Potential Diagnostic Role of Hepcidin in Anemic Patients Affected by Inflammatory Bowel Disease: A Systematic Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Protocol
2.2. Literature Search Strategy and Information Sources
2.3. Eligibility Criteria
2.4. Selection Process
2.5. Data Collection Process and Data Extraction
2.6. Quality Assessment (Risk of Bias Assessment)
3. Results
3.1. Literature Search and Study Selection
3.2. Study Characteristics
3.3. Risk of Bias and Applicability
3.4. Results of Individual Studies (Qualitative Synthesis)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Podolsky, D.K. Inflammatory bowel disease. N. Engl. J. Med. 2002, 347, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Mahadea, D.; Adamczewska, E.; Ratajczak, A.E.; Rychter, A.M.; Zawada, A.; Eder, P.; Dobrowolska, A.; Krela-Kaźmierczak, I. Iron Deficiency Anemia in Inflammatory Bowel Diseases—A Narrative Review. Nutrients 2021, 13, 4008. [Google Scholar] [CrossRef] [PubMed]
- Aksan, A.; Beales, I.L.P.; Baxter, G.; de Arellano, A.R.; Gavata, S.; Valentine, W.J.; Hunt, B. Evaluation of the Cost-Effectiveness of Iron Formulations for the Treatm of Iron Deficiency Anaemia in Patients with Inflammatory Bowel Disease in the UK. Clin. Outcomes Res. 2021, 13, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Hershko, C. Assessment of iron deficiency. Haematologica 2018, 103, 1939–1942. [Google Scholar] [CrossRef]
- Torres, J.; Halfvarson, J.; Rodríguez-Lago, I.; Hedin, C.R.H.; Jess, T.; Dubinsky, M.; Croitoru, K.; Colombel, J.F. Results of the Seventh Scientific Workshop of ECCO: Precision Medicine in IBD-Prediction and Prevention of Inflammatory Bowel Disease. J. Crohns Colitis 2021, 15, 1443–1454. [Google Scholar] [CrossRef]
- Ransford, R.A.; Langman, M.J. Sulphasalazine and mesalazine: Serious adverse reactions re-evaluated on the basis of suspected adverse reaction reports to the Committee on Safety of Medicines. Gut 2002, 51, 536–539. [Google Scholar] [CrossRef]
- Eriksson, C.; Henriksson, I.; Brus, O.; Zhulina, Y.; Nyhlin, N.; Tysk, C.; Montgomery, S.; Halfvarson, J. Incidence, prevalence and clinical outcome of anaemia in inflammatory bowel disease: A population-based cohort study. Aliment. Pharmacol. Ther. 2018, 48, 638–645. [Google Scholar] [CrossRef]
- Woźniak, M.; Barańska, M.; Małecka-Panas, E.; Talar-Wojnarowska, R. The prevalence, characteristics, and determinants of anaemia in newly diagnosed patients with inflammatory bowel disease. Prz. Gastroenterol. 2019, 14, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Mücke, V.; Mücke, M.M.; Raine, T.; Bettenworth, D. Diagnosis and treatment of anemia in patients with inflammatory bowel disease. Ann. Gastroenterol. 2017, 30, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to tango: Regulation of Mammalian iron metabolism. Cell 2010, 142, 24–38. [Google Scholar] [CrossRef]
- Ganz, T. The Discovery of the Iron-Regulatory Hormone Hepcidin. Clin. Chem. 2019, 65, 1330–1331. [Google Scholar] [CrossRef]
- Girelli, D.; Busti, F.; Brissot, P.; Cabantchik, I.; Muckenthaler, M.U.; Porto, G. Hemochromatosis classification: Update and recommendations by the BIOIRON Society. Blood 2022, 139, 3018–3029. [Google Scholar] [CrossRef] [PubMed]
