On the Dependence of the Critical Success Index (CSI) on Prevalence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Method 1: CSI Recalculated via Bayes Formula for PPV
2.3. Method 2: CSI Recalculated via Its Relation to Sens, PPV, P, and Q
2.4. Method 3: CSI Recalculated via Both Rescaled PPV and Sens
3. Results
3.1. Method 1: CSI Recalculated via Bayes Formula for PPV
3.2. Method 2: CSI Recalculated via Its Relation to Sens, PPV, P, and Q
3.3. Method 3: CSI Recalculated via Rescaled PPV and Sens
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larner, A.J. The 2 × 2 Matrix: Contingency, Confusion and the Metrics of Binary Classification, 2nd ed.; Springer: London, UK, 2024. [Google Scholar]
- Aaberg, K.M.; Gunnes, N.; Bakken, I.J.; Lund Soraas, C.; Berntsen, A.; Magnus, P.; Lossius, M.I.; Stoltenberg, C.; Chin, R.; Suren, P. Incidence and Prevalence of Childhood Epilepsy: A Nationwide Cohort Study. Pediatrics 2017, 139, e20163908. [Google Scholar] [CrossRef]
- Bellini, I.; Policardo, L.; Zaccara, G.; Palumbo, P.; Rosati, E.; Torre, E.; Francesconi, P. Identification of prevalent patients with epilepsy using administrative data: The Tuscany experience. Neurol. Sci. 2017, 38, 571–577. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, L.S.; Yen, M.F.; Chen, H.H.; Liou, H.H. Geographic variation in the age- and gender-specific prevalence and incidence of epilepsy: Analysis of Taiwanese National Health Insurance-based data. Epilepsia 2012, 53, 283–290. [Google Scholar] [CrossRef]
- Christensen, J.; Vestergaard, M.; Olsen, J.; Sidenius, P. Validation of epilepsy diagnoses in the Danish National Hospital Register. Epilepsy Res. 2007, 75, 162–170. [Google Scholar] [CrossRef]
- Coulter, A.; Brown, S.; Daniels, A. Computer held chronic disease registers in general practice: A validation study. J. Epidemiol. Community Health 1989, 43, 25–28. [Google Scholar] [CrossRef]
- De Jesus-Alvelo, I.; Labovitz, D. How Reliable Are the ICD9-CM Billing Codes in the Administrative Data to Estimate the Risk of Seizures and Epilepsy after Stroke? Neurology 2013, 80. [Google Scholar] [CrossRef]
- Engeland, A.; Bjorge, T.; Daltveit, A.K.; Vollset, S.E.; Furu, K. Validation of disease registration in pregnant women in the Medical Birth Registry of Norway. Acta Obstet. Gynecol. Scand. 2009, 88, 1083–1089. [Google Scholar] [CrossRef]
- Foebel, A.D.; Hirdes, J.P.; Heckman, G.A.; Kergoat, M.J.; Patten, S.; Marrie, R.A. Diagnostic data for neurological conditions in interRAI assessments in home care, nursing home and mental health care settings: A validity study. BMC Health Serv. Res. 2013, 13, 457. [Google Scholar] [CrossRef]
- Fonferko-Shadrach, B.; Lacey, A.S.; White, C.P.; Powell, H.W.R.; Sawhney, I.M.S.; Lyons, R.A.; Smith, P.E.M.; Kerr, M.P.; Rees, M.I.; Pickrell, W.O. Validating epilepsy diagnoses in routinely collected data. Seizure 2017, 52, 195–198. [Google Scholar] [CrossRef]
- Franchi, C.; Giussani, G.; Messina, P.; Montesano, M.; Romi, S.; Nobili, A.; Fortino, I.; Bortolotti, A.; Merlino, L.; Beghi, E.; et al. Validation of healthcare administrative data for the diagnosis of epilepsy. J. Epidemiol. Community Health 2013, 67, 1019–1024. [Google Scholar] [CrossRef]
- Frost, F.J.; Hurley, J.S.; Petersen, H.V.; Gunter, M.J.; Gause, D. A comparison of two methods for estimating the health care costs of epilepsy. Epilepsia 2000, 41, 1020–1026. [Google Scholar] [CrossRef]
- Holden, E.W.; Grossman, E.; Nguyen, H.T.; Gunter, M.J.; Grebosky, B.; Von Worley, A.; Nelson, L.; Robinson, S.; Thurman, D.J. Developing a computer algorithm to identify epilepsy cases in managed care organizations. Dis. Manag. 2005, 8, 1–14. [Google Scholar] [CrossRef]
