Time-Dependent Changes in Hematoma Expansion Rate after Supratentorial Intracerebral Hemorrhage and Its Relationship with Neurological Deterioration and Functional Outcome
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Measurement of Hematoma Volumes
2.3. Ascertainment of Imaging and Clinical Outcomes
2.4. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Rates of HE Based on the Time from Onset to Baseline Scan
3.3. Rates of ND and Its Association with HE Based on the Time from Onset to Baseline Scan
3.4. Odds of ND, Poor Outcome, and Mortality Associated with HE
3.5. Predictors of ND, Poor Outcome, and Mortality among ICH Patients with Mild Presentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Asch, C.J.; Luitse, M.J.; Rinkel, G.J.; van der Tweel, I.; Algra, A.; Klijn, C.J. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 167–176. [Google Scholar] [CrossRef]
- Sheth, K.N. Spontaneous Intracerebral Hemorrhage. N. Engl. J. Med. 2022, 387, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yakhkind, A.; Alexandrov, A.W.; Alexandrov, A.V.; Anderson, C.S.; Dowlatshahi, D.; Frontera, J.A.; Hemphill, J.C.; Ganti, L.; Kellner, C.; et al. Code ICH: A Call to Action. Stroke 2024, 55, 494–505. [Google Scholar] [CrossRef]
- Lim-Hing, K.; Rincon, F. Secondary Hematoma Expansion and Perihemorrhagic Edema after Intracerebral Hemorrhage: From Bench Work to Practical Aspects. Front. Neurol. 2017, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Brott, T.; Broderick, J.; Kothari, R.; Barsan, W.; Tomsick, T.; Sauerbeck, L.; Spilker, J.; Duldner, J.; Khoury, J. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke 1997, 28, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dowlatshahi, D.; Demchuk, A.M.; Flaherty, M.L.; Ali, M.; Lyden, P.L.; Smith, E.E.; Collaboration, V. Defining hematoma expansion in intracerebral hemorrhage: Relationship with patient outcomes. Neurology 2011, 76, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Al-Shahi Salman, R.; Frantzias, J.; Lee, R.J.; Lyden, P.D.; Battey, T.W.K.; Ayres, A.M.; Goldstein, J.N.; Mayer, S.A.; Steiner, T.; Wang, X.; et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: A systematic review and meta-analysis of individual patient data. Lancet Neurol. 2018, 17, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Pan, W.; Kranz, P.G.; Hailey, C.E.; Williamson, R.A.; Sun, W.; Laskowitz, D.T.; James, M.L. Predictors of late neurological deterioration after spontaneous intracerebral hemorrhage. Neurocrit. Care 2013, 19, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Lord, A.S.; Gilmore, E.; Choi, H.A.; Mayer, S.A.; Collaboration, V.-I. Time course and predictors of neurological deterioration after intracerebral hemorrhage. Stroke 2015, 46, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Law, Z.K.; Dineen, R.; England, T.J.; Cala, L.; Mistri, A.K.; Appleton, J.P.; Ozturk, S.; Bereczki, D.; Ciccone, A.; Bath, P.M.; et al. Predictors and Outcomes of Neurological Deterioration in Intracerebral Hemorrhage: Results from the TICH-2 Randomized Controlled Trial. Transl. Stroke Res. 2021, 12, 275–283. [Google Scholar] [CrossRef]
