The Role of New Morphological Parameters Provided by the BC 6800 Plus Analyzer in the Early Diagnosis of Sepsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Molloy, E.J.; Bearer, C.F. Paediatric and Neonatal Sepsis and Inflammation. Pediatr. Res. 2022, 91, 267–269. [Google Scholar] [CrossRef]
- Markwart, R.; Saito, H.; Harder, T.; Tomczyk, S.; Cassini, A.; Fleischmann-Struzek, C.; Reichert, F.; Eckmanns, T.; Allegranzi, B. Epidemiology and Burden of Sepsis Acquired in Hospitals and Intensive Care Units: A Systematic Review and Meta-Analysis. Intensive Care Med. 2020, 46, 1536–1551. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet Lond. Engl. 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; Kissoon, N.; Alhawsawi, A.; Aljuaid, M.H.; Daniels, R.; Gorordo-Delsol, L.A.; Machado, F.; Malik, I.; Nsutebu, E.F.; Finfer, S.; et al. World Sepsis Day: A Global Agenda to Target a Leading Cause of Morbidity and Mortality. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L518–L522. [Google Scholar] [CrossRef]
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing Sepsis as a Global Health Priority—A WHO Resolution. N. Engl. J. Med. 2017, 377, 414–417. [Google Scholar] [CrossRef]
- Cheng, M.P.; Stenstrom, R.; Paquette, K.; Stabler, S.N.; Akhter, M.; Davidson, A.C.; Gavric, M.; Lawandi, A.; Jinah, R.; Saeed, Z.; et al. Blood Culture Results Before and after Antimicrobial Administration in Patients with Severe Manifestations of Sepsis: A Diagnostic Study. Ann. Intern. Med. 2019, 171, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Coelho, L.; Dal-Pizzol, F.; Ferrer, R.; Huttner, A.; Conway Morris, A.; Nobre, V.; Ramirez, P.; Rouze, A.; Salluh, J.; et al. How to Use Biomarkers of Infection or Sepsis at the Bedside: Guide to Clinicians. Intensive Care Med. 2023, 49, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.-L. Biomarkers of Sepsis: Time for a Reappraisal. Crit. Care Lond. Engl. 2020, 24, 287. [Google Scholar] [CrossRef] [PubMed]
- Hassan, J.; Khan, S.; Zahra, R.; Razaq, A.; Zain, A.; Razaq, L.; Razaq, M. Role of Procalcitonin and C-Reactive Protein as Predictors of Sepsis and in Managing Sepsis in Postoperative Patients: A Systematic Review. Cureus 2022, 14, e31067. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, R.; Azim, A.; Agarwal, V. Neutrophil CD64 a Diagnostic and Prognostic Marker of Sepsis in Adult Critically Ill Patients: A Brief Review. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2020, 24, 1242–1250. [Google Scholar] [CrossRef]
- Urrechaga, E.; Bóveda, O.; Aguirre, U. Role of Leucocytes Cell Population Data in the Early Detection of Sepsis. J. Clin. Pathol. 2018, 71, 259–266. [Google Scholar] [CrossRef]
