Stratifying Antenatal Hydronephrosis: Predicting High-Grade VUR Using Ultrasound and Scintigraphy
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. General Findings
3.2. Parameters That Predict VUR
Scoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, H.T.; Herndon, C.D.; Cooper, C.; Gatti, J.; Kirsch, A.; Kokorowski, P.; Lee, R.; Perez-Brayfield, M.; Metcalfe, P.; Yerkes, E.; et al. The Society for Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. J. Pediatr. Urol. 2010, 6, 212–231. [Google Scholar] [CrossRef]
- Ek, S.; Lidefeldt, K.J.; Varricio, L. Fetal hydronephrosis; prevalence, natural history and postnatal consequences in an unselected population. Acta Obstet. Gynecol. Scand. 2007, 86, 1463. [Google Scholar] [CrossRef]
- Lee, R.S.; Cendron, M.; Kinnamon, D.D.; Nguyen, H.T. Antenatal hydronephrosis as a predictor of postnatal outcome: A meta-analysis. Pediatrics 2006, 118, 586–593. [Google Scholar] [CrossRef]
- McHugo, J.; Whittle, M. Enlarged fetal bladders: Aetiology, management and outcome. Prenat. Diagn. 2001, 21, 958–963. [Google Scholar] [CrossRef]
- Eckoldt, F.; Heling, K.S.; Woderich, R.; Wolke, S. Posterior urethral valves: Prenatal diagnostic signs and outcome. Urol. Int. 2004, 73, 296–301. [Google Scholar] [CrossRef]
- Chi, T.; Feldstein, V.A.; Nguyen, H.T. Increased echogenicity as a predictor of poor renal function in children with grade 3 to 4 hydronephrosis. J. Urol. 2006, 175, 1889–1901. [Google Scholar] [CrossRef] [PubMed]
- Daïkha-Dahmane, F.; Dommergues, M.; Muller, F.; Narcy, F.; Lacoste, M.; Beziau, A.; Dumez, Y.; Gubler, M.C. Development of human fetal kidney in obstructive uropathy: Correlations with ultrasonography and urine biochemistry. Kidney Int. 1997, 52, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, L.; Merrot, T.; Chaumoitre, K.; Bretelle, F.; Michel, F.; Alessandrini, P. Prenatal urinoma related to ureteropelvic junction obstruction: Poor prognosis of the affected kidney. Urology 2010, 76, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, B.; Callen, P.W.; Filly, R.A. Sonographic analysis of the fetus with ureteropelvic junction obstruction. AJR Am. J. Roentgenol. 1987, 148, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Phan, V.; Traubici, J.; Hershenfield, B.; Stephens, D.; Rosenblum, N.D.; Geary, D.F. Vesicoureteral reflux in infants with isolated antenatal hydronephrosis. Pediatr. Nephrol. 2003, 18, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Brophy, M.M.; Austin, P.F.; Yan, Y.; Coplen, D.E. Vesicoureteral reflux and clinical outcomes in infants with prenatally detected hydronephrosis. J. Urol. 2002, 168 Pt 2, 1716–1719; discussion 1719. [Google Scholar] [CrossRef]
- Pakkasjärvi, N.; Ripatti, L.; Läckgren, G.; Krishnan, N.; Anand, S. PIC cystography in occult vesicoureteric reflux: A systematic review highlighting its utility in children with recurrent urinary tract infections and normal VCUG. J. Pediatr. Urol. 2023, 19, 804–811. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Phelps, A.; Coley, B.; Darge, K.; Rhee, A.; Chow, J.S. 2021 Update on the urinary tract dilation (UTD) classification system: Clarifications, review of the literature, and practical suggestions. Pediatr. Radiol. 2022, 52, 740–751. [Google Scholar] [CrossRef]
- Evans, K.; Asimakadou, M.; Nwankwo, O.; Desai, D.; Cherian, A.; Mushtaq, I.; Cuckow, P.; Duffy, P.; Smeulders, N. What is the risk of urinary tract infection in children with antenatally presenting dilating vesico-ureteric reflux? J. Pediatr. Urol. 2015, 11, 93.e1–93.e6. [Google Scholar] [CrossRef] [PubMed]
- Nordenström, J.; Sjöström, S.; Sillén, U.; Sixt, R.; Brandström, P. The Swedish infant high-grade reflux trial: UTI and renal damage. J. Pediatr. Urol. 2017, 13, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Visuri, S.; Jahnukainen, T.; Taskinen, S. Incidence of urinary tract infections in infants with antenatally diagnosed hydronephrosis—A retrospective single center study. J. Pediatr. Surg. 2017, 52, 1503–1506. [Google Scholar] [CrossRef]