- Biasiotto, G.; Carini, M.; Bresciani, R.; Ferrari, F. Hereditary hemochromatosis: The complex role of the modifier genes. J. Trace Elem. Med. Biol. 2023, 79, 127248. [Google Scholar] [CrossRef] [PubMed]
- Zanella, I.; Rossini, A.; Di Lorenzo, D.; Biasiotto, G. Hereditary hemochromatosis: The same old song. Blood Cells Mol. Dis. 2015, 55, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Ganz, T. Hepcidin and Iron in Health and Disease. Annu. Rev. Med. 2023, 74, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Carini, M.; Fredi, M.; Cavazzana, I.; Bresciani, R.; Ferrari, F.; Monti, E.; Franceschini, F.; Biasiotto, G. Frequency Evaluation of the Interleukin-6 174G>C Polymorphism and Homeostatic Iron Regulator (HFE) Mutations as Disease Modifiers in Patients Affected by Systemic Lupus Erythematosus and Rheumatoid Arthritis. Int. J. Mol. Sci. 2023, 24, 16300. [Google Scholar] [CrossRef]
- Oustamanolakis, P.; Koutroubakis, I.E.; Messaritakis, I.; Malliaraki, N.; Sfiridaki, A.; Kouroumalis, E.A. Serum hepcidin and prohepcidin concentrations in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2011, 23, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, M.; Strisciuglio, C.; Alessandrella, A.; Rossi, F.; Auricchio, R.; Campostrini, N.; Girelli, D.; Nobili, B.; Staiano, A.; Perrotta, S.; et al. Serum Hepcidin and Iron Absorption in Paediatric Inflammatory Bowel Disease. J. Crohns Colitis 2016, 10, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Moran-Lev, H.; Galai, T.; Yerushalmy-Feler, A.; Weisman, Y.; Anafy, A.; Deutsch, V.; Cipok, M.; Lubetzky, R.; Cohen, S. Vitamin D Decreases Hepcidin and Inflammatory Markers in Newly Diagnosed Inflammatory Bowel Disease Paediatric Patients: A Prospective Study. J. Crohns Colitis 2019, 13, 1287–1291. [Google Scholar] [CrossRef]
- Shu, W.; Pang, Z.; Xu, C.; Lin, J.; Li, G.; Wu, W.; Sun, S.; Li, J.; Li, X.; Liu, Z. Anti-TNF-α Monoclonal Antibody Therapy Improves Anemia through Downregulating Hepatocyte Hepcidin Expression in Inflammatory Bowel Disease. Mediat. Inflamm. 2019, 2019, 4038619. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; Sangwaiya, A.; Bhatkal, B.; Geoghegan, F.; Busbridge, M. Hepcidin and inflammatory bowel disease: Dual role in host defence and iron homoeostasis. Eur. J. Gastroenterol. Hepatol. 2009, 21, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, P.; Mroczkowska-Juchkiewicz, A.; Pac-Kożuchowska, E. Serum Hepcidin in Children with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 2165–2171. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic Lalosevic, M.; Toncev, L.; Stankovic, S.; Dragasevic, S.; Stojkovic, S.; Jovicic, I.; Stulic, M.; Culafic, D.; Milovanovic, T.; Stojanovic, M.; et al. Hepcidin Is a Reliable Marker of Iron Deficiency Anemia in Newly Diagnosed Patients with Inflammatory Bowel Disease. Dis. Markers 2020, 2020, 8523205. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, Y.; Koren, A.; Colodner, R.; Levin, C. Characterization of acquired anemia in children by iron metabolism parameters. Sci. Rep. 2022, 12, 2721. [Google Scholar] [CrossRef]