- Ciaccio, A.M.; Agnello, L.; Sasso, B.L.; Giglio, R.V.; Iacona, A.; Gambino, C.M.; Scazzone, C.; Tuttolomondo, A.; Ciaccio, M. Monocyte Distribution Width (MDW) as a Biomarker of Sepsis: An Evidenced-Based Laboratory Medicine Approach. Clin. Chim. Acta Int. J. Clin. Chem. 2023, 540, 117214. [Google Scholar] [CrossRef]
- Agnello, L.; Vidali, M.; Lo Sasso, B.; Giglio, R.V.; Gambino, C.M.; Scazzone, C.; Ciaccio, A.M.; Bivona, G.; Ciaccio, M. Monocyte Distribution Width (MDW) as a Screening Tool for Early Detecting Sepsis: A Systematic Review and Meta-Analysis. Clin. Chem. Lab. Med. 2022, 60, 786–792. [Google Scholar] [CrossRef]
- Crouser, E.D.; Parrillo, J.E.; Seymour, C.; Angus, D.C.; Bicking, K.; Tejidor, L.; Magari, R.; Careaga, D.; Williams, J.; Closser, D.R.; et al. Improved Early Detection of Sepsis in the ED with a Novel Monocyte Distribution Width Biomarker. Chest 2017, 152, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Crouser, E.D.; Parrillo, J.E.; Seymour, C.W.; Angus, D.C.; Bicking, K.; Esguerra, V.G.; Peck-Palmer, O.M.; Magari, R.T.; Julian, M.W.; Kleven, J.M.; et al. Monocyte Distribution Width: A Novel Indicator of Sepsis-2 and Sepsis-3 in High-Risk Emergency Department Patients. Crit. Care Med. 2019, 47, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Polilli, E.; Sozio, F.; Frattari, A.; Persichitti, L.; Sensi, M.; Posata, R.; Di Gregorio, M.; Sciacca, A.; Flacco, M.E.; Manzoli, L.; et al. Comparison of Monocyte Distribution Width (MDW) and Procalcitonin for Early Recognition of Sepsis. PLoS ONE 2020, 15, e0227300. [Google Scholar] [CrossRef] [PubMed]
- Lambden, S.; Laterre, P.F.; Levy, M.M.; Francois, B. The SOFA Score-Development, Utility and Challenges of Accurate Assessment in Clinical Trials. Crit. Care Lond. Engl. 2019, 23, 374. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, G.; Jennett, B. Assessment of Coma and Impaired Consciousness. A Practical Scale. Lancet Lond. Engl. 1974, 2, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Li, N.; Zhang, S.; Liu, S.; Zhang, H.; Yue, B. Combination of NeuX and NeuZ Can Predict Neutrophil Dysplasia Features of Myelodysplastic Neoplasms in Peripheral Blood. Int. J. Lab. Hematol. 2023, 45, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Z.; Pan, S.; Li, J.; Yang, Y.; Qi, H.; Xie, J.; Qu, J. The Clinical Value of Hematological Neutrophil and Monocyte Parameters in the Diagnosis and Identification of Sepsis. Ann. Transl. Med. 2021, 9, 1680. [Google Scholar] [CrossRef]
- Xia, X.; Wang, Y.; Xie, M.; Qiu, S.; Zhou, J. Elevated Neutrophil-to-Monocyte Ratio as a Prognostic Marker for Poor Outcomes in Neonatal Sepsis. Heliyon 2022, 8, e11181. [Google Scholar] [CrossRef]
