Evaluation of the Use of Singleplex and Duplex CerTest VIASURE Real-Time PCR Assays to Detect Common Intestinal Protist Parasites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Design
2.3. DNA Reference Panel
2.4. Assays
2.5. Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stark, D.; Barratt, J.L.; van Hal, S.; Marriott, D.; Harkness, J.; Ellis, J.T. Clinical significance of enteric protozoa in the immunosuppressed human population. Clin. Microbiol. Rev. 2009, 22, 634–650. [Google Scholar] [CrossRef]
- Fletcher, S.M.; Stark, D.; Harkness, J.; Ellis, J. Enteric protozoa in the developed world: A public health perspective. Clin. Microbiol. Rev. 2012, 25, 420–449. [Google Scholar] [CrossRef] [PubMed]
- Mmbaga, B.T.; Houpt, E.R. Cryptosporidium and Giardia infections in children: A review. Pediatr. Clin. N. Am. 2017, 64, 837–850. [Google Scholar] [CrossRef]
- Hemphill, A.; Müller, N.; Müller, J. Comparative pathobiology of the intestinal protozoan parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Pathogens 2019, 8, 116. [Google Scholar] [CrossRef]
- Allain, T.; Buret, A.G. Pathogenesis and post-infectious complications in giardiasis. Adv. Parasitol. 2020, 107, 173–199. [Google Scholar] [CrossRef]
- Berkman, D.S.; Lescano, A.G.; Gilman, R.H.; Lopez, S.L.; Black, M.M. Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: A follow-up study. Lancet 2002, 359, 564–571. [Google Scholar] [CrossRef]
- Dougherty, M.; Bartelt, L.A. Giardia and growth impairment in children in high-prevalence settings: Consequence or co-incidence? Curr. Opin. Infect. Dis. 2022, 35, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Fradette, M.S.; Culley, A.I.; Charette, S.J. Detection of Cryptosporidium spp. and Giardia spp. in environmental water samples: A journey into the past and new perspectives. Microorganisms 2022, 10, 1175. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.Y.; Li, M.Y.; Qi, Z.Z.; Fu, M.; Sun, T.F.; Elsheikha, H.M.; Cong, W. Waterborne protozoan outbreaks: An update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination. Sci. Total Environ. 2022, 806, 150562. [Google Scholar] [CrossRef]
- Laude, A.; Valot, S.; Desoubeaux, G.; Argy, N.; Nourrisson, C.; Pomares, C.; Machouart, M.; Le Govic, Y.; Dalle, F.; Botterel, F.; et al. Is real-time PCR-based diagnosis similar in performance to routine parasitological examination for the identification of Giardia intestinalis, Cryptosporidium parvum/Cryptosporidium hominis and Entamoeba histolytica from stool samples? Evaluation of a new commercial multiplex PCR assay and literature review. Clin. Microbiol. Infect. 2016, 22, 190.e1–190.e8. [Google Scholar] [CrossRef]
- Ximénez, C.; Morán, P.; Rojas, L.; Valadez, A.; Gómez, A. Reassessment of the epidemiology of amebiasis: State of the art. Infect. Genet. Evol. 2009, 9, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.S. Dientamoeba fragilis, one of the neglected intestinal protozoa. J. Clin. Microbiol. 2016, 54, 2243–2250. [Google Scholar] [CrossRef] [PubMed]
