High-Dimensional Feature Selection for Automatic Classification of Coronary Stenosis Using an Evolutionary Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Materials
2.2. Feature Extraction
2.2.1. Intensity Features
2.2.2. Texture Features
2.2.3. Shape Features
2.3. Vessel Enhancement Methods
- Spatial domain filters
- (a)
- Hessian-based methods.
- (b)
- (c)
- Multi-scale line detection [29]. An alternative approach that has been used for artery enhancement is the linear matched filter. This method works under the assumption that blood vessels can be modeled by linear segments that share the same orientation and length.
- (d)
- Gaussian matched filter
- Single-scale Gaussian filter (GMF). In this approach, a gray-scale template is formed from a Gaussian distribution, which is convolved with the input image.
- Multi-scale Gaussian filter. The main limitation of GMF is the use of a fixed vessel diameter represented by the parameter in which non-corresponding vessel diameters will be distinguished. In order to overcome this disadvantage, a multi-scale Gaussian matched filter was proposed by Cruz–Aceves et al. [30] considering different vessel width scales.
- Frequency domain filters
- (a)
- Gabor filter
- Multi-scale Gabor filter [33]. Similar to the GMF, the use of a fixed vessel diameter represented by the parameter will only detect the main artery tree and, as a consequence, discriminate vessels with diameters lower than . In order to overcome this disadvantage, Rangayyan et al. proposed a multi-scale Gabor filter for retinal vessels.
2.4. Metaheuristics
2.4.1. Simulated Annealing
2.4.2. Boltzmann Univariate Marginal Distribution Algorithm (BUMDA)
2.5. Machine Learning-Based Classifiers
2.5.1. K-Nearest Neighbor
2.5.2. Support Vector Machine
3. Proposed Method
- Intensity-based Features
- Texture Features
- Shape Features
- The total number of vessel pixels.
- The total number of vessel segments.
- Vessel density.
- Tortuosity.
- The minimum vessel length.
- The maximum vessel length.
- The median vessel length.
- The mean vessel length.
- The standard deviation length.
- The number of bifurcation points.
- Gray level coefficient of variation.
- Gradient mean.
- Gradient coefficient of variation.
- The minimum standard deviation of the segments in length pixels considering all arterial sections. Since each arterial section is composed of continuous segments, it is possible to measure the length of each segment and compute the standard deviation for each section. Therefore, if several arterial sections are present in the image, it is possible to obtain statistical measures over the arterial sections.
- The maximum standard deviation of segments in length pixels considering all arterial sections.
- The median standard deviation of the segments in length pixels considering all arterial sections.
- The average of standard deviations of the segments in length pixels considering all arterial sections.
- The variance of the standard deviations of the segments in length pixels considering all arterial sections.
- Minimum perimeter. The perimeter of an arterial section is the length of its boundary.
- Maximum perimeter.
- Median perimeter.
- Mean perimeter.
- Standard deviation of the perimeters.
- Minimum compactness. It can be computed as follows:
- Maximum compactness.
- Median compactness.
- Mean compactness.
- Standard deviation of compactness.
- Minimum circularity ratio. It can be computed as follows:
- Maximum circularity ratio.
- Median circularity ratio.
- Mean circularity ratio.
- Standard deviations of the circularity ratios.
- Minimum rectangularity. It can be computed as follows:
- Maximum rectangularity.
- Median rectangularity.
- Mean rectangularity.
- Standard deviation of rectangularities.
- Minimum elongatedness. It can be computed as follows:
- Maximum elongatedness.
- Median elongatedness.
- Mean elongatedness.
- Standard deviation of elongatedness.
- Minimum vessel pixel density of all arterial sections present in the patch.
- Maximum vessel pixel density.
- Median vessel pixel density.
- Mean vessel pixel density.
- Standard deviation of the vessel pixel densities.
- Sum of the vessel pixel densities of all arterial sections.