- Ovesen, C.; Christensen, A.F.; Havsteen, I.; Krarup Hansen, C.; Rosenbaum, S.; Kurt, E.; Christensen, H. Prediction and prognostication of neurological deterioration in patients with acute ICH: A hospital-based cohort study. BMJ Open 2015, 5, e008563. [Google Scholar] [CrossRef]
- Specogna, A.V.; Turin, T.C.; Patten, S.B.; Hill, M.D. Factors associated with early deterioration after spontaneous intracerebral hemorrhage: A systematic review and meta-analysis. PLoS ONE 2014, 9, e96743. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Yamamoto, H.; Foster, L.D.; Fukuda-Doi, M.; Koga, M.; Ihara, M.; Toyoda, K.; Palesch, Y.Y.; Qureshi, A.I. Late Neurological Deterioration after Acute Intracerebral Hemorrhage: A post hoc Analysis of the ATACH-2 Trial. Cerebrovasc. Dis. 2020, 49, 26–31. [Google Scholar] [CrossRef]
- Torres-Lopez, V.M.; Rovenolt, G.E.; Olcese, A.J.; Garcia, G.E.; Chacko, S.M.; Robinson, A.; Gaiser, E.; Acosta, J.; Herman, A.L.; Kuohn, L.R.; et al. Development and Validation of a Model to Identify Critical Brain Injuries Using Natural Language Processing of Text Computed Tomography Reports. JAMA Netw. Open 2022, 5, e2227109. [Google Scholar] [CrossRef]
- Haider, S.P.; Qureshi, A.I.; Jain, A.; Tharmaseelan, H.; Berson, E.R.; Majidi, S.; Filippi, C.G.; Mak, A.; Werring, D.J.; Acosta, J.N.; et al. The coronal plane maximum diameter of deep intracerebral hemorrhage predicts functional outcome more accurately than hematoma volume. Int. J. Stroke 2022, 17, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.P.; Qureshi, A.I.; Jain, A.; Tharmaseelan, H.; Berson, E.R.; Zeevi, T.; Majidi, S.; Filippi, C.G.; Iseke, S.; Gross, M.; et al. Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and functional outcome in the ATACH-2 trial intracerebral hemorrhage population. Eur. J. Neurol. 2021, 28, 2989–3000. [Google Scholar] [CrossRef]
- Haider, S.P.; Qureshi, A.I.; Jain, A.; Tharmaseelan, H.; Berson, E.R.; Zeevi, T.; Werring, D.J.; Gross, M.; Mak, A.; Malhotra, A.; et al. Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: Independent validation and comparison with visual markers. Front. Neurosci. 2023, 17, 1225342. [Google Scholar] [CrossRef]
- Phan, A.-C.; Vo, V.-Q.; Phan, T.-C. A Hounsfield value-based approach for automatic recognition of brain haemorrhage. J. Inf. Telecommun. 2018, 3, 196–209. [Google Scholar] [CrossRef]
- Kornbluth, J.; Nekoovaght-Tak, S.; Ullman, N.; Carhuapoma, J.R.; Hanley, D.F.; Ziai, W. Early Quantification of Hematoma Hounsfield Units on Noncontrast CT in Acute Intraventricular Hemorrhage Predicts Ventricular Clearance after Intraventricular Thrombolysis. Am. J. Neuroradiol. 2015, 36, 1609–1615. [Google Scholar] [CrossRef]