- Piotrowski, D.; Sączewska-Piotrowska, A.; Jaroszewicz, J.; Boroń-Kaczmarska, A. Lymphocyte-To-Monocyte Ratio as the Best Simple Predictor of Bacterial Infection in Patients with Liver Cirrhosis. Int. J. Environ. Res. Public Health 2020, 17, 1727. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zhang, L.; Tang, X.; Tang, Y. The Value of Neutrophil/Lymphocyte Ratio Combined with Red Blood Cell Distribution Width in Evaluating the Prognosis of Emergency Patients with Sepsis. Emerg. Med. Int. 2022, 2022, 1673572. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-D.; Lippi, G.; Montagnana, M. Diagnostic and Prognostic Value of Red Blood Cell Distribution Width in Sepsis: A Narrative Review. Clin. Biochem. 2020, 77, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lacquaniti, A.; Ceresa, F.; Campo, S.; Barbera, G.; Caruso, D.; Palazzo, E.; Patanè, F.; Monardo, P. Acute Kidney Injury and Sepsis after Cardiac Surgery: The Roles of Tissue Inhibitor Metalloproteinase-2, Insulin-like Growth Factor Binding Protein-7, and Mid-Regional Pro-Adrenomedullin. J. Clin. Med. 2023, 12, 5193. [Google Scholar] [CrossRef] [PubMed]
- Buoro, S.; Manenti, B.; Seghezzi, M.; Dominoni, P.; Barbui, T.; Ghirardi, A.; Carobbio, A.; Marchesi, G.; Riva, I.; Nasi, A.; et al. Innovative Haematological Parameters for Early Diagnosis of Sepsis in Adult Patients Admitted in Intensive Care Unit. J. Clin. Pathol. 2018, 71, 330–335. [Google Scholar] [CrossRef]
- Pelagalli, M.; Giovannelli, A.; Calabresei, C.; Sarubbi, S.; Tomassetti, F.; Minieri, M.; Legramante, J.M.; Nuccetelli, M.; Nicolai, E.; Massoud, R.; et al. Conta differenziale leucocitaria e parametri morfometrici determinati con Mindray BC-6800 Plus: Un possibile strumento predittivo per lo screening di sepsi. Biochim. Clin. 2023, 47, 141–150. [Google Scholar] [CrossRef]
- Arora, P.; Gupta, P.K.; Lingaiah, R.; Mukhopadhyay, A.K. Volume, Conductivity, and Scatter Parameters of Leukocytes as Early Markers of Sepsis and Treatment Response. J. Lab. Physicians 2019, 11, 29–33. [Google Scholar] [CrossRef]
- Mammen, J.; Choudhuri, J.; Paul, J.; Sudarsan, T.I.; Josephine, T.; Mahasampath, G.; Jeyaseelan, V.; Nair, S.C.; Peter, J.V. Cytomorphometric Neutrophil and Monocyte Markers May Strengthen the Diagnosis of Sepsis. J. Intensive Care Med. 2018, 33, 656–662. [Google Scholar] [CrossRef]
- Wu, J.; Li, L.; Luo, J. Diagnostic and Prognostic Value of Monocyte Distribution Width in Sepsis. J. Inflamm. Res. 2022, 15, 4107–4117. [Google Scholar] [CrossRef]
- Shi, C.; Pamer, E.G. Monocyte Recruitment during Infection and Inflammation. Nat. Rev. Immunol. 2011, 11, 762–774. [Google Scholar] [CrossRef]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in Chronic Inflammatory Diseases. Cell. Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef]