- Stensvold, C.R.; Clark, C.G. Current status of Blastocystis: A personal view. Parasitol. Int. 2016, 65, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Riahi, S.M.; Haghighi, A.; Saber, V.; Armon, B.; Seyyedtabaei, S.J. The role of Blastocystis sp. and Dientamoeba fragilis in irritable bowel syndrome: A systematic review and meta-analysis. Parasitol. Res. 2017, 116, 2361–2371. [Google Scholar] [CrossRef]
- Van Lieshout, L.; Verweij, J.J. Newer diagnostic approaches to intestinal protozoa. Curr. Opin. Infect. Dis. 2010, 23, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Verweij, J.J.; Stensvold, C.R. Molecular testing for clinical diagnosis and epidemiological investigations of intestinal parasitic infections. Clin. Microbiol. Rev. 2014, 27, 371–418. [Google Scholar] [CrossRef]
- de Boer, R.F.; Ott, A.; Kesztyüs, B.; Kooistra-Smid, A.M. Improved detection of five major gastrointestinal pathogens by use of a molecular screening approach. J. Clin. Microbiol. 2010, 48, 4140–4146. [Google Scholar] [CrossRef]
- Stensvold, C.R.; Lebbad, M.; Verweij, J.J. The impact of genetic diversity in protozoa on molecular diagnostics. Trends Parasitol. 2011, 27, 53–58. [Google Scholar] [CrossRef]
- Verweij, J. Application of PCR-based methods for diagnosis of intestinal parasitic infections in the clinical laboratory. Parasitology 2014, 141, 1863–1872. [Google Scholar] [CrossRef]
- Schuurs, T.A.; Koelewijn, R.; Brienen, E.A.T.; Kortbeek, T.; Mank, T.G.; Mulder, B.; Stelma, F.F.; van Lieshout, L.; van Hellemond, J.J. Harmonization of PCR-based detection of intestinal pathogens: Experiences from the Dutch external quality assessment scheme on molecular diagnosis of protozoa in stool samples. Clin. Chem. Lab. Med. 2018, 56, 1722–1727. [Google Scholar] [CrossRef]
- Buss, S.N.; Leber, A.; Chapin, K.; Fey, P.D.; Bankowski, M.J.; Jones, M.K.; Rogatcheva, M.; Kanack, K.J.; Bourzac, K.M. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J. Clin. Microbiol. 2015, 53, 915–925. [Google Scholar] [CrossRef]
- van Lieshout, L.; Roestenberg, M. Clinical consequences of new diagnostic tools for intestinal parasites. Clin. Microbiol. Infect. 2015, 21, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Dashti, A.; Alonso, H.; Escolar-Miñana, C.; Köster, P.C.; Bailo, B.; Carmena, D.; González-Barrio, D. Evaluation of a novel commercial real-time PCR assay for the simultaneous detection of Cryptosporidium spp., Giardia duodenalis, and Entamoeba histolytica. Microbiol. Spectr. 2022, 10, e0053122. [Google Scholar] [CrossRef] [PubMed]
- Zamora, J.; Abraira, V.; Muriel, A.; Khan, K.; Coomarasamy, A. Meta-DiSc: A software for meta-analysis of test accuracy data. BMC Med. Res. Methodol. 2006, 6, 31. [Google Scholar] [CrossRef]
- Batra, R.; Judd, E.; Eling, J.; Newsholme, W.; Goldenberg, S.D. Molecular detection of common intestinal parasites: A performance evaluation of the BD Max enteric parasite panel. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1753–1757. [Google Scholar] [CrossRef] [PubMed]
- Madison-Antenucci, S.; Relich, R.F.; Doyle, L.; Espina, N.; Fuller, D.; Karchmer, T.; Lainesse, A.; Mortensen, J.E.; Pancholi, P.; Veros, W.; et al. Multicenter evaluation of BD Max enteric parasite real-time PCR assay for detection of Giardia duodenalis, Cryptosporidium hominis, Cryptosporidium parvum, and Entamoeba histolytica. J. Clin. Microbiol. 2016, 54, 2681–2688. [Google Scholar] [CrossRef]