- Smans, K.; Vaño, E.; Sanchez, R.; Schultz, F.W.; Zoetelief, J.; Kiljunen, T.; Maccia, C.; Järvinen, H.; Bly, R.; Kosunen, A.; et al. Results of a European survey on patient doses in paediatric radiology. Radiat. Prot. Dosim. 2008, 129, 204–210. [Google Scholar] [CrossRef]
- Schneider, K.; Krüger-Stollfuss, I.; Ernst, G.; Kohn, M.M. Paediatric fluoroscopy—A survey of children’s hospitals in Europe I Staffing, frequency of fluoroscopic procedures and investigation technique. Pediatr. Radiol. 2001, 31, 238–246. [Google Scholar] [CrossRef]
- Rachmiel, M.; Aladjem, M.; Starinsky, R. Symptomatic urinary tract infections following voiding cystourethrography. Pediatr. Nephrol. 2005, 20, 1449–1452. [Google Scholar] [CrossRef] [PubMed]
- Gordon, Z.N.; McLeod, D.J.; Ching, C.B.; Herz, D.B.; Bates, D.G.; Brecknell, B.; Alpert, S.A. Uroepithelial thickening improves detection of vesicoureteral reflux in infants with prenatal hydronephrosis. J. Pediatr. Urol. 2016, 12, 257.e1–257.e7. [Google Scholar] [CrossRef]
- Visuri, S.; Kivisaari, R.; Jahnukainen, T.; Taskinen, S. Postnatal imaging of prenatally detected hydronephrosis-when is voiding cystourethrogram necessary? Pediatr. Nephrol. 2018, 33, 1751–1757, Erratum in Pediatr. Nephrol. 2018, 33, 1805. [Google Scholar] [CrossRef]
- Visuri, S.; Jahnukainen, T.; Kivisaari, R.; Taskinen, S. Reduced differential renal function in scintigraphy predicted high-grade vesicoureteral reflux in children with antenatal hydronephrosiss. Acta Paediatr. 2018, 108, 751–756. [Google Scholar] [CrossRef]
- Hansson, S.; Dhamey, M.; Sigstrom, O.; Sixt, R.; Stokland, E.; Wennerström, M.; Jodal, U.L.F. Dimercapto-succinic acid scintigraphy instead of voiding cystourethrography for infants with urinary tract infection. J. Urol. 2004, 172, 1071–1073. [Google Scholar] [CrossRef]
- Zerin, J.; Leiser, J. The impact of vesicoureteral reflux on contralateral renal length in infants with multicystic dysplastic kidney. Pediatr. Radiol. 1998, 28, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Roihuvuo-Leskinen, H.; Lahdes-Vasama, T.; Niskanen, K.; Rönnholm, K. The association of adult kidney size with childhood vesicoureteral reflux. Pediatr. Nephrol. 2013, 28, 77–82. [Google Scholar] [CrossRef]
- Lee, N.G.; Rushton, H.G.; Peters, C.A.; Groves, D.S.; Pohl, H.G. Evaluation of prenatal hydronephrosis: Novel criteria for predicting vesicoureteral reflux on ultrasonography. J. Urol. 2014, 192, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Heikel, P.E.; Parkkulainen, K.V. Vesico-ureteric reflux in children. A classification and results of conservative treatment. Ann. Radiol. 1966, 9, 37–40. [Google Scholar]
- Fernbach, S.K.; Maizels, M.; Conway, J.J. Ultrasound grading of hydronephrosis: Introduction to the system used by the Society for Fetal Urology. Pediatr. Radiol. 1993, 23, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Song, K.; Choi, B.W. How to develop, validate, and compare clinical prediction models involving radiological parameters: Study design and statistical methods. Korean J. Radiol. 2016, 17, 339–350. [Google Scholar] [CrossRef]
- St Aubin, M.; Willihnganz-Lawson, K.; Varda, B.K.; Fine, M.; Adejoro, O.; Prosen, T.; Lewis, J.M.; Shukla, A.R. Society for fetal urology recommendations for postnatal evaluation of prenatal hydronephrosis—Will fewer voiding cystourethrograms lead to more urinary tract infections? J. Urol. 2013, 190, 1456–1461. [Google Scholar] [CrossRef]
- Muensterer, O.J. Comprehensive ultrasound versus voiding cysturethrography in the diagnosis of vesicoureteral reflux. Eur. J. Pediatr. 2002, 161, 435–437. [Google Scholar] [CrossRef]
- Zerin, J.M.; Ritchey, M.L.; Chang, A.C. Incidental vesicoureteral reflux in neonates with antenatally detected hydronephrosis and other renal abnormalities. Radiology 1993, 187, 157–160. [Google Scholar] [CrossRef]
- EAU Guidelines. Edn. Presented at the EAU Annual Congress Amsterdam. 2022. Available online: https://uroweb.org/guidelines/paediatric-urology (accessed on 1 January 2024).