- Gladstone, D.J.; Aviv, R.I.; Demchuk, A.M.; Hill, M.D.; Thorpe, K.E.; Khoury, J.C.; Sucharew, H.J.; Al-Ajlan, F.; Butcher, K.; Dowlatshahi, D.; et al. Effect of Recombinant Activated Coagulation Factor VII on Hemorrhage Expansion Among Patients With Spot Sign-Positive Acute Intracerebral Hemorrhage: The SPOTLIGHT and STOP-IT Randomized Clinical Trials. JAMA Neurol. 2019, 76, 1493–1501. [Google Scholar] [CrossRef]
- Leasure, A.C.; Qureshi, A.I.; Murthy, S.B.; Kamel, H.; Goldstein, J.N.; Woo, D.; Ziai, W.C.; Hanley, D.F.; Al-Shahi Salman, R.; Matouk, C.C.; et al. Association of Intensive Blood Pressure Reduction with Risk of Hematoma Expansion in Patients with Deep Intracerebral Hemorrhage. JAMA Neurol. 2019, 76, 949–955. [Google Scholar] [CrossRef]
- Kuohn, L.R.; Witsch, J.; Steiner, T.; Sheth, K.N.; Kamel, H.; Navi, B.B.; Merkler, A.E.; Murthy, S.B.; Mayer, S.A. Early Deterioration, Hematoma Expansion, and Outcomes in Deep Versus Lobar Intracerebral Hemorrhage: The FAST Trial. Stroke 2022, 53, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Seners, P.; Ben Hassen, W.; Lapergue, B.; Arquizan, C.; Heldner, M.R.; Henon, H.; Perrin, C.; Strambo, D.; Cottier, J.P.; Sablot, D.; et al. Prediction of Early Neurological Deterioration in Individuals With Minor Stroke and Large Vessel Occlusion Intended for Intravenous Thrombolysis Alone. JAMA Neurol. 2021, 78, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Zhang, X.; Zhang, Y.; Zhang, R.; Qiao, Y. A Prediction Model for Neurological Deterioration in Patients with Acute Spontaneous Intracerebral Hemorrhage. Front. Surg. 2022, 9, 886856. [Google Scholar] [CrossRef]
- Kazui, S.; Naritomi, H.; Yamamoto, H.; Sawada, T.; Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke 1996, 27, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, C.; Havsteen, I.; Rosenbaum, S.; Christensen, H. Prediction and observation of post-admission hematoma expansion in patients with intracerebral hemorrhage. Front. Neurol. 2014, 5, 186. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.M. Pathological observations in hypertensive cerebral hemorrhage. J. Neuropathol. Exp. Neurol. 1971, 30, 536–550. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, C.; Christensen, A.F.; Krieger, D.W.; Rosenbaum, S.; Havsteen, I.; Christensen, H. Time course of early postadmission hematoma expansion in spontaneous intracerebral hemorrhage. Stroke 2014, 45, 994–999. [Google Scholar] [CrossRef]
- Brouwers, H.B.; Chang, Y.; Falcone, G.J.; Cai, X.; Ayres, A.M.; Battey, T.W.; Vashkevich, A.; McNamara, K.A.; Valant, V.; Schwab, K.; et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014, 71, 158–164. [Google Scholar] [CrossRef]
- Sorimachi, T.; Fujii, Y. Early neurological change in patients with spontaneous supratentorial intracerebral hemorrhage. J. Clin. Neurosci. 2010, 17, 1367–1371. [Google Scholar] [CrossRef]