- Stark, D.; Roberts, T.; Ellis, J.T.; Marriott, D.; Harkness, J. Evaluation of the EasyScreen enteric parasite detection kit for the detection of Blastocystis spp., Cryptosporidium spp., Dientamoeba fragilis, Entamoeba complex, and Giardia intestinalis from clinical stool samples. Diagn. Microbiol. Infect. Dis. 2014, 78, 149–152. [Google Scholar] [CrossRef]
- McAuliffe, G.N.; Anderson, T.P.; Stevens, M.; Adams, J.; Coleman, R.; Mahagamasekera, P.; Young, S.; Henderson, T.; Hofmann, M.; Jennings, L.; et al. Systematic application of multiplex PCR enhances the detection of bacteria, parasites, and viruses in stool samples. J. Infect. 2013, 67, 122–129. [Google Scholar] [CrossRef]
- Perry, M.D.; Corden, S.A.; Howe, R.A. Evaluation of the Luminex xTAG gastrointestinal pathogen panel and the Savyon Diagnostics gastrointestinal infection panel for the detection of enteric pathogens in clinical samples. J. Med. Microbiol. 2014, 63, 1419–1426. [Google Scholar] [CrossRef]
- Ken Dror, S.; Pavlotzky, E.; Barak, M. Evaluation of the NanoCHIP Gastrointestinal Panel (GIP) test for simultaneous detection of parasitic and bacterial enteric pathogens in fecal specimens. PLoS ONE 2016, 11, e0159440. [Google Scholar] [CrossRef]
- Paulos, S.; Saugar, J.M.; de Lucio, A.; Fuentes, I.; Mateo, M.; Carmena, D. Comparative performance evaluation of four commercial multiplex real-time PCR assays for the detection of the diarrhoea-causing protozoa Cryptosporidium hominis/parvum, Giardia duodenalis and Entamoeba histolytica. PLoS ONE 2019, 14, e0215068. [Google Scholar] [CrossRef]
- Basmaciyan, L.; François, A.; Vincent, A.; Valot, S.; Bonnin, A.; Costa, D.; Razakandrainibe, R.; Morio, F.; Favennec, L.; Dalle, F. Commercial simplex and multiplex PCR assays for the detection of intestinal parasites Giardia intestinalis, Entamoeba spp., and Cryptosporidium spp.: Comparative evaluation of seven commercial PCR kits with routine in-house simplex PCR assays. Microorganisms 2021, 9, 2325. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, I.; Dashti, A.; Köster, P.C.; Bailo, B.; González, N.; Allende, J.; Stensvold, C.R.; Carmena, D.; González-Barrio, D. Development, optimisation and validation of a novel multiplex real-time PCR method for the simultaneous detection of Cryptosporidium spp., Giardia duodenalis and Dientamoeba fragilis. Pathogens 2022, 11, 1277. [Google Scholar] [CrossRef] [PubMed]
- Tůmová, L.; Ježková, J.; Prediger, J.; Holubová, N.; Sak, B.; Konečný, R.; Květoňová, D.; Hlásková, L.; Rost, M.; McEvoy, J.; et al. Cryptosporidium mortiferum n. sp. (Apicomplexa: Cryptosporidiidae), the species causing lethal cryptosporidiosis in Eurasian red squirrels (Sciurus vulgaris). Parasit. Vectors 2023, 16, 235. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ryan, U.M.; Xiao, L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol. 2018, 34, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.M.; Feng, Y.; Fayer, R.; Xiao, L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia—A 50 year perspective (1971–2021). Int. J. Parasitol. 2021, 51, 1099–1119. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Ryan, U.; Xiao, L.; Feng, Y. Zoonotic giardiasis: An update. Parasitol. Res. 2021, 120, 4199–4218. [Google Scholar] [CrossRef] [PubMed]