4. Results and Discussion
- Mean Intensity extracted from the Frangi method response.
- Average standard deviation of the segments in length pixels for all arterial sections, extracted from the Frangi filter response.
- Gradient mean extracted from the linear multi-scale method response.
- Gradient coefficient of variation extracted from the top-hat method response.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BUMDA | Boltzmann univariate marginal distribution algorithm |
FDR | feature decreasing rate |
GA | genetic algorithm |
KNN | K-nearest neighbor |
NSF | number of selected features |
SA | simulated annealing |
SVM | support vector machine |
UMDA | univariate marginal distribution algorithm |
References
- Duggan, J.P.; Peters, A.S.; Trachiotis, G.D.; Antevil, J.L. Epidemiology of Coronary Artery Disease. Surg. Clin. 2022, 102, 499–516. [Google Scholar] [CrossRef] [PubMed]
- British-Heart-Foundation. Global Hearth and Cirsculatory Diseases Factsheet. Available online: https://www.bhf.org.uk/-/media/files/for-professionals/research/heart-statistics/bhf-cvd-statistics-global-factsheet.pdf?rev=f323972183254ca0a1043683a9707a01&hash=5AA21565EEE5D85691D37157B31E4AAA (accessed on 8 January 2024).
- Frąk, W.; Wojtasińska, A.; Lisińska, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022, 10, 1938. [Google Scholar] [CrossRef] [PubMed]
- Saad, I.A. Segmentation of Coronary Artery Images and Detection of Atherosclerosis. J. Eng. Appl. Sci. 2018, 13, 7381–7387. [Google Scholar] [CrossRef]
- Kishore, A.N.; Jayanthi, V. Automatic stenosis grading system for diagnosing coronary artery disease using coronary angiogram. Int. J. Biomed. Eng. Technol. 2019, 31, 260–277. [Google Scholar] [CrossRef]
- Brieva, J.; Gálvez, M.; Toumoulin, C. Coronary extraction and stenosis quantification in X-ray angiographic imaging. In Proceedings of the The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 26, pp. 1714–1717. [Google Scholar]
- Taki, A.; Roodaki, A.; Setahredan, S.K.; Zoroofi, R.A.; Konig, A.; Navab, N. Automatic segmentation of calcified plaques and vessel borders in IVUS images. Int. J. Comput. Assist. Radiol. Surg. 2008, 2008, 347–354. [Google Scholar] [CrossRef]
- Cruz-Aceves, I.; Cervantes-Sanchez, F.; Hernandez-Aguirre, A. Automatic Detection of Coronary Artery Stenosis Using Bayesian Classification and Gaussian Filters Based on Differential Evolution. In Hybrid Intelligence for Image Analysis and Understanding; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; Chapter 16; pp. 369–390. [Google Scholar] [CrossRef]
- Giannoglou, V.G.; Stavrakoudis, D.G.; Theocharis, J.B. IVUS-based characterization of atherosclerotic plaques using feature selection and SVM classification. In Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), Larnaca, Cyprus, 11–13 November 2012; pp. 715–720. [Google Scholar] [CrossRef]
- Chen, X.; Fu, Y.; Lin, J.; Ji, Y.; Fang, Y.; Wu, J. Coronary Artery Disease Detection by Machine Learning with Coronary Bifurcation Features. Appl. Sci. 2020, 10, 7656. [Google Scholar] [CrossRef]
- Antczak, K.; Liberadzki, Ł. Stenosis Detection with Deep Convolutional Neural Networks. MATEC Web Conf. 2018, 210, 04001. [Google Scholar] [CrossRef]