- Jones, H.R.; Robb, C.T.; Perretti, M.; Rossi, A.G. The Role of Neutrophils in Inflammation Resolution. Semin. Immunol. 2016, 28, 137–145. [Google Scholar] [CrossRef]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine Storm and Sepsis Disease Pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The Immunology of Sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-L.; Wang, Y.; Liu, Q.; Li, H.-R.; Yu, C.-M.; Li, P.; Deng, X.-M.; Wang, J.-F. Dysregulation of Neutrophil Death in Sepsis. Front. Immunol. 2022, 13, 963955. [Google Scholar] [CrossRef]
- Li, R.H.L.; Tablin, F. A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Front. Vet. Sci. 2018, 5, 291. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, H.; Qu, M.; Nan, K.; Cao, H.; Cata, J.P.; Chen, W.; Miao, C. Review: The Emerging Role of Neutrophil Extracellular Traps in Sepsis and Sepsis-Associated Thrombosis. Front. Cell. Infect. Microbiol. 2021, 11, 653228. [Google Scholar] [CrossRef] [PubMed]
- Montagnana, M.; Cervellin, G.; Meschi, T.; Lippi, G. The Role of Red Blood Cell Distribution Width in Cardiovascular and Thrombotic Disorders. Clin. Chem. Lab. Med. 2011, 50, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
Demographic and Clinical Characteristics | All Patients n = 327 | Sepsis Patients n = 223 | Non-Sepsis Patients n = 104 |
---|---|---|---|
Age, years | 70 (57–77) | 71 (60–78) | 64 (52–75) |
Male, n (%) | 205 (63) | 134 (60) | 71 (68) |
Female, n (%) | 122 (37) | 89 (40) | 33 (32) |
SOFA SCORE | 6 (4–8) | 6 (4–8) | 6 (4–7) |
PaO2/FiO2, mmHg | 209 (130–332) | 175 (116–274) | 303 (174–403) |
PLT, ×109/L | 195 (131–259) | 190 (116–261) | 206 (163–255) |
MAP, mmHg | 81 (67–97) | 79 (65–93) | 90 (71–107) |
Bilirubin, μmol/L | 13.68 (10.26–23.94) | 15.39 (10.26–25.65) | 13.68 (8.55–20.52) |
Creatinine, μmol/L | 87.54 (61.89–150.31) | 114.95 (61.89–203.37) | 61.89 (53.05–88.42) |
GCS | 15 (9–15) | 15 (14–15) | 8 (5–14) |
Lac, mmol/L | 1.6 (1–3) | 1.6 (1.0–3.1) | 1.4 (0.9–2.6) |
ICU LOS, d | 3 (1–9) | 3 (1–7) | 5.5 (1.0–12) |
Hospital LOS, d | 17 (8–32) | 19 (10–33) | 11 (6–28) |
ICU mortality, n (%) | 98 (30) | 77 (34) | 21 (20) |
Hospital mortality, n (%) | 122 (37) | 100 (45) | 22 (21) |
Predictor | Without Sepsis (n = 104) | With Sepsis (n = 223) | p-Value |
---|---|---|---|
Hb, g/L | 127 (107–142) | 108 (90–128) | <0.001 |
RDW, % | 13.4 (12.7–14.3) | 14.8 (13.8–16.6) | <0.001 |
WBC, ×109/L | 12.7 (10.1–16.1) | 11.2 (6.8–15.8) | 0.022 |
NE#, ×109/L | 11.0 (8.1–14.1) | 9.6 (5.5–14.0) | 0.061 |
LY#, ×109/L | 0.8 (0.5–1.3) | 0.6 (0.4–1.1) | 0.002 |
MO#, ×109/L | 0.6 (0.4–0.9) | 0.4 (0.2–0.7) | <0.001 |
NLR | 13.6 (6.6–22.5) | 13.4 (6.9–24.5) | 0.644 |
NMR | 16.8 (12.2–24.3) | 21.5 (13.3–36.2) | <0.001 |
LMR | 1.3 (0.8–2.1 | 1.5 (0.9–2.8) | 0.030 |
PLT, ×109/L | 206 (163–255) | 190 (116–261) | 0.099 |
NeuX | 361 (345–389) | 408 (371–446) | <0.001 |