- NICE Guideline [NG224] Urinary Tract Infection in under 16s: Diagnosis and Management. 2022. Available online: https://www.nice.org.uk/guidance/ng224 (accessed on 8 December 2022).
- AUA Guidelines on the Management and Screening of Primary Vesicoureteral Reflux in Children (2017) PUBLISHED 2010, AMENDED2017. Available online: https://www.auanet.org/guidelines-and-quality/guidelines/vesicoureteral-reflux-guideline (accessed on 1 January 2024).
- Choe, H.S.; Lee, S.J.; Yang, S.S.; Hamasuna, R.; Yamamoto, S.; Cho, Y.H.; Matsumoto, T.; Committee for Development of the UAA-AAUS Guidelines for UTI and STI. Summary of the UAA-AAUS guidelines for urinary tract infections. Int. J. Urol. 2018, 25, 175–185. [Google Scholar] [CrossRef]
- Mendichovszky, I.; Solar, B.T.; Smeulders, N.; Easty, M.; Biassoni, L. Nuclear medicine in pediatric nephro-urology: An overview. Semin. Nucl. Med. 2017, 47, 204–228. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, D.J.; Meyers, M.L.; Brodie, K.E.; Palmer, C.; Campbell, J.B. Inter-rater reliability of the APD, SFU and UTD grading systems in fetal sonography and MRI. J. Pediatr. Urol. 2016, 12, 305.e1–305.e5. [Google Scholar] [CrossRef] [PubMed]
- Babu, R.; Venkatachalapathy, E.; Sai, V. Hydronephrosis severity score: An objective assessment of hydronephrosis severity in children—A preliminary report. J. Pediatr. Urol. 2019, 15, 68.e1–68.e6. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.P.; Heller, H.T.; Benson, C.B.; Asch, E.H.; Durfee, S.M.; Logvinenko, T.; Bromley, B. Interobserver reliability of the Antenatal Consensus Classification System for Urinary Tract Dilatation. J. Ultrasound. Med. 2020, 39, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Dogan, G.M.; Sigirci, A.; Cengiz, A.; Tasolar, S.D.; Yildiz, T.; Tabel, Y.; Elmas, A.T.; Otlu, M.; Dogan, S.M. Comparison of Urinary Tract Dilatation and Society of Fetal Urology systems in the detection of vesicourethral reflux and renal scar. Pol. J. Radiol. 2021, 86, e449–e454. [Google Scholar] [CrossRef] [PubMed]
- Hodhod, A.; Fermin-Risso, C.; Farhad, M.; Cook, A.J.; Aburezq, J.; Eid, H.; Weber, B.A. Can we improve the usefulness of the diuretic renogram in the diagnosis of ureteropelvic junction obstruction (UPJO) in children? Introduction of mercaptoacetyltriglycine-suspected obstruction scoring system (MAG-SOS). J. Pediatr. Urol. 2023, 19, 311.e1–311.e8. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Kim, H.G.; Lee, J.-D.; Park, S.Y.; Sur, Y.K. Conversion and reliability of two urological grading systems in infants: The Society for Fetal Urology and the urinary tract dilatation classifications system. Pediatr. Radiol. 2017, 47, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, M.J.; Yoon, C.S.; Lee, M.S.; Han, K.H.; Lee, M.J. Comparison of the reliability of two hydronephrosis grading systems: The Society for Foetal Urology grading system vs. the Onen grading system. Clin. Radiol. 2013, 68, e484–e490. [Google Scholar] [CrossRef] [PubMed]
- Onen, A. Grading of Hydronephrosis: An Ongoing Challenge. Front. Pediatr. 2020, 8, 458. [Google Scholar] [CrossRef] [PubMed]
