mohamed Aden, F.; Yonis Omar, A.-R.; Osman Abdi, W.; Kayad Guelleh, S.; Ahmed Abdi, A.-I.; et al. Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022–2023. Diagnostics 2024, 14, 262. https://doi.org/10.3390/diagnostics14030262
Abdi Moussa R, Papa Mze N, Yonis Arreh H, Abdillahi Hamoud A, Mohamed Alaleh K, Mohamed Aden F, Yonis Omar A-R, Osman Abdi W, Kayad Guelleh S, Ahmed Abdi A-I, et al. Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022–2023. Diagnostics. 2024; 14(3):262. https://doi.org/10.3390/diagnostics14030262
Chicago/Turabian StyleAbdi Moussa, Rahma, Nasserdine Papa Mze, Houssein Yonis Arreh, Aicha Abdillahi Hamoud, Kahiya Mohamed Alaleh, Fatouma Mohamed Aden, Abdoul-Razak Yonis Omar, Warsama Osman Abdi, Samatar Kayad Guelleh, Abdoul-Ilah Ahmed Abdi, and et al. 2024. "Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022–2023" Diagnostics 14, no. 3: 262. https://doi.org/10.3390/diagnostics14030262
APA StyleAbdi Moussa, R., Papa Mze, N., Yonis Arreh, H., Abdillahi Hamoud, A., Mohamed Alaleh, K., Mohamed Aden, F., Yonis Omar, A. -R., Osman Abdi, W., Kayad Guelleh, S., Ahmed Abdi, A. -I., Basco, L. K., Abdi Khaireh, B., & Bogreau, H. (2024). Assessment of the Performance of Lactate Dehydrogenase-Based Rapid Diagnostic Test for Malaria in Djibouti in 2022–2023. Diagnostics, 14(3), 262. https://doi.org/10.3390/diagnostics14030262