Evaluation of SARS-CoV-2 Vaccine-Induced Antibody Responses in Patients with Neuroimmunological Disorders: A Real-World Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Antibody Detecting
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients with Neuroimmunological Disorders and Healthy Participants
3.2. The Factors Influencing the Levels of SARS-CoV-2 Antibody Titers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Randolph, H.E.; Barreiro, L.B. Herd Immunity: Understanding COVID-19. Immunity 2020, 52, 737–741. [Google Scholar] [CrossRef]
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodés-Guirao, L. A global database of COVID-19 vaccinations. Nature Human. Behaviour 2021, 5, 947–953. [Google Scholar] [CrossRef]
- Ha, J.; Park, S.; Kang, H.; Kyung, T.; Kim, N.; Kim, D.K.; Kim, H.; Bae, K.; Song, M.C.; Lee, K.J.; et al. Real-world data on the incidence and risk of Guillain-Barre syndrome following SARS-CoV-2 vaccination: A prospective surveillance study. Sci. Rep. 2023, 13, 3773. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Cho, K.; Song, J.; Rahmati, M.; Koyanagi, A.; Lee, S.W.; Yon, D.K.; Il Shin, J.; Smith, L. The case fatality rate of COVID-19 during the Delta and the Omicron epidemic phase: A meta-analysis. J. Med. Virol. 2023, 95, e28522. [Google Scholar] [CrossRef] [PubMed]
- Nutma, E.; Willison, H.; Martino, G.; Amor, S. Neuroimmunology—The past, present and future. Clin. Exp. Immunol. 2019, 197, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol 2020, 77, 683–690. [Google Scholar] [CrossRef]
- Lotan, I.; Nishiyama, S.; Manzano, G.S.; Lydston, M.; Levy, M. COVID-19 and the risk of CNS demyelinating diseases: A systematic review. Front. Neurol. 2022, 13, 970383. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Kim, Y.H.; Seok, J.M.; Kim, B.J. Unusual Demyelinating Disease of the Central Nervous System Involving Bilateral Corticospinal Tracts Following COVID-19 Infection: A Case Report. J. Clin. Neurol. 2023, 19, 503–505. [Google Scholar] [CrossRef]
- Toscano, G.; Palmerini, F.; Ravaglia, S.; Ruiz, L.; Invernizzi, P.; Cuzzoni, M.G.; Franciotta, D.; Baldanti, F.; Daturi, R.; Postorino, P.; et al. Guillain-Barre Syndrome Associated with SARS-CoV-2. N. Engl. J. Med. 2020, 382, 2574–2576. [Google Scholar] [CrossRef]
- Attauabi, M.; Seidelin, J.B.; Felding, O.K.; Wewer, M.D.; Vinther Arp, L.K.; Sarikaya, M.Z.; Egeberg, A.; Vladimirova, N.; Bendtsen, F.; Burisch, J. Coronavirus disease 2019, immune-mediated inflammatory diseases and immunosuppressive therapies—A Danish population-based cohort study. J. Autoimmun. 2021, 118, 102613. [Google Scholar] [CrossRef]
- Klineova, S.; Farber, R.S.; DeAngelis, T.; Leung, T.; Smith, T.; Blanck, R.; Zhovtis-Ryerson, L.; Harel, A. Vaccine-breakthrough SARS-CoV-2 infections in people with multiple sclerosis and related conditions: An observational study by the New York COVID-19 Neuro-Immunology Consortium (NYCNIC-2). Mult. Scler. 2023, 29, 990–1000. [Google Scholar] [CrossRef]
- Salter, A.; Fox, R.J.; Newsome, S.D.; Halper, J.; Li, D.K.B.; Kanellis, P.; Costello, K.; Bebo, B.; Rammohan, K.; Cutter, G.R.; et al. Outcomes and Risk Factors Associated with SARS-CoV-2 Infection in a North American Registry of Patients with Multiple Sclerosis. JAMA Neurol. 2021, 78, 699–708. [Google Scholar] [CrossRef]
- Muppidi, S.; Guptill, J.T.; Jacob, S.; Li, Y.; Farrugia, M.E.; Guidon, A.C.; Tavee, J.O.; Kaminski, H.; Howard, J.F., Jr.; Cutter, G.; et al. COVID-19-associated risks and effects in myasthenia gravis (CARE-MG). Lancet Neurol. 2020, 19, 970–971. [Google Scholar] [CrossRef]
- Guidon, A.C.; Amato, A.A. COVID-19 and neuromuscular disorders. Neurology 2020, 94, 959–969. [Google Scholar] [CrossRef]