- Gaeta, G.; Pozzoni, M.; Serafini, A.; Lesma, A.; Paesano, P.L.; Candiani, M.; Cavoretto, I.V. Prenatal Diagnosis of Severe Fetal Hydronephrosis Due to Pyeloureteral Junction Syndrome with False Neonatal Resolution. Reprod. Med. 2021, 2, 163–170. [Google Scholar] [CrossRef]
- Pakkasjärvi, N.; Luthra, T.; Anand, S. Artificial Intelligence in Surgical Learning. Surgeries 2023, 4, 86–97. [Google Scholar] [CrossRef]
- Smail, L.C.; Dhindsa, K.; Braga, L.H.; Becker, S.; Sonnadara, R.R. Using Deep Learning Algorithms to Grade Hydronephrosis Severity: Toward a Clinical Adjunct. Front. Pediatr. 2020, 8, 1. [Google Scholar] [CrossRef]
- Sloan, M.; Lescay, H.A.; Judge, C.; Lan, L.; Hajiyev, P.; Giger, M.L.; Gundeti, M.S. Pilot study of machine learning in the task of distinguishing high and low-grade pediatric hydronephrosis on ultrasound. Investig. Clin. Urol. 2023, 64, 588–596. [Google Scholar] [CrossRef]
- Ostrowski, D.A.; Logan, J.R.; Antony, M.; Broms, R.; Weiss, D.A.; Van Batavia, J.; Long, C.J.; Smith, A.L.; Zderic, S.A.; Edwins, R.C.; et al. Automated Society of Fetal Urology (SFU) grading of hydronephrosis on ultrasound imaging using a convolutional neural network. J. Pediatr. Urol. 2023, 19, 566.e1–566.e8. [Google Scholar] [CrossRef]
- Wang, H.-H.S.; Li, M.; Cahill, D.; Panagides, J.; Logvinenko, T.; Chow, J.; Nelson, C. A machine learning algorithm predicting risk of dilating VUR among infants with hydronephrosis using UTD classification. J. Pediatr. Urol. 2023, in press. [Google Scholar] [CrossRef]
Non-Refluxing Hydronephrosis | Grade 1–3 VUR | Grade 4–5 VUR | |
---|---|---|---|
Males | 69 | 6 | 18 |
Females | 25 | 3 | 3 |
Total number of patients | 94 | 9 | 21 |
Variable | Categories | Points | |
---|---|---|---|
Renal length | >53 mm | 0 | |
46–53 | 1 | ||
<46 | 2 | ||
DRF | >50 | 0 | |
44–50 | 1 | ||
<44 | 2 | ||
Visible ureter | No | 0 | |
Yes | 4 | ||
Risk group (controls/cases) | Score | Control (219) | Case (28) |
Low (79%/14%) | 0 | 67 | 1 |
1 | 76 | 1 | |
2 | 30 | 2 | |
Intermediate (19%/43%) | 3 | 16 | 3 |
4 | 12 | 3 | |
5 | 14 | 6 | |
High (2%/43%) | 6 | 2 | 1 |
7 | 1 | 2 | |
8 | 0 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakkasjärvi, N.; Belov, S.; Jahnukainen, T.; Kivisaari, R.; Taskinen, S. Stratifying Antenatal Hydronephrosis: Predicting High-Grade VUR Using Ultrasound and Scintigraphy. Diagnostics 2024, 14, 384. https://doi.org/10.3390/diagnostics14040384
Pakkasjärvi N, Belov S, Jahnukainen T, Kivisaari R, Taskinen S. Stratifying Antenatal Hydronephrosis: Predicting High-Grade VUR Using Ultrasound and Scintigraphy. Diagnostics. 2024; 14(4):384. https://doi.org/10.3390/diagnostics14040384
Chicago/Turabian StylePakkasjärvi, Niklas, Sofia Belov, Timo Jahnukainen, Reetta Kivisaari, and Seppo Taskinen. 2024. "Stratifying Antenatal Hydronephrosis: Predicting High-Grade VUR Using Ultrasound and Scintigraphy" Diagnostics 14, no. 4: 384. https://doi.org/10.3390/diagnostics14040384
APA StylePakkasjärvi, N., Belov, S., Jahnukainen, T., Kivisaari, R., & Taskinen, S. (2024). Stratifying Antenatal Hydronephrosis: Predicting High-Grade VUR Using Ultrasound and Scintigraphy. Diagnostics, 14(4), 384. https://doi.org/10.3390/diagnostics14040384