- Asdaghi, N.; Romano, J.G.; Gardener, H.; Campo-Bustillo, I.; Purdon, B.; Khan, Y.M.; Gulati, D.; Broderick, J.P.; Schwamm, L.H.; Smith, E.E.; et al. Thrombolysis in Mild Stroke: A Comparative Analysis of the PRISMS and MaRISS Studies. Stroke 2021, 52, e586–e589. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gonzalez, A.; Lazcano, U.; Vivanco-Hidalgo, R.M.; Prats-Sanchez, L.; Guisado-Alonso, D.; Delgado-Mederos, R.; Camps-Renom, P.; Martinez Domeno, A.; Cuadrado-Godia, E.; Giralt Steinhauer, E.; et al. Defining Minor Intracerebral Hemorrhage. Cerebrovasc. Dis. 2021, 50, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Roh, D.; Sun, C.H.; Murthy, S.; Elkind, M.S.V.; Bruce, S.S.; Melmed, K.; Ironside, N.; Boehme, A.; Doyle, K.; Woo, D.; et al. Hematoma Expansion Differences in Lobar and Deep Primary Intracerebral Hemorrhage. Neurocrit. Care 2019, 31, 40–45. [Google Scholar] [CrossRef] [PubMed]
Without HE (n = 390) | With HE (n = 177) | p Value | |
---|---|---|---|
Male sex | 205 (52.6%) | 103 (58.2%) | 0.237 |
Age (years) | 69.6 ± 13.9 | 70.3 ± 14.7 | 0.546 |
Ethnicity—Hispanic | 32 (8.2%) | 14 (7.9%) | 1.00 |
Race— | 0.532 | ||
White | 262 (67.2%) | 129 (72.9%) | |
Black | 116 (29.7%) | 44 (24.9%) | |
Asian | 11 (2.8%) | 4 (2.3%) | |
Other | 1 (0.3%) | 0 (0%) | |
Systolic blood pressure (mmHg) | 172.8 ± 31.2 | 170.6 ± 33.2 | 0.447 |
History of hypertension | 339 (86.9%) | 139 (78.5%) | 0.013 |
Baseline blood glucose (mg/dL) | 146.4 ± 65.6 | 146.4 ± 49.4 | 0.086 |
History of anticoagulation | 71 (18.2%) | 44 (24.9%) | 0.072 |
Onset to baseline CT time gap (hours) | 6.1 ± 6.3 | 3.4 ± 4.5 | <0.001 |
Baseline hematoma volume (mL) | 18.1 ± 20.4 | 24.9 ± 23.5 | 0.001 |
Baseline to follow-up CT time gap (hours) | 17.9 ± 17.2 | 19.2 ± 13.9 | 0.388 |
Follow-up hematoma volume (mL) | 18.5 ± 19.4 | 42.5 ± 33.7 | <0.001 |
Admission Glasgow coma scale score | 14 (11–15) | 13 (8–15) | 0.001 |
Admission NIH stroke scale score | 8 (4–17) | 14 (7–20) | <0.001 |
Deep (vs. lobar) hemorrhage | 244 (62.6%) | 88 (49.7%) | 0.004 |
Intraventicular hemorrhage | 192 (49.2%) | 98 (55.4%) | 0.204 |
External ventricular drainage | 52 (13.3%) | 14 (7.9%) | 0.067 |
Surgical evacuation | 13 (3.3%) | 16 (9.0%) | 0.007 |
Neurological deterioration (ND) | 122 (31.3%) | 90 (50.8%) | <0.001 |
Discharge modified Rankin scale score (mRS) | 4 (3–5) | 5 (4–6) | <0.001 |
3-month follow-up (mRS) | 3 (2–5) | 5 (3–6) | <0.001 |
Poor outcome (mRS 4 to 6) | 179 (45.9%) | 127 (71.8%) | <0.001 |
Mortality | 79 (20.3%) | 80 (45.2%) | <0.001 |
Without ND (n = 355) | With ND (n = 212) | p Value | |
---|---|---|---|
Male sex | 191 (53.8%) | 117 (55.2%) | 0.794 |
Age (years) | 68.5 ± 14.7 | 72.0 ± 13.1 | 0.044 |
Ethnicity—Hispanic | 31 (8.7%) | 15 (7.1%) | 0.528 |
Race— | 0.141 | ||
White | 237 (66.8%) | 154 (72.6%) | |
Black | 110 (31.0%) | 50 (23.6%) | |
Asian | 8 (2.3%) | 7 (3.3%) | |
Other | 0 (0%) | 1 (0.5%) | |
Systolic blood pressure (mmHg) | 171.8 ± 32.9 | 172.6 ± 30.1 | 0.139 |