- Squire, S.A.; Ryan, U. Cryptosporidium and Giardia in Africa: Current and future challenges. Parasit. Vectors 2017, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Villamizar, X.; Higuera, A.; Herrera, G.; Vasquez-A, L.R.; Buitron, L.; Muñoz, L.M.; Gonzalez-C, F.E.; Lopez, M.C.; Giraldo, J.C.; Ramírez, J.D. Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study. BMC Infect. Dis. 2019, 19, 190. [Google Scholar] [CrossRef]
- Weedall, G.D.; Clark, C.G.; Koldkjaer, P.; Kay, S.; Bruchhaus, I.; Tannich, E.; Paterson, S.; Hall, N. Genomic diversity of the human intestinal parasite Entamoeba histolytica. Genome Biol. 2012, 13, R38. [Google Scholar] [CrossRef]
- Diamond, L.S.; Clark, C.G. A redescription of Entamoeba histolytica Schaudinn, 1903 (Emended Walker, 1911) separating it from Entamoeba dispar Brumpt, 1925. J. Eukaryot. Microbiol. 1993, 40, 340–344. [Google Scholar] [CrossRef]
- Morio, F.; Valot, S.; Laude, A.; Desoubeaux, G.; Argy, N.; Nourrisson, C.; Pomares, C.; Machouart, M.; Le Govic, Y.; Dalle, F.; et al. Evaluation of a new multiplex PCR assay (ParaGENIE G-Amoeba Real-Time PCR kit) targeting Giardia intestinalis, Entamoeba histolytica and Entamoeba dispar/Entamoeba moshkovskii from stool specimens: Evidence for the limited performances of microscopy-based approach for amoeba species identification. Clin. Microbiol. Infect. 2018, 24, 1205–1209. [Google Scholar] [CrossRef]
- Cacciò, S.M. Molecular epidemiology of Dientamoeba fragilis. Acta Trop. 2018, 184, 73–77. [Google Scholar] [CrossRef]
- Hernández-Castro, C.; Maloney, J.G.; Agudelo-López, S.P.; Toro-Londoño, M.A.; Botero-Garcés, J.H.; Orozco, M.C.; Quintero-Quinchia, Y.C.; Correa-Cote, J.C.; Múnera-Duque, A.; Ricaurte-Ciro, J.C.; et al. Identification and validation of novel Blastocystis subtype ST41 in a Colombian patient undergoing colorectal cancer screening. J. Eukaryot. Microbiol. 2023, 70, e12978. [Google Scholar] [CrossRef]
- Maloney, J.G.; Molokin, A.; Seguí, R.; Maravilla, P.; Martínez-Hernández, F.; Villalobos, G.; Tsaousis, A.D.; Gentekaki, E.; Muñoz-Antolí, C.; Klisiowicz, D.R.; et al. Identification and molecular characterization of four new Blastocystis subtypes designated ST35–ST38. Microorganisms 2023, 11, 46. [Google Scholar] [CrossRef]
- Stensvold, C.R.; Berg, R.P.K.D.; Maloney, J.G.; Molokin, A.; Santin, M. Molecular characterization of Blastocystis and Entamoeba of muskoxen and sheep in Greenland. Int. J. Parasitol. 2023, 53, 673–685. [Google Scholar] [CrossRef]
- Yu, M.; Yao, Y.; Xiao, H.; Xie, M.; Xiong, Y.; Yang, S.; Ni, Q.; Zhang, M.; Xu, H. Extensive prevalence and significant genetic differentiation of Blastocystis in high- and low-altitude populations of wild rhesus macaques in China. Parasit. Vectors 2023, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Santin, M.; Figueiredo, A.; Molokin, A.; George, N.S.; Köster, P.C.; Dashti, A.; González-Barrio, D.; Carmena, D.; Maloney, J.G. Division of Blastocystis ST10 into three new subtypes: ST42–ST44. J. Eukaryot. Microbiol. 2023, 71, e12998. [Google Scholar] [CrossRef]