- Bergamaschi, G.; Di Sabatino, A.; Albertini, R.; Costanzo, F.; Guerci, M.; Masotti, M.; Pasini, A.; Massari, A.; Campostrini, N.; Corbella, M.; et al. Serum hepcidin in inflammatory bowel diseases: Biological and clinical significance. Inflamm. Bowel Dis. 2013, 19, 2166–2172. [Google Scholar] [CrossRef]
- Mecklenburg, I.; Reznik, D.; Fasler-Kan, E.; Drewe, J.; Beglinger, C.; Hruz, P.; Group, S.I.C.S. Serum hepcidin concentrations correlate with ferritin in patients with inflammatory bowel disease. J. Crohns Colitis 2014, 8, 1392–1397. [Google Scholar] [CrossRef]
- Aksan, A.; Wohlrath, M.; Iqbal, T.H.; Dignass, A.; Stein, J. Inflammation, but Not the Underlying Disease or Its Location, Predicts Oral Iron Absorption Capacity in Patients with Inflammatory Bowel Disease. J. Crohns Colitis 2020, 14, 316–322. [Google Scholar] [CrossRef]
- Loveikyte, R.; Bourgonje, A.R.; van der Reijden, J.J.; Bulthuis, M.L.C.; Hawinkels, L.J.A.C.; Visschedijk, M.C.; Festen, E.A.M.; van Dullemen, H.M.; Weersma, R.K.; van Goor, H.; et al. Hepcidin and Iron Status in Patients with Inflammatory Bowel Disease Undergoing Induction Therapy with Vedolizumab or Infliximab. Inflamm. Bowel Dis. 2023, 29, 1272–1284. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; Group, Q. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Lucendo, A.J.; Arias, Á.; Roncero, Ó.; Hervías, D.; Verdejo, C.; Naveas-Polo, C.; Bouhmidi, A.; Lorente, R.; Alcázar, L.M.; Salueña, I.; et al. Anemia at the time of diagnosis of inflammatory bowel disease: Prevalence and associated factors in adolescent and adult patients. Dig. Liver Dis. 2017, 49, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Dignass, A.U.; Gasche, C.; Bettenworth, D.; Birgegård, G.; Danese, S.; Gisbert, J.P.; Gomollon, F.; Iqbal, T.; Katsanos, K.; Koutroubakis, I.; et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J. Crohns Colitis 2015, 9, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Zanella, I.; Paiardi, G.; Di Lorenzo, D.; Biasiotto, G. Iron Absorption in Celiac Disease and Nutraceutical Effect of 7-Hydroxymatairesinol. Mini-Review. Molecules 2020, 25, 2041. [Google Scholar] [CrossRef] [PubMed]
- Minhas, H.J.; Papamichael, K.; Cheifetz, A.S.; Gianotti, R.J. A primer on common supplements and dietary measures used by patients with inflammatory bowel disease. Ther. Adv. Chronic Dis. 2023, 14, 20406223231182367. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Biasiotto, G.; Ferrari, F. Covidin, a possible new player between hepcidin and ferroportin in hypoxia and inflammation caused by COVID-19. J. Cell Biochem. 2022, 123, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Dignass, A.; Farrag, K.; Stein, J. Limitations of Serum Ferritin in Diagnosing Iron Deficiency in Inflammatory Conditions. Int. J. Chronic Dis. 2018, 2018, 9394060. [Google Scholar] [CrossRef] [PubMed]
- Daude, S.; Remen, T.; Chateau, T.; Danese, S.; Gastin, I.; Baumann, C.; Gueant, J.L.; Peyrin-Biroulet, L. Comparative accuracy of ferritin, transferrin saturation and soluble transferrin receptor for the diagnosis of iron deficiency in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2020, 51, 1087–1095. [Google Scholar] [CrossRef]
- Woźniak, M.; Borkowska, A.; Jastrzębska, M.; Sochal, M.; Małecka-Wojciesko, E.; Talar-Wojnarowska, R. Clinical and Laboratory Characteristics of Anaemia in Hospitalized Patients with Inflammatory Bowel Disease. J. Clin. Med. 2023, 12, 2447. [Google Scholar] [CrossRef]