- Peeters, G.; Van Remoortel, A.; Nagels, G.; Van Schependom, J.; D’Haeseleer, M. Occurrence and Severity of Coronavirus Disease 2019 Are Associated with Clinical Disability Worsening in Patients with Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhang, Y.; Xu, Y.; Peng, B.; Cui, L.; Zhang, S. The Impact of COVID-19 on Patients with Neuromyelitis Optica Spectrum Disorder beyond Infection Risk. Front. Neurol. 2021, 12, 657037. [Google Scholar] [CrossRef] [PubMed]
- Woodhall, M.; Mitchell, J.W.; Gibbons, E.; Healy, S.; Waters, P.; Huda, S. Case Report: Myelin Oligodendrocyte Glycoprotein Antibody-Associated Relapse with COVID-19. Front. Neurol. 2020, 11, 598531. [Google Scholar] [CrossRef] [PubMed]
- Montini, F.; Nozzolillo, A.; Tedone, N.; Mistri, D.; Rancoita, P.M.; Zanetta, C.; Mandelli, A.; Furlan, R.; Moiola, L.; Martinelli, V.; et al. COVID-19 has no impact on disease activity, progression and cognitive performance in people with multiple sclerosis: A 2-year study. J. Neurol. Neurosur. Psychiatry 2023. [Google Scholar] [CrossRef]
- Andersen, M.L.; Zegers, F.D.; Jolving, L.R.; Knudsen, T.; Stenager, E.; Norgard, B.M. Patients with multiple sclerosis: COVID-19 related disease activity and hospitalisations based on a nationwide cohort study. Mult. Scler. Relat. Disord. 2023, 79, 105031. [Google Scholar] [CrossRef] [PubMed]
- Shoham, S.; Batista, C.; Amor, Y.B.; Ergonul, O.; Hassanain, M.; Hotez, P.; Kang, G.; Kim, J.H.; Lall, B.; Larson, H.J. Vaccines and therapeutics for immunocompromised patients with COVID-19. EClinicalMedicine 2023, 59, 101965. [Google Scholar] [CrossRef]
- World Health Organization. Interim Recommendations for an Extended Primary Series with an Additional Vaccine Dose for COVID-19 Vaccination in Immunocompromised Persons: Interim Guidance, 26 October 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Boekel, L.; Steenhuis, M.; Hooijberg, F.; Besten, Y.R.; van Kempen, Z.L.E.; Kummer, L.Y.; van Dam, K.P.J.; Stalman, E.W.; Vogelzang, E.H.; Cristianawati, O.; et al. Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: A substudy of data from two prospective cohort studies. Lancet Rheumatol. 2021, 3, e778–e788. [Google Scholar] [CrossRef]
- Wu, X.; Wang, L.; Shen, L.; Tang, K. Response of COVID-19 vaccination in multiple sclerosis patients following disease-modifying therapies: A meta-analysis. EBioMedicine 2022, 81, 104102. [Google Scholar] [CrossRef]
- van Kempen, Z.L.E.; Wieske, L.; Stalman, E.W.; Kummer, L.Y.L.; van Dam, P.J.; Volkers, A.G.; Boekel, L.; Toorop, A.A.; Strijbis, E.M.M.; Tas, S.W.; et al. Longitudinal humoral response after SARS-CoV-2 vaccination in ocrelizumab treated MS patients: To wait and repopulate? Mult. Scler. Relat. Disord. 2022, 57, 103416. [Google Scholar] [CrossRef]
- Wieske, L.; van Dam, K.P.J.; Steenhuis, M.; Stalman, E.W.; Kummer, L.Y.L.; van Kempen, Z.L.E.; Killestein, J.; Volkers, A.G.; Tas, S.W.; Boekel, L.; et al. Humoral responses after second and third SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders on immunosuppressants: A cohort study. Lancet Rheumatol. 2022, 4, e338–e350. [Google Scholar] [CrossRef]
- Dayam, R.M.; Law, J.C.; Goetgebuer, R.L.; Chao, G.Y.; Abe, K.T.; Sutton, M.; Finkelstein, N.; Stempak, J.M.; Pereira, D.; Croitoru, D.; et al. Accelerated waning of immunity to SARS-CoV-2 mRNA vaccines in patients with immune-mediated inflammatory diseases. JCI Insight 2022, 7. [Google Scholar] [CrossRef]
- Jena, A.; Mishra, S.; Deepak, P.; Kumar, M.P.; Sharma, A.; Patel, Y.I.; Kennedy, N.A.; Kim, A.H.J.; Sharma, V.; Sebastian, S. Response to SARS-CoV-2 vaccination in immune mediated inflammatory diseases: Systematic review and meta-analysis. Autoimmun. Rev. 2022, 21, 102927. [Google Scholar] [CrossRef] [PubMed]
- Gosink, J. Investigation of SARS-CoV-2-Specific Immune Responses. Available online: https://clinlabint.com/investigation-of-sars-cov-2-specific-immune-responses/ (accessed on 30 January 2024).