NeuY | 479 (455–500) | 541 (495–607) | <0.001 |
NeuZ | 1858 (1793–1910) | 1792 (1712–1874) | <0.001 |
LymX | 94 (90–99) | 97 (91–104) | 0.002 |
LymY | 765 (736–805) | 775 (728–833) | 0.203 |
LymZ | 962 (944–978) | 954 (931–982) | 0.484 |
MonX | 208 (202–218) | 224 (211–245) | <0.001 |
MonY | 1046 (996–1080) | 1144 (1065–1225) | <0.001 |
MonZ | 1312 (1292–1334) | 1348 (1303–1408) | <0.001 |
CRP, mg/L | 20.6 (8.6–54.3) | 140.6 (64.8–207.2) | <0.001 |
PCT, ng/mL | 0.17 (0.08–0.54) | 2.67 (0.36–19.60) | <0.001 |
Predictor | Univariate LR | Multivariate LR without CRP | Multivariate LR with CRP |
---|---|---|---|
Age | <0.001 | 0.608 | 0.579 |
Sex | 0.155 | ||
Hb | <0.001 | 0.797 | 0.574 |
RDW | <0.001 | 0.005 | 0.002 |
WBC | 0.490 | ||
NE# | 0.749 | ||
LY# | 0.397 | ||
MO# | <0.001 | 0.125 | 0.026 |
NLR | 0.152 | ||
NMR | 0.003 | 0.103 | 0.142 |
LMR | 0.295 | ||
PLT | 0.915 | ||
NeuX | <0.001 | <0.001 | 0.001 |
NeuY | <0.001 | <0.001 | 0.006 |
NeuZ | <0.001 | <0.001 | <0.001 |
LymX | 0.001 | 0.648 | 0.719 |
LymY | 0.072 | ||
LymZ | 0.426 | ||
MonX | <0.001 | 0.040 | 0.229 |
MonY | <0.001 | 0.638 | 0.584 |
MonZ | <0.001 | 0.031 | 0.005 |
CRP | <0.001 | <0.001 |
Biomarker | AUC | 95% CI | CUT-OFF * | Sensitivity | Specificity |
---|---|---|---|---|---|
CRP | 0.83 | 0.79–0.88 | 6.07 | 77% | 77% |
PCT | 0.78 | 0.73–0.84 | 0.33 | 77% | 70% |
Multivariate Model | 0.92 | 0.89–0.95 | 0.655 # | 82% | 89% |
Predictor | Univariate CR within ICU | Multivariate CR within ICU | Univariate CR within Hospital | Multivariate CR within Hospital |
---|---|---|---|---|
Age | <0.001 | <0.001 | <0.001 | <0.001 |
Sex | 0.370 | 0.740 | ||
Hb | 0.087 | 0.216 | ||
RDW | <0.001 | 0.068 | <0.001 | 0.138 |
WBC | 0.778 | 0.143 | ||
NE# | 0.695 | 0.190 | ||
LY# | 0.498 | 0.531 | ||
MO# | 0.265 | 0.106 | ||
NLR | 0.164 | 0.027 | 0.158 | |
NMR | 0.536 | 0.981 | ||
LMR | 0.210 | 0.530 | ||
PLT | 0.522 | 0.071 | ||
NeuX | 0.005 | 0.331 | 0.005 | 0.748 |
NeuY | <0.001 | <0.001 | <0.001 | 0.040 |
NeuZ | 0.258 | 0.300 | ||
LymX | 0.657 | 0.439 | ||
LymY | <0.001 | <0.001 | <0.001 | <0.001 |
LymZ | 0.026 | 0.320 | 0.013 | 0.065 |
MonX | <0.001 | 0.041 | 0.002 | 0.373 |
MonY | 0.055 | 0.024 | 0.021 | |
MonZ | 0.146 | 0.216 | ||
CRP | 0.292 | 0.407 |
Predictor | Without Sepsis (n = 56) | With Sepsis (n = 223) | p-Value |
---|---|---|---|
Hb, g/L | 125 (115–137) | 108 (90–128) | <0.001 |
RDW, % | 14.5 (13.3–15.6) | 14.8 (13.8–16.6) | 0.074 |
WBC, ×109/L | 12.5 (8.5–17.6) | 11.2 (6.8–15.8) | 0.096 |
NE#, ×109/L | 10.4 (7.1–15.3) | 9.6 (5.5–14.0) | 0.340 |
LY#, ×109/L | 1.2 (0.8–1.7) | 0.6 (0.4–1.1) | <0.001 |
MO#, ×109/L | 0.7 (0.5–0.9) | 0.4 (0.2–0.7) | <0.001 |
NLR | 9.1 (4.8–16.6) | 13.4 (6.9–24.5) | 0.003 |
NMR | 15.3 (10.7–20.9) | 21.5 (13.3–36.2) | <0.001 |
