Advances in Transepithelial Photorefractive Keratectomy versus Laser-Assisted In Situ Keratomileusis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Aim
2.2. Preoperative Assessment
2.3. Surgical Procedure
2.4. Statistical Analysis
2.5. Study Limitations
2.6. Local Ethics Committee Approval
3. Results
3.1. Demographics and Preoperative Data
3.2. Surgical Data and Postoperative Results
3.3. Astigmatism Calculation
3.4. Safety and Efficacy
3.5. Encountered Postoperative Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, T.I.; Alió Del Barrio, J.L.; Wilkins, M.; Cochener, B.; Ang, M. Refractive surgery. Lancet 2019, 393, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Soong, H.K.; Malta, J.B. Femtosecond lasers in ophthalmology. Am. J. Ophthalmol. 2009, 147, 189–197.e2. [Google Scholar] [CrossRef] [PubMed]
- Gaeckle, H.C. Early clinical outcomes and comparison between trans-PRK and PRK, regarding refractive outcome, wound healing, pain intensity and visual recovery time in a real-world setup. BMC Ophthalmol. 2021, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- de Ortueta, D.; von Rüden, D. Transepitheliale photorefraktive Keratektomie: Ergebnisse und klinische Erfahrungen [Transepithelial photorefractive keratectomy: Results and clinical experiences]. Ophthalmologe 2019, 116, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Güell, J.L.; Muller, A. Laser in situ keratomileusis (LASIK) for myopia from −7 to −18 diopters. J. Refract. Surg. 1996, 12, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Carp, G.I.; Archer, T.J.; Buick, T.; Gobbe, M.; Rowe, E.L.; Jukic, M.; Brandon, E.; Moore, J.; Moore, T. LASIK for the Correction of High Hyperopic Astigmatism with Epithelial Thickness Monitoring. J. Refract. Surg. 2017, 33, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Mimouni, M.; Pokroy, R.; Rabina, G.; Kaiserman, I. LASIK versus PRK for high astigmatism. Int. Ophthalmol. 2021, 41, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.G. High incidence of rainbow glare after femtosecond laser assisted-LASIK using the upgraded FS200 femtosecond laser. BMC Ophthalmol. 2018, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Kao, W.W. Corneal Epithelial Wound Healing. Prog. Mol. Biol. Transl. Sci. 2015, 134, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Gauvin, M.; Wallerstein, A. AstigMATIC: An automatic tool for standard astigmatism vector analysis. BMC Ophthalmol. 2018, 18, 255. [Google Scholar] [CrossRef] [PubMed]
- Gomel, N.; Negari, S.; Frucht-Pery, J.; Wajnsztajn, D.; Strassman, E.; Solomon, A. Predictive factors for efficacy and safety in refractive surgery for myopia. PLoS ONE 2018, 13, e0208608. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Lin, P.Y.; Hsu, C.C.; Liu, C.J. Comparison of clinical outcomes of LASIK, Trans-PRK, and SMILE for correction of myopia. J. Chin. Med. Assoc. 2022, 85, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, Q.; Ding, W.; Peng, Y.; Long, K. Comparison of clinical results between trans-PRK and femtosecond LASIK for correction of high myopia. BMC Ophthalmol. 