- Galmiche, S.; Luong Nguyen, L.B.; Tartour, E.; De Lamballerie, X.; Wittkop, L.; Loubet, P.; Launay, O. Immunological and clinical efficacy of COVID-19 vaccines in immunocompromised populations: A systematic review. Clin. Microbiol. Infect. 2022, 28, 163–177. [Google Scholar] [CrossRef]
- König, M.; Lorentzen, Å.R.; Torgauten, H.M.; Tran, T.T.; Schikora-Rustad, S.; Vaage, E.B.; Mygland, Å.; Wergeland, S.; Aarseth, J.; Aaberge, I.A.S.; et al. Humoral immunity to SARS-CoV-2 mRNA vaccination in multiple sclerosis: The relevance of time since last rituximab infusion and first experience from sporadic revaccinations. J. Neurol. Neurosurg. Amp Psychiatry 2023, 94, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Simpson-Yap, S.; De Brouwer, E.; Kalincik, T.; Rijke, N.; Hillert, J.A.; Walton, C.; Edan, G.; Moreau, Y.; Spelman, T.; Geys, L.; et al. Associations of Disease-Modifying Therapies with COVID-19 Severity in Multiple Sclerosis. Neurology 2021, 97, e1870–e1885. [Google Scholar] [CrossRef] [PubMed]
- Achiron, A.; Mandel, M.; Dreyer-Alster, S.; Harari, G.; Magalashvili, D.; Sonis, P.; Dolev, M.; Menascu, S.; Flechter, S.; Falb, R.; et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211012835. [Google Scholar] [CrossRef]
- Baker, D.; Roberts, C.A.K.; Pryce, G.; Kang, A.S.; Marta, M.; Reyes, S.; Schmierer, K.; Giovannoni, G.; Amor, S. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin. Exp. Immunol. 2020, 202, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.I.; Ghany, S.; Gilkes, T.; Umakanthan, S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. 2022, 98, 389–394. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. Available online: https://ncv.kdca.go.kr/board.es?mid=a12101000000&bid=0031#content (accessed on 4 June 2023).
- Winkelmann, A.; Loebermann, M.; Barnett, M.; Hartung, H.-P.; Zettl, U.K. Vaccination and immunotherapies in neuroimmunological diseases. Nat. Rev. Neurol. 2022, 18, 289–306. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Leiva, D.; López-Contreras, J.; Moga, E.; Pla-Juncà, F.; Lynton-Pons, E.; Rojas-Garcia, R.; Turon-Sans, J.; Querol, L.; Olive, M.; Álvarez-Velasco, R. Immune response and safety of SARS-CoV-2 mRNA-1273 vaccine in patients with myasthenia gravis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200002. [Google Scholar] [CrossRef] [PubMed]
- Madelon, N.; Lauper, K.; Breville, G.; Sabater Royo, I.; Goldstein, R.; Andrey, D.O.; Grifoni, A.; Sette, A.; Kaiser, L.; Siegrist, C.A.; et al. Robust T-Cell Responses in Anti-CD20-Treated Patients Following COVID-19 Vaccination: A Prospective Cohort Study. Clin. Infect. Dis. 2022, 75, e1037–e1045. [Google Scholar] [CrossRef]
Total (N = 81) | pwNID (N = 25) | Healthy Controls (N = 56) | p Value | |
---|---|---|---|---|
Female, N (%) | 54 (66.7) | 21 (84.0) | 33 (58.9) | 0.027 |
Age at sampling, year (mean ± SD) | 41.3 ± 12.4 | 47.0 ± 12.1 | 38.7 ± 11.7 | 0.004 |
The time interval between vaccination and sampling, days (IQR) | 93.0 (82.5–114.5) | 84.0 (64.5–99.5) | 94.0 (89.0–164.0) | 0.037 |
Type of vaccination, N (%) | 0.004 | |||
mRNA vaccine † | 37 (45.7) | 18 (72.0) | 19 (33.9) | |
Vector vaccine ‡ | 22 (27.2) | 5 (20.0) | 17 (30.4) | |