History of hypertension | 298 (83.9%) | 180 (84.9%) | 0.812 |
Baseline blood glucose (mg/dL) | 143.3 ± 64.1 | 143.9 ± 56.0 | 0.087 |
History of anticoagulation | 71 (20.0%) | 44 (20.8%) | 0.830 |
Onset to baseline CT time gap (hours) | 5.5 ± 6.2 | 4.7 ± 5.5 | 0.032 |
Baseline hematoma volume (mL) | 17.3 ± 20.3 | 25.0 ± 22.9 | 0.006 |
Baseline to follow-up CT time gap (hours) | 17.0 ± 17.0 | 20.5 ± 14.7 | 0.689 |
Follow-up hematoma volume (mL) | 20.3 ± 24.1 | 33.6 ± 30.2 | <0.001 |
Admission Glasgow coma scale score | 14 (10–15) | 14 (10–15) | 0.131 |
Admission NIH stroke scale score | 9 (3–18) | 12 (6–18) | 0.013 |
Deep (vs. lobar) hemorrhage | 215 (60.6%) | 117 (55.2%) | 0.218 |
Intraventicular hemorrhage | 154 (43.4%) | 136 (64.2%) | <0.001 |
External ventricular drainage | 36 (10.1%) | 30 (14.2%) | 0.176 |
Surgical evacuation | 17 (4.8%) | 12 (5.7%) | 0.695 |
Hematoma expansion (HE) | 87 (24.5%) | 90 (42.5%) | <0.001 |
Discharge modified Rankin scale score (mRS) | 4 (3–5) | 5 (4–6) | <0.001 |
3-month follow-up (mRS) | 3 (2–5) | 5 (3–6) | <0.001 |
Poor outcome (mRS 4 to 6) | 158 (44.5%) | 148 (69.8%) | <0.001 |
Mortality | 74 (20.8%) | 85 (40.1%) | <0.001 |
3-Month Outcome | Favorable (n = 261) | Poor (n = 306) | p Value |
---|---|---|---|
Male sex | 146 (55.9%) | 162 (52.9%) | 0.499 |
Age (years) | 67.7 ± 13.9 | 71.6 ± 14.2 | 0.001 |
Ethnicity—Hispanic | 19 (7.3%) | 27 (8.8%) | 0.540 |
Race— | 0.447 | ||
White | 186 (71.3%) | 205 (67.0%) | |
Black | 67 (25.7%) | 93 (30.4%) | |
Asian | 7 (2.7%) | 8 (2.6%) | |
Other | 0 (0%) | 1 (0.2%) | |
Systolic blood pressure (mmHg) | 172.5 ± 30.1 | 171.8 ± 33.4 | 0.783 |
History of hypertension | 219 (83.9%) | 259 (84.6%) | 0.818 |
Baseline blood glucose (mg/dL) | 136.9 ± 58.8 | 149.1 ± 62.6 | 0.018 |
History of anticoagulation | 39 (14.9%) | 76 (24.8%) | 0.005 |
Onset to baseline CT time gap (hours) | 5.9 ± 6.3 | 4.7 ± 5.7 | 0.014 |
Baseline hematoma volume (mL) | 13.0 ± 14.1 | 26.3 ± 24.8 | <0.001 |
Baseline to follow-up CT time gap (hours) | 17.6 ± 18.7 | 18.9 ± 13.8 | 0.330 |
Follow-up hematoma volume (mL) | 14.1 ± 15.4 | 34.8 ± 31.4 | <0.001 |
Admission Glasgow coma scale score | 15 (14–15) | 12 (7–14) | <0.001 |
Admission NIH stroke scale score | 5 (2–10) | 17 (10–22) | <0.001 |
Deep (vs. lobar) hemorrhage | 146 (55.9%) | 186 (60.8%) | 0.266 |
Intraventicular hemorrhage | 94 (36.0%) | 196 (64.1%) | <0.001 |
External ventricular drainage | 10 (3.8%) | 56 (18.3%) | <0.001 |
Surgical evacuation | 6 (2.3%) | 23 (7.5%) | 0.006 |
Hematoma expansion (HE) | 50 (19.2%) | 127 (41.5%) | <0.001 |
Discharge modified Rankin scale score (mRS) | 3 (2–4) | 5 (4–6) | <0.001 |
Neurological deterioration (ND) | 64 (24.5%) | 148 (48.4%) | <0.001 |
Alive (n = 408) | Deceased (n = 159) | p Value | |
---|---|---|---|
Male sex | 219 (53.7%) | 89 (56.0%) | 0.640 |
Age (years) | 68.2 ± 13.9 | 73.9 ± 14.2 | <0.001 |
Ethnicity—Hispanic | 34 (8.3%) | 12 (7.5%) | 0.865 |