- Garcea, F.; Serra, A.; Lamberti, F.; Morra, L. Data augmentation for medical imaging: A systematic literature review. Comput. Biol. Med. 2023, 152, 106391. [Google Scholar] [CrossRef]
- Bas, H.; Hugo, J.K.; Gilhuijs, K.G.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 2022, 79, 102470. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Tian, Q.; Ding, X. A survey of recent advances in visual feature detection. Neurocomputing 2015, 149, 736–751. [Google Scholar] [CrossRef]
- Tessmann, M.; Vega-Higuera, F.; Fritz, D.; Scheuering, M.; Greiner, G. Multi-scale feature extraction for learning-based classification of coronary artery stenosis. In Proceedings of the Medical Imaging 2009: Computer-Aided Diagnosis, Lake Buena Vista, FL, USA, 10–12 February 2009; Karssemeijer, N., Giger, M.L., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2009; Volume 7260, p. 726002. [Google Scholar] [CrossRef]
- Fazlali, H.R.; Karimi, N.; Soroushmehr, S.M.R.; Sinha, S.; Samavi, S.; Nallamothu, B.; Najarian, K. Vessel region detection in coronary X-ray angiograms. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 1493–1497. [Google Scholar] [CrossRef]
- Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R.; Molinari, F.; Saba, L.; Ho, S.Y.S.; Ahuja, A.T.; Ho, S.C.; Nicolaides, A.; Suri, J.S. Atherosclerotic Risk Stratification Strategy for Carotid Arteries Using Texture-Based Features. Ultrasound Med. Biol. 2022, 38, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, C.; Valente, A.S.; Edmunds, K.; Cantoni, V.; Green, R.; Fiorillo, A.; Picone, I.; Santini, S.; Cesarelli, M. Linear discriminant analysis and principal component analysis to predict coronary artery disease. Health Inform. J. 2020, 26, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Barburiceanu, S.; Terebes, R.; Meza, S. 3D Texture Feature Extraction and Classification Using GLCM and LBP-Based Descriptors. Appl. Sci. 2021, 11, 2332. [Google Scholar] [CrossRef]
- Murphy, L.M. Linear feature detection and enhancement in noisy images via the Radon transform. Pattern Recognit. Lett. 1986, 4, 279–284. [Google Scholar] [CrossRef]
- Cruz-Aceves, I.; Oloumi, F.; Rangayyan, R.M.; Aviña-Cervantes, J.G.; Hernandez-Aguirre, A. Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization. Biomed. Signal Process. Control 2016, 25, 76–85. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. Available online: https://cw.fel.cvut.cz/b201/_media/courses/a6m33bio/otsu.pdf (accessed on 8 January 2024). [CrossRef]
- Gil-Rios, M.A.; Chalopin, C.; Cruz-Aceves, I.; Lopez-Hernandez, J.M.; Hernandez-Gonzalez, M.A.; Solorio-Meza, S.E. Automatic Classification of Coronary Stenosis Using Feature Selection and a Hybrid Evolutionary Algorithm. Axioms 2023, 12, 462. [Google Scholar] [CrossRef]
- Frangi, A.; Nielsen, W.; Vincken, K.; Viergever, M. Multiscale vessel enhancement filtering. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI’98: First International Conference, Cambridge, MA, USA, 11–13 October 1998; Volume 1496, pp. 130–137. [Google Scholar] [CrossRef]
- Salem, N.M.; Salem, S.A.; Nandi, A.K. Segmentation of retinal blood vessels based on analysis of the hessian matrix and Clustering Algorithm. In Proceedings of the 2007 15th European Signal Processing Conference, Poznan, Poland, 3–7 September 2007; pp. 428–432. [Google Scholar]