2020, 20, 243. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jhanji, V.; Sun, L.; Li, J.; Zhang, R. Comparison of visual quality after Femto-LASIK and TransPRK in patients with low and moderate myopia. Int. Ophthalmol. 2020, 40, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Gershoni, A.; Reitblat, O.; Mimouni, M.; Livny, E.; Nahum, Y.; Bahar, I. Femtosecond laser assisted in situ keratomileusis (FS-LASIK) yields better results than transepithelial photorefractive keratectomy (Trans-PRK) for correction of low to moderate grade myopia. Eur. J. Ophthalmol. 2021, 31, 2914–2922. [Google Scholar] [CrossRef] [PubMed]
- Sabhapandit, S.; Abdussamad, A.; Shaik, T.A.; Perumalla, S.R. Transepithelial Photorefractive Keratectomy for Hyperopia Correction: An Uncharted Territory. Clin. Ophthalmol. 2023, 17, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Kornilovskiy, I.M.; Kasimov, E.M.; Sultanova, A.I.; Burtsev, A.A. Laser-induced corneal cross-linking upon photorefractive ablation with riboflavin. Clin. Ophthalmol. 2016, 10, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Hwang, J.; Chung, S.H. Comparison of Corneal Wavefront-optimized and Wavefront-guided Alcohol-assisted Photorefractive Keratectomy Using Schwind Amaris 750S Laser for Myopia. Korean J. Ophthalmol. 2020, 34, 210–218. [Google Scholar] [CrossRef] [PubMed]
- De Ortueta, D.; Arba-Mosquera, S.; Magnago, T. High-speed recording of thermal load during laser trans-epithelial corneal refractive surgery using a 750 Hz ablation system. J. Optom. 2019, 12, 84–91. [Google Scholar] [CrossRef] [PubMed]
Categories | Trans-PRK | FS-LASIK | Both Procedures |
---|---|---|---|
Total eyes (n) | 167 | 63 | 230 |
Patient Age (years) | 25.235 | 30.3 | 26.683 |
Patient Age StDev | 7.757 | 10.45 | 8.879 |
PreOp CDVA decimal (Mean) | 0.95269 | 0.8556 | 0.92609 |
PreOp CDVA decimal (SE Mean) | 0.00882 | 0.0247 | 0.00971 |
PreOp CDVA decimal (StDev) | 0.11397 | 0.1957 | 0.14722 |
PreOp CDVA decimal (Minimum) | 0.3 | 0.2 | 0.2 |
PreOp CDVA decimal (Median) | 1 | 1 | 1 |
PreOp CDVA decimal (Maximum) | 1 | 1 | 1 |
PreOp CDVA logMAR (Mean) | 0.3246 | 0.0933 | 0.04913 |
PreOp CDVA logMAR (SE Mean) | 0.00620 | 0.0157 | 0.00647 |
PreOp CDVA logMAR (StDev) | 0.08008 | 0.1250 | 0.09808 |
PreOp CDVA logMAR (Minimum) | 0.7 | 0.5 | 0.7 |
PreOp CDVA logMAR (Median) | 0 | 0 | 0 |
PreOp CDVA logMAR (Maximum) | 0 | 0 | 0 |
PreOp Refraction Mean SPH D | −2.741 | +1.556 | −1.554 |
PreOp Refraction Mean CYL D | −1.462 | −1.111 | −1.365 |
PreOp Refraction StDev SPH D | 2.919 | 4.483 | 3.918 |
PreOp Refraction StDev CYL D | 1.393 | 2.973 | 1.960 |
PreOp Refraction Minimum SPH D | −11 | −9 | −11 |
PreOp Refraction Maximum SPH D | +5.250 | +7 | +7 |
PreOp Refraction Minimum CYL D | −7 | −6.25 | −7 |
PreOp Refraction Maximum CYL D | +1.250 | +5 | +5 |
PreOp Cy. Mean Refraction SPH D | −2.375 | +1.980 | −1.171 |
PreOp Cy. Mean Refraction CYL D | −1.375 | −0.687 | −1.184 |