LMR | 1.6 (1.0–2.5) | 1.5 (0.9–2.8) | 0.953 |
PLT, ×109/L | 264 (200–322) | 190 (116–261) | <0.001 |
NeuX | 387 (350–421) | 408 (371–446) | 0.008 |
NeuY | 467 (437–512) | 541 (495–607) | <0.001 |
NeuZ | 1770 (1684–1861) | 1792 (1712–1874) | 0.084 |
LymX | 95 (91–101) | 97 (91–104) | 0.180 |
LymY | 771 (738–823) | 775 (728–833) | 0.857 |
LymZ | 966 (950–988) | 954 (931–982) | 0.008 |
MonX | 219 (206–229) | 224 (211–245) | 0.003 |
MonY | 1096 (1045–1161) | 1144 (1065–1225) | 0.005 |
MonZ | 1349 (1318–1400) | 1348 (1303–1408) | 0.585 |
CRP, mg/L | 94.5 (44.6–154.2) | 140.6 (64.8–207.2) | 0.008 |
PCT, ng/mL | 0.37 (0.10–1.74) | 2.67 (0.36–19.60) | <0.001 |
Predictor | Univariate LR | Multivariate LR without CRP | Multivariate LR with CRP |
---|---|---|---|
Age | <0.001 | <0.001 | <0.001 |
Sex | 0.110 | ||
Hb | <0.001 | 0.005 | 0.006 |
RDW | 0.086 | ||
WBC | 0.510 | ||
NE# | 0.938 | ||
LY# | 0.101 | ||
MO# | <0.001 | 0.779 | 0.838 |
NLR | 0.007 | 0.180 | 0.188 |
NMR | <0.001 | 0.049 | 0.047 |
LMR | 0.322 | ||
PLT | <0.001 | 0.007 | 0.007 |
NeuX | 0.005 | 0.495 | 0.473 |
NeuY | <0.001 | <0.001 | <0.001 |
NeuZ | 0.061 | ||
LymX | 0.055 | ||
LymY | 0.576 | ||
LymZ | 0.117 | ||
MonX | 0.002 | 0.916 | 0.846 |
MonY | 0.007 | 0.013 | 0.013 |
MonZ | 0.845 | ||
CRP | 0.017 | 0.633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacchetti, S.; Vidali, M.; Esposito, T.; Zorzi, S.; Burgener, A.; Ciccarello, L.; Cammarota, G.; Zanotti, V.; Giacomini, L.; Bellan, M.; et al. The Role of New Morphological Parameters Provided by the BC 6800 Plus Analyzer in the Early Diagnosis of Sepsis. Diagnostics 2024, 14, 340. https://doi.org/10.3390/diagnostics14030340
Sacchetti S, Vidali M, Esposito T, Zorzi S, Burgener A, Ciccarello L, Cammarota G, Zanotti V, Giacomini L, Bellan M, et al. The Role of New Morphological Parameters Provided by the BC 6800 Plus Analyzer in the Early Diagnosis of Sepsis. Diagnostics. 2024; 14(3):340. https://doi.org/10.3390/diagnostics14030340
Chicago/Turabian StyleSacchetti, Sara, Matteo Vidali, Teresa Esposito, Stefano Zorzi, Alessia Burgener, Lorenzo Ciccarello, Gianmaria Cammarota, Valentina Zanotti, Luca Giacomini, Mattia Bellan, and et al. 2024. "The Role of New Morphological Parameters Provided by the BC 6800 Plus Analyzer in the Early Diagnosis of Sepsis" Diagnostics 14, no. 3: 340. https://doi.org/10.3390/diagnostics14030340
APA StyleSacchetti, S., Vidali, M., Esposito, T., Zorzi, S., Burgener, A., Ciccarello, L., Cammarota, G., Zanotti, V., Giacomini, L., Bellan, M., Pirisi, M., Lopez, R. S., Dianzani, U., Vaschetto, R., & Rolla, R. (2024). The Role of New Morphological Parameters Provided by the BC 6800 Plus Analyzer in the Early Diagnosis of Sepsis. Diagnostics, 14(3), 340. https://doi.org/10.3390/diagnostics14030340