- Eiho, S.; Qian, Y. Detection of coronary artery tree using morphological operator. In Proceedings of the Computers in Cardiology 1997, Lund, Sweden, 7–10 September 1997; pp. 525–528. [Google Scholar] [CrossRef]
- Qian, Y.; Eiho, S.; Sugimoto, N.; Fujita, M. Automatic extraction of coronary artery tree on coronary angiograms by morphological operators. In Proceedings of the Computers in Cardiology 1998. Vol. 25 (Cat. No.98CH36292), Cleveland, OH, USA, 13–16 September 1998; pp. 765–768. [Google Scholar] [CrossRef]
- Kang, W.; Kang, W.; Li, Y.; Wang, Q. The segmentation method of degree-based fusion algorithm for coronary angiograms. In Proceedings of the 2013 2nd International Conference on Measurement, Information and Control, Harbin, China, 16–18 August 2013; Volume 01, pp. 696–699. [Google Scholar] [CrossRef]
- Ricci, E.; Perfetti, R. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Trans. Med Imaging 2007, 26, 1357–1365. [Google Scholar] [CrossRef]
- Cruz-Aceves, I.; Cervantes-Sanchez, F.; Avila-Garcia, M.S. A Novel Multiscale Gaussian-Matched Filter Using Neural Networks for the Segmentation of X-Ray Coronary Angiograms. J. Healthc. Eng. 2018, 2018, 5812059. [Google Scholar] [CrossRef] [PubMed]
- Gabor, D. Theory of communication. Part 1: The analysis of information. J. Inst. Electr.-Eng. Part Iii Radio Commun. Eng. 1946, 93, 429–441. [Google Scholar] [CrossRef]
- Rangayyan, R.M.; Oloumi, F.; Oloumi, F.; Eshghzadeh-Zanjani, P.; Ayres, F.J. Detection of Blood Vessels in the Retina Using Gabor Filters. In Proceedings of the 2007 Canadian Conference on Electrical and Computer Engineering, Vancouver, BC, Canada, 22–26 April 2007; pp. 717–720. [Google Scholar] [CrossRef]
- Rangayyan, R.M.; Ayres, F.J.; Oloumi, F.; Oloumi, F.; Eshghzadeh-Zanjani, P. Detection of blood vessels in the retina with multiscale Gabor filters. J. Electron. Imaging 2008, 17, 023018. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Valdez-Peña, S.I.; Hernández, A.; Botello, S. A Boltzmann based estimation of distribution algorithm. Inf. Sci. 2013, 236, 126–137. [Google Scholar] [CrossRef]
- Dang, D.C.; Lehre, P.K.; Nguyen, P.T.H. Level-Based Analysis of the Univariate Marginal Distribution Algorithm. Algorithmica 2017, 81, 668–702. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.J.L. Discriminatory Analysis—Nonparametric Discrimination: Small Sample Performance; Technical Report; Air University, USAF School of Aviation Medecine: San Antonio, TX, USA, 1952; pp. 13–37. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Hari, B.N.; Salankar, S.S.; Bora, V.R. MRI brain cancer classification using Support Vector Machine. In Proceedings of the 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, India, 1–2 March 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Haralick, R.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Welikala, R.; Fraz, M.; Dehmeshki, J.; Hoppe, A.; Tah, V.; Mann, S.; Williamson, T.; Barman, S. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput. Med. Imaging Graph. 2015, 43, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. arXiv 2014, arXiv:1409.4842. [Google Scholar]