Cross-vaccination | 22 (27.2) | 2 (8.0) | 20 (35.7) | |
Clinical diagnosis, N (%) | ||||
Myasthenia gravis | 7 (28.0) | |||
Multiple sclerosis | 10 (40.0) | |||
NMOSD | 6 (24.0) | |||
Optic neuritis | 1 (4.0) | |||
Polymyositis | 1 (4.0) | |||
Medication, N (%) | ||||
Azathioprine | 5 (20.0) | |||
Dimethyl fumarate | 2 (8.0) | |||
Teriflunomide | 6 (24.0) | |||
Mycophenolate mofetil | 2 (8.0) | |||
Tacrolimus | 4 (16.0) | |||
Rituximab | 5 (20.0) | |||
Fingolimod | 1 (4.0) | |||
COVID-19 antibody titer, RU/mL | 74.5 ± 48.8 | 58.4 ± 49.2 | 81.8 ± 47.3 | 0.045 |
Antibody positivity, N (%) | 69 (85.2) | 19 (76.0) | 50 (89.3) | 0.120 |
Univariate Test | Multivariate Test | |||||
---|---|---|---|---|---|---|
B | 95% CI | p Value | B | 95% CI | p Value | |
Age, per 1 year increase | −0.311 | −1.193~0.571 | 0.485 | −0.356 | −0.974~0.261 | 0.254 |
Time interval between last vaccination and blood sampling, per 1 day increase | −0.706 | −0.913~−0.498 | <0.001 | −0.723 | −0.926~−0.520 | <0.001 |
Use of immunomodulating agents | −23.410 | −46.333~−0.488 | 0.045 | −49.503 | −66.663~−32.344 | <0.001 |
Use of mRNA vaccines only | 33.896 | 13.455~54.338 | 0.001 | 31.507 | 14.602~48.411 | <0.001 |
Having booster vaccination | 26.882 | −9.024~62.789 | 0.140 | 9.547 | −17.654~36.748 | 0.487 |
No. | Age | Sex | Diagnosis | Days after Last RTX Injection | Cumulative Dose of RTX (mg) | Vaccine | Days after Last Vaccination | SARS-CoV-2 IgG Titer (RU/mL) | ||
---|---|---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | ||||||||
1 | 41 | Female | NMOSD | 56 | 2400 | BNT162b2 | BNT162b2 | 62 | 51.979 | |
2 | 46 | Female | NMOSD | 63 | 3000 | BNT162b2 | BNT162b2 | 93 | 0 | |
3 | 60 | Female | NMOSD | 84 | 5600 | ChAdOx1 | ChAdOx1 | 98 | 0 | |
4 | 41 | Female | NMOSD | 152 | 2400 | BNT162b2 | BNT162b2 | BNT162b2 | 80 | 46.326 |
5 | 60 | Female | NMOSD | 173 | 5600 | ChAdOx1 | ChAdOx1 | BNT162b2 | 82 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, H.; Seok, J.M.; Chung, Y.H.; Jeon, M.Y.; Lee, H.L.; Kwon, S.; Kim, S.; Min, J.-H.; Kim, B.J. Evaluation of SARS-CoV-2 Vaccine-Induced Antibody Responses in Patients with Neuroimmunological Disorders: A Real-World Experience. Diagnostics 2024, 14, 502. https://doi.org/10.3390/diagnostics14050502
Ju H, Seok JM, Chung YH, Jeon MY, Lee HL, Kwon S, Kim S, Min J-H, Kim BJ. Evaluation of SARS-CoV-2 Vaccine-Induced Antibody Responses in Patients with Neuroimmunological Disorders: A Real-World Experience. Diagnostics. 2024; 14(5):502. https://doi.org/10.3390/diagnostics14050502
Chicago/Turabian StyleJu, Hyunjin, Jin Myoung Seok, Yeon Hak Chung, Mi Young Jeon, Hye Lim Lee, Soonwook Kwon, Sunyoung Kim, Ju-Hong Min, and Byoung Joon Kim. 2024. "Evaluation of SARS-CoV-2 Vaccine-Induced Antibody Responses in Patients with Neuroimmunological Disorders: A Real-World Experience" Diagnostics 14, no. 5: 502. https://doi.org/10.3390/diagnostics14050502
APA StyleJu, H., Seok, J. M., Chung, Y. H., Jeon, M. Y., Lee, H. L., Kwon, S., Kim, S., Min, J. -H., & Kim, B. J. (2024). Evaluation of SARS-CoV-2 Vaccine-Induced Antibody Responses in Patients with Neuroimmunological Disorders: A Real-World Experience. Diagnostics, 14(5), 502. https://doi.org/10.3390/diagnostics14050502