Race— | 0.463 | ||
White | 275 (67.4%) | 116 (73.0%) | |
Black | 122 (29.9%) | 38 (23.9%) | |
Asian | 10 (2.5%) | 5 (3.1%) | |
Other | 1 (0.2%) | 0 (0%) | |
Systolic blood pressure (mmHg) | 172.2 ± 30.8 | 172.0 ± 34.5 | 0.960 |
History of hypertension | 345 (84.6%) | 133 (83.6%) | 0.798 |
Baseline blood glucose (mg/dL) | 139.7 ± 60.3 | 153.2 ± 62.5 | 0.018 |
History of anticoagulation | 66 (16.2%) | 49 (30.8%) | <0.001 |
Onset to baseline CT time gap (hours) | 5.3 ± 5.9 | 5.0 ± 6.1 | 0.603 |
Baseline hematoma volume (mL) | 15.0 ± 16.1 | 33.4 ± 27.6 | <0.001 |
Baseline to follow-up CT time gap (hours) | 18.9 ± 17.4 | 16.9 ± 12.9 | 0.206 |
Follow-up hematoma volume (mL) | 17.4 ± 18.8 | 45.3 ± 34.7 | <0.001 |
Admission Glasgow coma scale score | 14 (12–15) | 11 (6–14) | <0.001 |
Admission NIH stroke scale score | 8 (3–14) | 18 (11–24) | <0.001 |
Deep (vs. lobar) hemorrhage | 246 (60.3%) | 86 (54.1%) | 0.185 |
Intraventicular hemorrhage | 171 (41.9%) | 119 (74.8%) | <0.001 |
External ventricular drainage | 38 (9.3%) | 28 (17.6%) | 0.008 |
Surgical evacuation | 15 (3.7%) | 14 (8.8%) | 0.018 |
Hematoma expansion (HE) | 127 (31.1%) | 85 (53.5%) | <0.001 |
Neurological deterioration (ND) | 97 (23.8%) | 80 (50.3%) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou Karam, G.; Chen, M.-C.; Zeevi, D.; Harms, B.C.; Torres-Lopez, V.M.; Rivier, C.A.; Malhotra, A.; de Havenon, A.; Falcone, G.J.; Sheth, K.N.; et al. Time-Dependent Changes in Hematoma Expansion Rate after Supratentorial Intracerebral Hemorrhage and Its Relationship with Neurological Deterioration and Functional Outcome. Diagnostics 2024, 14, 308. https://doi.org/10.3390/diagnostics14030308
Abou Karam G, Chen M-C, Zeevi D, Harms BC, Torres-Lopez VM, Rivier CA, Malhotra A, de Havenon A, Falcone GJ, Sheth KN, et al. Time-Dependent Changes in Hematoma Expansion Rate after Supratentorial Intracerebral Hemorrhage and Its Relationship with Neurological Deterioration and Functional Outcome. Diagnostics. 2024; 14(3):308. https://doi.org/10.3390/diagnostics14030308
Chicago/Turabian StyleAbou Karam, Gaby, Min-Chiun Chen, Dorin Zeevi, Bendix C. Harms, Victor M. Torres-Lopez, Cyprien A. Rivier, Ajay Malhotra, Adam de Havenon, Guido J. Falcone, Kevin N. Sheth, and et al. 2024. "Time-Dependent Changes in Hematoma Expansion Rate after Supratentorial Intracerebral Hemorrhage and Its Relationship with Neurological Deterioration and Functional Outcome" Diagnostics 14, no. 3: 308. https://doi.org/10.3390/diagnostics14030308
APA StyleAbou Karam, G., Chen, M. -C., Zeevi, D., Harms, B. C., Torres-Lopez, V. M., Rivier, C. A., Malhotra, A., de Havenon, A., Falcone, G. J., Sheth, K. N., & Payabvash, S. (2024). Time-Dependent Changes in Hematoma Expansion Rate after Supratentorial Intracerebral Hemorrhage and Its Relationship with Neurological Deterioration and Functional Outcome. Diagnostics, 14(3), 308. https://doi.org/10.3390/diagnostics14030308