- Harouni, A.; Karargyris, A.; Negahdar, M.; Beymer, D.; Syeda-Mahmood, T. Universal multi-modal deep network for classification and segmentation of medical images. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 872–876. [Google Scholar] [CrossRef]
- Gil-Rios, M.A.; Guryev, I.V.; Cruz-Aceves, I.; Avina-Cervantes, J.G.; Hernandez-Gonzalez, M.A.; Solorio-Meza, S.E.; Lopez-Hernandez, J.M. Automatic Feature Selection for Stenosis Detection in X-ray Coronary Angiograms. Mathematics 2021, 9, 2471. [Google Scholar] [CrossRef]
- Hajhosseiny, R.; Bustin, A.; Munoz, C.; Rashid, I.; Cruz, G.; Manning, W.J.; Prieto, C.; Botnar, R.M. Coronary Magnetic Resonance Angiography: Technical Innovations Leading Us to the Promised Land? JACC Cardiovasc. Imaging 2020, 13, 2653–2672. [Google Scholar] [CrossRef] [PubMed]
Feature Type | Require the Original Image | Require Vessel-Enhancement | Quantity |
---|---|---|---|
Intensity | Yes | Yes | 45 |
Texture | Yes | No | 28 |
Shape | Yes | Yes | 400 |
Total Extracted Features: | 473 |
Method | Pop. Size | Max. Gens. | Min. FDR | Max. FDR | Median FDR | Mean FDR | Std. Dev. FDR |
---|---|---|---|---|---|---|---|
UMDA | 100 | 1000 | 0.48 | 0.98 | 0.92 | 0.83 | 0.17 |
BUMDA | 100 | 1000 | 0.57 | 0.50 | 0.57 | 0.53 | 0.02 |
GA | 100 | 1000 | 0.94 | 0.91 | 0.94 | 0.93 | 0.01 |
SA 1 | - | 10,000 | 0.87 | 0.97 | 0.92 | 0.92 | 0.03 |
Hybrid Evolutionary 2 | 100 | 100/5000 1 | 0.92 | 0.99 | 0.97 | 0.97 | 0.03 |
Method | NSF | FDR | Classifier | Accuracy | JC |
---|---|---|---|---|---|
GLNet [44] | – | – | – | 0.85 | 0.76 |
UNet [45] | – | – | – | 0.85 | 0.75 |
CNN-16C [11] | – | – | – | 0.86 | 0.76 |
UMDA [46] | 10 | 0.98 | KNN | 0.81 | 0.75 |
SVM | 0.80 | 0.67 | |||
BUMDA | 205 | 0.57 | KNN | 0.81 | 0.70 |
SVM | 0.82 | 0.72 | |||
GA | 29 | 0.94 | KNN | 0.79 | 0.65 |
SVM | 0.79 | 0.66 | |||
SA | 16 | 0.97 | KNN | 0.81 | 0.65 |
SVM | 0.85 | 0.75 | |||
Hybrid-Evolutionary | 4 | 0.99 | KNN | 0.87 | 0.76 |
SVM | 0.86 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Rios, M.-A.; Cruz-Aceves, I.; Hernandez-Aguirre, A.; Moya-Albor, E.; Brieva, J.; Hernandez-Gonzalez, M.-A.; Solorio-Meza, S.-E. High-Dimensional Feature Selection for Automatic Classification of Coronary Stenosis Using an Evolutionary Algorithm. Diagnostics 2024, 14, 268. https://doi.org/10.3390/diagnostics14030268
Gil-Rios M-A, Cruz-Aceves I, Hernandez-Aguirre A, Moya-Albor E, Brieva J, Hernandez-Gonzalez M-A, Solorio-Meza S-E. High-Dimensional Feature Selection for Automatic Classification of Coronary Stenosis Using an Evolutionary Algorithm. Diagnostics. 2024; 14(3):268. https://doi.org/10.3390/diagnostics14030268
Chicago/Turabian StyleGil-Rios, Miguel-Angel, Ivan Cruz-Aceves, Arturo Hernandez-Aguirre, Ernesto Moya-Albor, Jorge Brieva, Martha-Alicia Hernandez-Gonzalez, and Sergio-Eduardo Solorio-Meza. 2024. "High-Dimensional Feature Selection for Automatic Classification of Coronary Stenosis Using an Evolutionary Algorithm" Diagnostics 14, no. 3: 268. https://doi.org/10.3390/diagnostics14030268
APA StyleGil-Rios, M. -A., Cruz-Aceves, I., Hernandez-Aguirre, A., Moya-Albor, E., Brieva, J., Hernandez-Gonzalez, M. -A., & Solorio-Meza, S. -E. (2024). High-Dimensional Feature Selection for Automatic Classification of Coronary Stenosis Using an Evolutionary Algorithm. Diagnostics, 14(3), 268. https://doi.org/10.3390/diagnostics14030268