- Köller, T.; Hahn, A.; Altangerel, E.; Verweij, J.J.; Landt, O.; Kann, S.; Dekker, D.; May, J.; Loderstädt, U.; Podbielski, A.; et al. Comparison of commercial and in-house real-time PCR platforms for 15 parasites and microsporidia in human stool samples without a gold standard. Acta Trop. 2020, 207, 105516. [Google Scholar] [CrossRef] [PubMed]
- Nourrisson, C.; Brunet, J.; Flori, P.; Moniot, M.; Bonnin, V.; Delbac, F.; Poirier, P. Comparison of DNA extraction methods and real-time PCR assays for the detection of Blastocystis sp. in stool specimens. Microorganisms 2020, 8, 1768. [Google Scholar] [CrossRef] [PubMed]
- Scicluna, S.M.; Tawari, B.; Clark, C.G. DNA barcoding of Blastocystis. Protist 2006, 157, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Tiangtip, R.; Jongwutiwes, S. Molecular analysis of Cryptosporidium species isolated from HIV-infected patients in Thailand. Trop. Med. Int. Health 2002, 7, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Feltus, D.C.; Giddings, C.W.; Schneck, B.L.; Monson, T.; Warshauer, D.; McEvoy, J.M. Evidence supporting zoonotic transmission of Cryptosporidium spp. in Wisconsin. J. Clin. Microbiol. 2006, 44, 4303–4308. [Google Scholar] [CrossRef] [PubMed]
- Stark, D.; Beebe, N.; Marriott, D.; Ellis, J.; Harkness, J. Detection of Dientamoeba fragilis in fresh stool specimens using PCR. Int. J. Parasitol. 2005, 35, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cisneros, M.J.; Cogollos, R.; López-Vélez, R.; Martín-Rabadán, P.; Martínez-Ruiz, R.; Subirats, M.; Merino, F.J.; Fuentes, I. Application of real-time PCR for the differentiation of Entamoeba histolytica and E. dispar in cyst-positive faecal samples from 130 immigrants living in Spain. Ann. Trop. Med. Parasitol. 2010, 104, 145–149. [Google Scholar] [CrossRef]
- Verweij, J.J.; Oostvogel, F.; Brienen, E.A.; Nang-Beifubah, A.; Ziem, J.; Polderman, A.M. Prevalence of Entamoeba histolytica and Entamoeba dispar in northern Ghana. Trop. Med. Int. Health 2003, 8, 1153–1156. [Google Scholar] [CrossRef]
- Verweij, J.J.; Schinkel, J.; Laeijendecker, D.; van Rooyen, M.A.; van Lieshout, L.; Polderman, A.M. Real-time PCR for the detection of Giardia lamblia. Mol. Cell Probes 2003, 17, 223–225. [Google Scholar] [CrossRef]
- Read, C.M.; Monis, P.T.; Thompson, R.C. Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect. Genet. Evol. 2004, 4, 125–130. [Google Scholar] [CrossRef]
- Lalle, M.; Pozio, E.; Capelli, G.; Bruschi, F.; Crotti, D.; Cacciò, S.M. Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int. J. Parasitol. 2005, 35, 207–213. [Google Scholar] [CrossRef]
- Sulaiman, I.M.; Fayer, R.; Bern, C.; Gilman, R.H.; Trout, J.M.; Schantz, P.M.; Das, P.; Lal, A.A.; Xiao, L. Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg. Infect. Dis. 2003, 9, 1444–1452. [Google Scholar] [CrossRef]
Phylum | Genus | Species | No. DNA Isolates |
---|---|---|---|
Apicomplexa | Cryptosporidium | C. hominis | 73 |
C. parvum | 17 | ||
C. canis | 1 | ||
C. felis | 2 | ||
C. ryanae | 1 | ||
C. scrofarum | 2 | ||
Babesia | B. divergens | 1 | |