- Kamei, D.; Nagano, M.; Takagaki, T.; Sakamoto, T.; Tsuchiya, K. Comparison between liquid chromatography/tandem mass spectroscopy and a novel latex agglutination method for measurement of hepcidin-25 concentrations in dialysis patients with renal anemia: A multicenter study. Heliyon 2023, 9, e13896. [Google Scholar] [CrossRef]
- Oppen, K.; Brede, C.; Skadberg, Ø.; Steinsvik, T.; Holter, J.C.; Michelsen, A.E.; Heggelund, L. Hepcidin analysis in pneumonia: Comparison of immunoassay and LC-MS/MS. Ann. Clin. Biochem. 2023, 60, 298–305. [Google Scholar] [CrossRef]
- Delaby, C.; Vialaret, J.; Hirtz, C.; Lefebvre, T.; Herkert, M.; Puy, H.; Lasocki, S.; Lehmann, S.; group, H.s. Analytical comparison of ELISA and mass spectrometry for quantification of serum hepcidin in critically ill patients. Bioanalysis 2021, 13, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Darshan, D.; Frazer, D.M.; Wilkins, S.J.; Anderson, G.J. Severe iron deficiency blunts the response of the iron regulatory gene Hamp and pro-inflammatory cytokines to lipopolysaccharide. Haematologica 2010, 95, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- Theurl, I.; Schroll, A.; Nairz, M.; Seifert, M.; Theurl, M.; Sonnweber, T.; Kulaksiz, H.; Weiss, G. Pathways for the regulation of hepcidin expression in anemia of chronic disease and iron deficiency anemia in vivo. Haematologica 2011, 96, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.S.; Beck-da-Silva, L.; Goldraich, L.A.; Biolo, A.; Clausell, N. Anemia in heart failure: Association of hepcidin levels to iron deficiency in stable outpatients. Acta Haematol. 2013, 129, 55–61. [Google Scholar] [CrossRef]
Authors Ref. | Year | Country | Study Design/ Number of Centers | Funding Source |
---|---|---|---|---|
Arnold et al. [22] | 2009 | United Kingdom | Prospective/monocentric | None declared |
Oustamanolakis et al. [18] | 2011 | Greece | Prospective/monocentric | None declared |
Bergamaschi et al. [26] | 2013 | Italy | Prospective/monocentric | Grant from IRCCS Policlinico S. Matteo, Pavia, Italy |
Mecklenburg et al. [27] | 2014 | Switzerland | Observational/Multicentric | Swiss National Science Foundation (33CSC0_134274) |
Martinelli et al. [19] | 2016 | Italy | Cross-sectional/monocentric | Partially supported by the Italian Ministry of Health, Grant RF-2010-2312048 and by General and Specialist Surgery at Second University of Naples (Grant on Normal and Pathological Hematopoiesis) |
Krawiec et al. [23] | 2017 | Poland | Prospective/monocentric | Grant No. MNsd466 Medical University of Lublin |
Moran-Lev et al. [20] | 2019 | Israel | Prospective/monocentric | No financial support |
Shu et al. [21] | 2019 | China | Prospective/monocentric | Grant from National Key R&D Program of China (2018YFC1705400) and the National Natural Science Foundation of China (81630017, 91740117) |
Aksan et al. [28] | 2020 | Germany | Prospective/monocentric | Supported by Vifor Pharma |
Stojkovic Lalosevic et al. [24] | 2020 | Serbia | Case-Control study, Prospective/monocentric | Grant No. OI175030 from the Ministry of Education, Science and Technological Development, Republic of Serbia. |