PreOp Cy. Refraction StDev SPH D | 3.014 | 4.536 | 3.999 |
PreOp Cy. Refraction StDev CYL D | 1.494 | 3.016 | 2.050 |
PreOp Cy. Refraction Minimum SPH D | −9.25 | −8.75 | −9.250 |
PreOp Cy. Refraction Maximum SPH D | +6 | +7.75 | +7.750 |
PreOp Cy. Refraction Minimum CYL D | −6.5 | −6.5 | −6.500 |
PreOp Cy. Refraction Maximum CYL D | +2.5 | +5.75 | +5.750 |
PreOp CDVA Mean SPH D | −2.758 | +1.213 | −1.652 |
PreOp CDVA Mean CYL D | −1.113 | −0.107 | −0.822 |
PreOp CDVA StDev SPH D | 2.520 | 3.910 | 3.459 |
PreOp CDVA StDev CYL D | 1.573 | 2.828 | 2.061 |
PreOp CDVA Minimum SPH D | −8.25 | −8.5 | −8.500 |
PreOp Cy.CDVA Maximum SPH D | +3 | +6.5 | +6.500 |
PreOp Cy. CDVA Minimum CYL D | −5.5 | −5.75 | −5.750 |
PreOp Cy. CDVA Maximum CYL D | +4 | +4.5 | 4.500 |
Ablative Target Mean SPH D | −2.722 | +0.944 | −1.717 |
Ablative Target StDev SPH D | 2.696 | 3.668 | 3.405 |
Ablative Target Mean CYL D | −1.178 | +0.214 | −0.797 |
Ablative Target StDev CYL D | 1.557 | 2.886 | 2.097 |
Ablative Target Minimum SPH D | −8 | −7.5 | −8 |
Ablative Target Maximum SPH D | +6.25 | +5 | +6.25 |
Ablative Target Minimum CYL D | −5.5 | −5.75 | −5.75 |
Ablative Target Maximum CYL D | +3 | +5 | +5 |
Categories | Trans-PRK | FS-LASIK | Both |
---|---|---|---|
Total eyes (n) | 167 | 63 | 230 |
Ablative Target Mean SPH D | −2.722 | +0.944 | −1.717 |
Ablative Target StDev SPH D | 2.696 | 3.668 | 3.405 |
Ablative Target Mean CYL D | −1.178 | +0.214 | −0.797 |
Ablative Target StDev CYL D | 1.557 | 2.886 | 2.097 |
Ablative Target Minimum SPH D | −8 | −7.5 | −8 |
Ablative Target Maximum SPH D | +6.25 | +5 | +6.25 |
Ablative Target Minimum CYL D | −5.5 | −5.75 | −5.75 |
Ablative Target Maximum CYL D | +3 | +5 | +5 |
Mean PreOp Central Pachymetry µm | 547.06 | 558.70 | 550.25 |
PreOp Min. Central Pachymetry µm | 473 | 493 | 473 |
PreOp Max. Central Pachymetry µm | 614 | 627 | 627 |
Mean EPI/FLAP Thickness µm | 51.078 | 117.44 | 69.26 |
Mean Predicted Residual Stroma µm | 430.10 | 362.46 | 411.57 |
Predicted Min. Residual Stroma µm | 335 | 315 | 315 |
Predicted Max. Residual Stroma µm | 533 | 439 | 533 |
Mean Ablative Mean Pupil Size mm | 6.5 | 6.5 | 6.5 |
Mean Ablative Zone Size mm | 8.4611 | 8.8762 | 8.5748 |
Mean Ablative Transition Zone Size mm | 1.0428 | 1.2119 | 1.0891 |
Mean Ablative Optical Zone Size mm | 6.4 | 6.4603 | 6.4165 |
Mean Ablative MAX Parameter µm | 65.87 | 78.79 | 69.41 |
Mean Ablative CEN Parameter µm | 60.93 | 25.16 | 51.13 |
Mean Intraoperative Central Pachymetry mm | 566.56 | 556.4 | 562.27 |
Mean Intraoperative EPI/FLAP-OFF mm | 445 | 443 | 443.07 |
Mean Total Laser-Treatment Duration s | 45.988 | 16.75 | 37.98 |
Mean Number of Breaks s | 1.5509 | 0.317 | 1.213 |
Mean Cumulative Break Time s | 15.234 | 2.190 | 11.661 |
Mean Attempted Refraction—SE Target D | −3.311 | +1.052 | −2.116 |
Mean Absolute Attempted Refraction (SE Absolute D) | 3.778 | 3.710 | 3.759 |
Categories | Trans-PRK | FS-LASIK | p Value Trans-PRK vs. FS-LASIK | All Patients |
---|---|---|---|---|