Besnoitia | B. besnoiti | 2 | |
Cystoisospora | C. belli | 1 | |
Neospora | N. caninum | 1 | |
Plasmodium | P. falciparum | 1 | |
P. malariae | 1 | ||
P. ovale | 1 | ||
P. vivax | 1 | ||
Sarcocystis | S. arctica | 1 | |
S. cruzi | 1 | ||
S. gigantea | 1 | ||
Toxoplasma | T. gondii | 2 | |
Amoebozoa | Entamoeba | E. histolytica | 25 |
E. dispar | 11 | ||
Euglenozoa | Leishmania | L. aethiopica | 1 |
L. amazonensis | 1 | ||
L. braziliensis | 1 | ||
L. donovani | 1 | ||
L. infantum | 1 | ||
L. major | 1 | ||
L. mexicana | 1 | ||
L. tropica | 1 | ||
Heterokonta | Blastocystis | Blastocystis sp. | 42 |
Metamonada | Giardia | G. duodenalis | 115 |
Dientamoeba | D. fragilis | 37 | |
Microsporidia | Enterocytozoon | E. bieneusi | 4 |
Nematoda | Anisakis | A. simplex | 1 |
Dirofilaria | D. repens | 1 | |
Loa | L. loa | 1 | |
Mansonella | M. perstans | 1 | |
Oncocerca | O. volvulus | 1 | |
Trichuris | T. muris | 1 | |
Total | 358 |
Format and Assay | Protist Species | Targeted Gene | Fluorophore | Batch |
---|---|---|---|---|
Singleplex qPCR | ||||
VIASURE Cryptosporidium | Cryptosporidium spp. | ssu rRNA | FAM | KRYXH-007 |
VIASURE D. fragilis | Dientamoeba fragilis | ssu rRNA | FAM | DIEXH-007 |
VIASURE E. dispar | Entamoeba dispar | ssu rRNA | FAM | ETDXH-009 |
VIASURE E. histolytica | Entamoeba histolytica | ssu rRNA | FAM | ETHXH-010 |
VIASURE Giardia | Giardia duodenalis | ssu rRNA | FAM | GIAXH-008 |
Duplex qPCR | ||||
VIASURE Blastocystis and D. fragilis | Blastocystis sp. | ssu rRNA | ROX | BLDXH-010 |
Dientamoeba fragilis | ssu rRNA | FAM |
Format and Assay | Protist Species | (+/+) | (+/−) | (−/+) | (−/−) | Kappa Test |
---|---|---|---|---|---|---|
Singleplex qPCR | ||||||
VIASURE Cryptosporidium | Cryptosporidium spp. | 91 | 0 | 5 | 262 | 0.964 |
VIASURE D. fragilis | Dientamoeba fragilis | 37 | 1 | 0 | 320 | 0.985 |
VIASURE E. dispar | Entamoeba dispar | 11 | 0 | 0 | 347 | 1 |
VIASURE E. histolytica | Entamoeba histolytica | 24 | 0 | 1 | 333 | 0.978 |
VIASURE Giardia | Giardia duodenalis | 112 | 0 | 4 | 242 | 0.974 |
Duplex qPCR | ||||||
VIASURE Blastocystis and D. fragilis | Blastocystis sp. | 42 | 4 | 0 | 312 | 0.948 |
Dientamoeba fragilis | 37 | 1 | 0 | 320 | 0.985 |
Format and Assay | Overall Agreement | TP | TN | FP | FN | Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value |
---|---|---|---|---|---|---|---|---|---|
Singleplex qPCR | |||||||||
Cryptosporidium | 0.986 | 91 | 262 | 0 | 5 | 0.94 (0.88–0.98) | 1 (0.98–1) | 1 (0.96–1) | 0.98 (0.95–0.99) |
D. fragilis | 0.986 | 112 | 242 | 0 | 4 | 0.96 (0.91–0.99) | 0.99 (0.97–1) | 0.99 (0.95–1) | 0.98 (0.95–0.99) |
E. dispar | 0.99 | 24 | 333 | 0 | 1 | 0.96 (0.79–0.99) | 1 (0.98–1) | 1 (0.85–1) | 0.99 (0.98–1) |
E. histolytica | 1.00 | 11 | 347 | 0 | 0 | 1 (0.71–1) | 1 (0.98–1) | 1 (0.71–1) | 1 (0.98–1) |
Giardia | 0.985 | 37 | 320 | 1 | 0 | 1 (0.91–1) | 0.99 (0.98–1) | 0.97 (0.86–0.99) | 1 (0.98–1) |
Duplex qPCR | |||||||||
Blastocystis and D. fragilis | 0.935 | 42 | 312 | 4 | 0 | 1 (0.91–1) | 0.98 (0.96–0.99) | 0.89 (0.76–0.96) | 1 (0.98–1) |
0.985 | 37 | 320 | 1 | 0 | 1 (0.9–1) | 0.99 (0.98–1) | 0.97 (0.86–0.99) | 1 (0.98–1) |