Ben-David et al. [25] | 2022 | Israel | Prospective/monocentric | None declared |
Loveikyte et al. [29] | 2023 | The Netherlands | Retrospective/monocentric | The research position of R.L. was supported by the Initiative on Crohn’s and Colitis and Cablon Medical. The research position of A.R.B. was supported by an MD-PhD trajectory grant (grant no. 17-57) from the Junior Scientific Masterclass of the University of Groningen, The Netherlands. |
Authors Ref. | Sample Size (No. of Patients) Mean/Median Age (Year) | Gender F% | Controls Mean/Median Age (Year) | Gender F% | No. of Patients and Clinical Setting | IBD Subtype (No. of Patients) | Comparative Test |
---|---|---|---|---|---|---|---|
Arnold et al. [22] | 61 44.03 | n.a. | 25 36.02 | n.a. * | 18 anemic 41 non-anemic | 10 CD 51 UC | Ferritin IL-6 sTFR |
Oustamanolakis et al. [18] | 100 49 | 42% | 102 49 | 19.61 | n.a. | 51 CD 49 UC | Ferritin CRP |
Bergamaschi et al. [26] | 54 46 | 44% | 36 43 | 50 | 26 anemic 26 non-anemic | 22 CD 32 UC | Ferritin CRP sTFR |
Mecklenburg et al. [27] | 247 36.7 | 45% | 21 n.a. | n.a. | 102 anemic 145 non-anemic | 130 CD 117 UC | Ferritin CRP |
Martinelli et al. [19] | 50 12.6 | 46% | 50 11.1 | 50% | 12 anemic 38 non-anemic | 21 CD 29 UC | Ferritin CRP sTFR |
Krawiec et al. [23] | 75 12.9 | 46.7% | 21 11.2 | 38.1% | 38 anemic 37 non-anemic | 29 CD 46 UC | Ferritin |
Moran-Lev et al. [20] | 40 14.8 | 50% | 45 13.5 | 47% | n.a. | 23 CD 17 UC | Ferritin CRP IL-6 |
Shu et al. [21] | 99 40 | 47.5% | 22 39.75 | 40.9% | 59 anemic 40 non-anemic | 66 CD 33 UC | Ferritin CRP ESR Serum iron |
Aksan et al. [28] | 73 36.4 | 46.6% | 22 33.8 | 50% | 20 anemic 53 non-anemic | 41 CD 32 UC | Ferritin CRP sTFR |
Stojkovic Lalosevic et al. [24] | 45 47.4 | 40% | n.a. n.a. | n.a. | 45 anemic 0 non-anemic | 22 CD 23 UC | Ferritin CRP ESR |
Ben-David et al. [25] | 10 15.1 | 70% | 8 10.88 | 62.5% | 10 anemic 0 non-anemic | n.a. | Ferritin CRP sTFR |
Loveikyte et al. [29] | 122 42.2 | 48% | 50 45 | 46.4% | 52 anemic 70 non-anemic | 66 CD 56 UC | Ferritin CRP sTFR ESR |
Authors Ref. | Biomarker Patients: Hepcidin ng/mL | p Value | Test Type | Main Comparator Patients: Ferritin mg/L | Correlation |
---|---|---|---|---|---|
Arnold et al. [22] | Mean ± SEM Patients 5.45 ± 0.96 * Controls 15.35 ± 3.14 | 0.0045 | RIA | Patients n.a. Controls n.a. | Pearson’s correlation r = 0.73 p < 0.0001 |
Oustamanolakis et al. [18] | Median (range) Patients 72.1 (16.6–521) * Controls 47.0 (8.6–340.2) | <0.0001 | ELISA | Median (range) Patients: 71.0 (10.0–259.5) Controls 37.8 (2.9–447). | Multivariate r = 0.34 p = 0.0008 |
Bergamaschi et al. [26] | Geometric means and 95% CIs (nM) Patients 1.88 (1.12–3.17) 5.24 (3.12–8.84) ng/mL Controls 3.62 (2.86–3.62) 10.09 (7.98–10.09) ng/ml | N.S. § | Mass spectrometry | Median (range) Patients 45 (34–360) Controls 62 (48–79) | Linear regression r = 0.645 p = <0.001 |
Mecklenburg et al. [27] | Median (range) Patients Controls | N.S. | ELISA | Median (range) Patients Controls | Multi-linear regression r = n.a. p = 0.005 |