Ablative Target Mean SPH D | −2.722 | +0.944 | <0.001 | −1.717 |
Ablative Target StDev SPH D | 2.696 | 3.668 | 3.405 | |
Ablative Target Mean CYL D | −1.178 | +0.214 | 0.001 | −0.797 |
Ablative Target StDev CYL D | 1.557 | 2.886 | 2.097 | |
Attempted Refraction—Mean SE Target | −3.311 | +1.052 | 0.000 | −2.116 |
Attempted Refraction—Mean SE StDev | 2.690 | 4.109 | 3.690 | |
Mean of Absolute Attempted SE | 3.778 | 3.710 | 0.820 | |
Attempted SE in Absolute Value StDev | 1.977 | 2.005 | ||
PostOp 1 Day—Refraction SPH D | +0.167 | −0.156 | 0.089 | +0.0492 |
PostOp 1 Day—Refraction SPH StDev | 1.067 | 1.022 | 1.0582 | |
PostOp 1 Day—Refraction CYL D | −0.5923 | −0.729 | 0.390 | −0.6420 |
PostOp 1 Day—Refraction CYL StDev | 0.8562 | 0.889 | 0.8672 | |
PostOp 1 Day—SE | −0.129 | −0.521 | 0.043 | −0.2718 |
PostOp 1 Week—Refraction SPH D | +0.0304 | −0.0798 | 0.350 | −0.0032 |
PostOp 1 Week—Refraction SPH StDev | 0.6647 | 0.6718 | 0.6667 | |
PostOp 1 Week—Refraction CYL D | −0.5584 | −0.516 | 0.731 | −0.5455 |
PostOp 1 Week—Refraction CYL StDev | 0.7093 | 0.7 | 0.7045 | |
PostOp 1 Week—SE | −0.2488 | −0.338 | 0.487 | −0.2760 |
PostOp 1 Month—Refraction SPH D | +0.3061 | +0.041 | 0.058 | +0.2333 |
PostOp 1 Month– Refraction SPH StDev | 0.7877 | 0.683 | 0.7673 | |
PostOp 1 Month—Refraction CYL D | −0.5152 | −0.432 | 0.599 | −0.4925 |
PostOp 1 Month—Refr. CYL StDev | 0.8838 | 0.783 | 0.8553 | |
PostOp 1 Month—SE | +0.0485 | −0.176 | 0.150 | −0.0129 |
PostOp 6 Months—Refraction SPH D | −0.0476 | +0.425 | 0.004 | +0.1048 |
PostOp 6 Months—Refr. SPH StDev | 0.7012 | 0.874 | 0.7893 | |
PostOp 6 Months—Refraction CYL D | −0.3036 | −0.400 | 0.499 | −0.3347 |
PostOp 6 Months—Refr. CYL StDev | 0.5251 | 0.820 | 0.6335 | |
PostOp 6 Months—SE | −0.1994 | +0.225 | 0.025 | −0.0625 |
PostOp 1 Year—Refraction SPH D | −0.0294 | +0.646 | <0.001 | 0.25 |
PostOp 1 Year—Refraction SPH StDev | 0.6493 | 0.909 | 0.8327 | |
PostOp 1 Year—Refraction CYL D | −0.3775 | −0.549 | 0.286 | −0.4483 |
PostOp 1 Year—Refraction CYL StDev | 0.6049 | 0.808 | 0.6969 | |
PostOp 1 Year—SE | −0.218 | 0.372 | 0.007 | +0.026 |
PreOp CDVA Decimal | 0.95269 | 0.8556 | <0.001 | 0.92609 |
PostOp 1 Day UCVA Decimal | 0.9130 | 0.7864 | 0.003 | 0.8669 |
PostOp 1 Week UCVA Decimal | 0.9167 | 0.8652 | 0.093 | 0.9013 |
PostOp 1 Month UCVA Decimal | 0.9446 | 0.8949 | 0.127 | 0.9307 |
PostOp 6 Months UCVA Decimal | 0.9602 | 0.8833 | 0.021 | 0.9354 |
PostOp 1 Year UCVA Decimal | 0.9528 | 0.8895 | 0.079 | 0.9264 |
PreOp CDVA logMAR | 0.03246 | 0.0933 | 0.001 | 0.04913 |
PostOp 1 Day UCVA logMAR | 0.06 | 0.1386 | 0.001 | 0.0886 |
PostOp 1 Week UCVA logMAR | 0.05278 | 0.0817 | 0.125 | 0.06143 |
PostOp 1 Month UCVA logMAR | 0.04277 | 0.728 | 0.176 | 0.05114 |
PostOp 6 Months UCVA logMAR | 0.02523 | 0.0768 | 0.015 | 0.04242 |
PostOp 1 Year UCVA logMAR | 0.0287 | 0.0720 | 0.061 | 0.0473 |
Time PostOp | Category | Trans-PRK | FS-LASIK | Diff. |
---|---|---|---|---|
1 Week | TIA arithmetic mean | 1.38 D | 2.04 D | 0.66 D |
1 Week | TIA mean vector | 1.02 D Axis 0° | 1.77 D Axis 178° | |