Format and Pathogen | Sample | Mean CT | Standard Deviation (σ) | Coefficient of Variation (CV%) |
---|---|---|---|---|
Cryptosporidium spp. 1 | 1 | 31.88 | 0.31 | 0.98 |
2 | 31.98 | 0.52 | 1.63 | |
3 | 31.32 | 0.43 | 1.36 | |
4 | 31.86 | 0.58 | 1.81 | |
5 | 31.34 | 0.39 | 1.25 | |
Entamoeba histolytica 1 | 1 | 29.10 | 0.10 | 0.34 |
2 | 28.78 | 0.26 | 0.90 | |
3 | Negative | N/A | N/A | |
4 | 31.36 | 0.21 | 0.66 | |
5 | 28.22 | 0.19 | 0.68 | |
Giardia duodenalis 1 | 1 | 33.66 | 0.32 | 0.95 |
2 | 37.20 | 1.27 | 3.42 | |
3 | 34.18 | 0.65 | 1.91 | |
4 | 37.80 | 1.23 | 3.27 | |
5 | 36.20 | N/A | N/A | |
Blastocystis sp. 2 | 1 | 27.76 | 1.00 | 3.61 |
2 | 30.04 | 0.71 | 2.36 | |
3 | 31.04 | 0.98 | 3.16 | |
4 | 33.56 | 0.26 | 0.78 | |
5 | 30.98 | 0.78 | 2.50 | |
Dientamoeba fragilis 2 | 1 | 22.42 | 0.59 | 2.63 |
2 | 21.76 | 0.19 | 0.90 | |
3 | 20.42 | 0.48 | 2.36 | |
4 | 23.58 | 0.36 | 1.51 | |
5 | 20.74 | 0.78 | 3.78 |
Format and Pathogen | Sample | Mean CT | Standard Deviation (σ) | Coefficient of Variation (CV%) |
---|---|---|---|---|
Cryptosporidium spp. 1 | 1 | 31.48 | 0.52 | 1.66 |
2 | 31.66 | 0.51 | 1.62 | |
3 | 31.12 | 0.33 | 1.08 | |
4 | 31.32 | 0.86 | 2.75 | |
5 | 31.30 | 0.60 | 1.90 | |
Entamoeba histolytica 1 | 1 | 28.90 | 0.24 | 0.85 |
2 | 28.66 | 0.59 | 2.04 | |
3 | Negative | N/A | N/A | |
4 | 30.98 | 0.29 | 0.95 | |
5 | 27.74 | 0.30 | 1.07 | |
Giardia duodenalis 1 | 1 | 33.58 | 0.63 | 1.86 |
2 | 37.00 | 0.62 | 1.67 | |
3 | 34.28 | 1.31 | 3.83 | |
4 | 35.90 | 0.40 | 1.11 | |
5 | 36.50 | 0.42 | 1.16 | |
Blastocystis sp. 2 | 1 | 26.64 | 0.18 | 0.68 |
2 | 28.68 | 0.46 | 1.61 | |
3 | 30.20 | 1.23 | 4.07 | |
4 | 32.62 | 1.36 | 4.18 | |
5 | 30.08 | 1.41 | 4.70 | |
Dientamoeba fragilis 2 | 1 | 21.44 | 0.33 | 1.53 |
2 | 20.88 | 0.56 | 2.70 | |
3 | 19.28 | 0.36 | 1.85 | |
4 | 23.28 | 0.38 | 1.62 | |
5 | 19.98 | 1.16 | 5.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dashti, A.; Alonso, H.; Escolar-Miñana, C.; Köster, P.C.; Bailo, B.; Carmena, D.; González-Barrio, D. Evaluation of the Use of Singleplex and Duplex CerTest VIASURE Real-Time PCR Assays to Detect Common Intestinal Protist Parasites. Diagnostics 2024, 14, 319. https://doi.org/10.3390/diagnostics14030319
Dashti A, Alonso H, Escolar-Miñana C, Köster PC, Bailo B, Carmena D, González-Barrio D. Evaluation of the Use of Singleplex and Duplex CerTest VIASURE Real-Time PCR Assays to Detect Common Intestinal Protist Parasites. Diagnostics. 2024; 14(3):319. https://doi.org/10.3390/diagnostics14030319
Chicago/Turabian StyleDashti, Alejandro, Henar Alonso, Cristina Escolar-Miñana, Pamela C. Köster, Begoña Bailo, David Carmena, and David González-Barrio. 2024. "Evaluation of the Use of Singleplex and Duplex CerTest VIASURE Real-Time PCR Assays to Detect Common Intestinal Protist Parasites" Diagnostics 14, no. 3: 319. https://doi.org/10.3390/diagnostics14030319
APA StyleDashti, A., Alonso, H., Escolar-Miñana, C., Köster, P. C., Bailo, B., Carmena, D., & González-Barrio, D. (2024). Evaluation of the Use of Singleplex and Duplex CerTest VIASURE Real-Time PCR Assays to Detect Common Intestinal Protist Parasites. Diagnostics, 14(3), 319. https://doi.org/10.3390/diagnostics14030319