Martinelli et al. [19] | Mean ± SD (range) Patients 4.5 ± 8.6 (0.55–38.9) nM 12.55 ± 24.0 (1.5–108.5) ng/mL Controls 2.1 ± 2.6 (0.55–11.3) nM 5.86 ± 7.25 (1.5–31.5) ng/mL | 0.0623 | Mass spectrometry | Mean ± SD (range) Patients 45 ± 36.8 (6–217) Controls 56.8 ± 31 (10–179) | Correlation log-transformed r = 0.442 p = 0.0001 |
Krawiec et al. [23] | Mean ± SD, median (range) Patients 5.9 ± 5.08, 4.76 (0.27–32.93) * Controls 10.00 ± 10.04, 7.15 (0.004–44.78) | <0.03 | ELISA | Mean ± SD, median (range) Patients 33.94 ± 39.78, 17.50 (1.00–146.00) Controls 47.52 ± 37.04, 34.00 (8.00–158.00) | Spearman’s correlation r = 0.32 p = 0.007 |
Moran-Lev et al. [20] | Median (interquartile range) Patients 34.2 (21.3–44.7) Controls 13.3 (3.5–23.4) | <0.01 | ELISA | Median (interquartile range) Patients 27 (11–55) Controls n.a. | No significant differences in ferritin concentration between the two groups |
Shu et al. [21] | Median (range) Patients n.a. Controls n.a. | <0.001 active pathology vs. controls No differences between remission and controls | ELISA | Median (range) Patients n.a. Controls n.a. | Spearman’s correlation UC patients r = 0.8172 p = <0.0001 CD patients r = 0.4661 p = 0.0002 no cumulative correlation |
Aksan et al. [28] | Median (range) Patients 21.95 (11.35–158.05) Controls 26.45 (16.80–56.2) | n.a.† | n.a. | Median (range) Patients 51.35 (5.45–791) Controls 82.90 (4.38–300.00) | Spearman’s correlation r = 0.657 p < 0.001 |
Stojkovic Lalosevic et al. [24] | Mean ± SD Patients 6.40 ± 2.42 Controls 9.77 ± 2.71 | 0.001 | ELISA | Mean ± SD Patients 119 ± 124 Controls 394 ± 515 | Pearson’s correlation r = n.a. p = n.a. generic positive correlation |
Ben-David et al. [25] | Mean ± SD Patients 6.8 ± 3.6 Controls (celiac disease) 6.6 ± 5.9 | 0.93 | n.a. | Mean ± SD Patients 18.4 ± 17 Controls (celiac disease) 9.0 ± 6.9 | No specified type of correlation r = 0.657 p = 0.05 |
Loveikyte et al. [29] | Median (range) Patients 13.52 (4.85–28.72) Controls 21.19 (9.84–33.29) | 0.14 | ELISA | Median (range) Patients 45.50 (23.75–92.00) Controls 82.50 (44.00–211.25) | Spearman’s rank correlation coefficients (ρ) Rho = 0.74 p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrari, F.; Carini, M.; Zanella, I.; Treglia, G.; Luglio, G.; Bresciani, R.; Biasiotto, G. Potential Diagnostic Role of Hepcidin in Anemic Patients Affected by Inflammatory Bowel Disease: A Systematic Review. Diagnostics 2024, 14, 375. https://doi.org/10.3390/diagnostics14040375
Ferrari F, Carini M, Zanella I, Treglia G, Luglio G, Bresciani R, Biasiotto G. Potential Diagnostic Role of Hepcidin in Anemic Patients Affected by Inflammatory Bowel Disease: A Systematic Review. Diagnostics. 2024; 14(4):375. https://doi.org/10.3390/diagnostics14040375
Chicago/Turabian StyleFerrari, Fabiana, Mattia Carini, Isabella Zanella, Giorgio Treglia, Gaetano Luglio, Roberto Bresciani, and Giorgio Biasiotto. 2024. "Potential Diagnostic Role of Hepcidin in Anemic Patients Affected by Inflammatory Bowel Disease: A Systematic Review" Diagnostics 14, no. 4: 375. https://doi.org/10.3390/diagnostics14040375
APA StyleFerrari, F., Carini, M., Zanella, I., Treglia, G., Luglio, G., Bresciani, R., & Biasiotto, G. (2024). Potential Diagnostic Role of Hepcidin in Anemic Patients Affected by Inflammatory Bowel Disease: A Systematic Review. Diagnostics, 14(4), 375. https://doi.org/10.3390/diagnostics14040375