1 Week | SIA arithmetic mean | 1.86 D | 2.32 D | 0.46 D |
1 Week | SIA mean vector | 0.92 D Axis 1° | 1.82 D Axis 179° | |
1 Week | Difference vector arith. mean | 0.73 D | 0.73 D | No diff. |
1 Week | Difference vector geom. mean | 0.11 D Axis 170° | 0.10 D Axis 118° | |
1 Week | Correction Index arith. mean | 1.25 | 1.05 | 0.2 |
1 Week | Correction Index geom. mean | 1.16 | 0.93 | 0.23 |
1 Month | TIA arithmetic mean | 1.43 D | 2.51 D | 1.08 D |
1 Month | TIA mean vector | 1.11 D Axis 1° | 2.13 D Axis 177° | |
1 Month | SIA arithmetic mean | 1.86 D | 2.68 D | 0.82 D |
1 Month | SIA mean vector | 1.12 D Axis 2° | 1.82 D Axis 179° | |
1 Month | Difference vector arith. mean | 0.72 D | 0.74 D | 0.02 D |
1 Month | Difference vector geom. mean | 0.03 D Axis 132° | 0.34 D Axis 167° | |
1 Month | Correction Index arith. mean | 1.20 | 1.04 | 0.16 |
1 Month | Correction Index geom. mean | 1.08 | 0.98 | 0.1 |
6 Months | TIA arithmetic mean | 1.45 D | 2.23 D | 0.78 D |
6 Months | TIA mean vector | 1.02 D Axis 1° | 1.81 D Axis 177° | |
6 Months | SIA arithmetic mean | 1.66 D | 2.36 D | 0.7 D |
6 Months | SIA mean vector | 1.07 D Axis 2° | 1.44 D Axis 175° | |
6 Months | Difference vector arith. mean | 0.48 D | 0.74 D | 0.26 D |
6 Months | Difference vector geom. mean | 0.07 D Axis 112° | 0.39 D Axis 5° | |
6 Months | Correction Index arith. mean | 1.1 | 0.98 | 0.12 |
6 Months | Correction Index geom. mean | 1.08 | 0.97 | 0.11 |
1 Year | TIA arithmetic mean | 1.75 D | 2.06 D | 0.31 D |
1 Year | TIA mean vector | 1.32 D Axis 2° | 1.65 D Axis 177° | |
1 Year | SIA arithmetic mean | 1.96 D | 2.19 D | 0.23 D |
1 Year | SIA mean vector | 1.35 D Axis 4° | 1.22 D Axis 174° | |
1 Year | Difference vector arith. mean | 0.61 D | 0.82 D | 0.21 D |
1 Year | Difference vector geom. mean | 0.09 D Axis 126° | 0.45 D Axis 4° | |
1 Year | Correction Index arith. mean | 1.05 | 0.95 | 0.1 |
1 Year | Correction Index geom. mean | 1.00 | 0.90 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curcă, P.F.; Tătaru, C.I.; Sima, G.; Burcea, M.; Tătaru, C.P. Advances in Transepithelial Photorefractive Keratectomy versus Laser-Assisted In Situ Keratomileusis. Diagnostics 2024, 14, 481. https://doi.org/10.3390/diagnostics14050481
Curcă PF, Tătaru CI, Sima G, Burcea M, Tătaru CP. Advances in Transepithelial Photorefractive Keratectomy versus Laser-Assisted In Situ Keratomileusis. Diagnostics. 2024; 14(5):481. https://doi.org/10.3390/diagnostics14050481
Chicago/Turabian StyleCurcă, Paul Filip, Cătălina Ioana Tătaru, George Sima, Marian Burcea, and Călin Petru Tătaru. 2024. "Advances in Transepithelial Photorefractive Keratectomy versus Laser-Assisted In Situ Keratomileusis" Diagnostics 14, no. 5: 481. https://doi.org/10.3390/diagnostics14050481
APA StyleCurcă, P. F., Tătaru, C. I., Sima, G., Burcea, M., & Tătaru, C. P. (2024). Advances in Transepithelial Photorefractive Keratectomy versus Laser-Assisted In Situ Keratomileusis. Diagnostics, 14(5), 481. https://doi.org/10.3390/diagnostics14050481