- Jette, N.; Reid, A.Y.; Quan, H.; Hill, M.D.; Wiebe, S. How accurate is ICD coding for epilepsy? Epilepsia 2010, 51, 62–69. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chung, S.E.; Kim, D.W.; Eun, S.H.; Kang, H.C.; Cho, Y.W.; Do Yi, S.; Kim, H.D.; Jung, K.Y.; Cheong, H.K.; et al. Estimating the Prevalence of Treated Epilepsy Using Administrative Health Data and Its Validity: ESSENCE Study. J. Clin. Neurol. 2016, 12, 434–440. [Google Scholar] [CrossRef]
- Marrie, R.A.; Yu, B.N.; Leung, S.; Elliott, L.; Caetano, P.; Warren, S.; Wolfson, C.; Patten, S.B.; Svenson, L.W.; Tremlett, H.; et al. The utility of administrative data for surveillance of comorbidity in multiple sclerosis: A validation study. Neuroepidemiology 2013, 40, 85–92. [Google Scholar] [CrossRef]
- Meeraus, W.H.; Petersen, I.; Chin, R.F.; Knott, F.; Gilbert, R. Childhood epilepsy recorded in primary care in the UK. Arch. Dis. Child 2013, 98, 195–202. [Google Scholar] [CrossRef]
- Moura, L.M.; Price, M.; Cole, A.J.; Hoch, D.B.; Hsu, J. Accuracy of claims-based algorithms for epilepsy research: Revealing the unseen performance of claims-based studies. Epilepsia 2017, 58, 683–691. [Google Scholar] [CrossRef]
- Parko, K.; Thurman, D.J. Prevalence of epilepsy and seizures in the Navajo Nation 1998–2002. Epilepsia 2009, 50, 2180–2185. [Google Scholar] [CrossRef]
- Pina-Garza, J.E.; Vekeman, F.; Cheng, W.; Tuttle, E.; Giguere-Duval, P.; Oganisian, A.; Damron, J.; Duh, M.S.; Shen, V.; Isojarvi, J.; et al. Development of a claims-based classifier to identify lennox-gastaut syndrome. Neurology 2015, 84. [Google Scholar] [CrossRef]
- Pugh, M.J.; Parko, K. Research using archival health care data: Let the buyer beware. Epilepsia 2015, 56, 321–322. [Google Scholar] [CrossRef]
- Pugh, M.J.; Van Cott, A.C.; Cramer, J.A.; Knoefel, J.E.; Amuan, M.E.; Tabares, J.; Ramsay, R.E.; Berlowitz, D.R.; Treatment In Geriatric Epilepsy Research, t. Trends in antiepileptic drug prescribing for older patients with new-onset epilepsy: 2000–2004. Neurology 2008, 70, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Rehman, R.; Everhart, A.; Frontera, A.T.; Kelly, P.R.; Lopez, M.; Riley, D.; Sajan, S.; Schooff, D.M.; Tran, T.T.; Husain, A.M. Implementation of an established algorithm and modifications for the identification of epilepsy patients in the veterans health administration. Epilepsy Res. 2016, 127, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.Y.; St Germaine-Smith, C.; Liu, M.; Sadiq, S.; Quan, H.; Wiebe, S.; Faris, P.; Dean, S.; Jette, N. Development and validation of a case definition for epilepsy for use with administrative health data. Epilepsy Res. 2012, 102, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, D.P.; Westendorp, R.G.; Kasteleijn-Nolst Trenite, D.G.; de Boer, A.; Herings, R.M. Dispensing epilepsy medication: A method of determining the frequency of symptomatic individuals with seizures. J. Clin. Epidemiol. 1997, 50, 1061–1068. [Google Scholar] [CrossRef]
- Syvertsen, M.; Nakken, K.O.; Edland, A.; Hansen, G.; Hellum, M.K.; Koht, J. Prevalence and etiology of epilepsy in a Norwegian county-A population based study. Epilepsia 2015, 56, 699–706. [Google Scholar] [CrossRef]
- Tan, M.; Wilson, I.; Braganza, V.; Ignatiadis, S.; Boston, R.; Sundararajan, V.; Cook, M.J.; D’Souza, W.J. Development and validation of an epidemiologic case definition of epilepsy for use with routinely collected Australian health data. Epilepsy Behav. 2015, 51, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.; Wang, M.; Jaakkimainen, R.L.; Butt, D.; Ivers, N.M.; Young, J.; Green, D.; Jette, N. Assessing the validity of using administrative data to identify patients with epilepsy. Epilepsia 2014, 55, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, M.; Carpay, J.A.; Sander, J.W.; Thijs, R.D. Validity of health insurance data to identify people with epilepsy. Epilepsy Res. 2018, 139, 102–106. [Google Scholar] [CrossRef]
- Williamson, T.; Green, M.E.; Birtwhistle, R.; Khan, S.; Garies, S.; Wong, S.T.; Natarajan, N.; Manca, D.; Drummond, N. Validating the 8 CPCSSN case definitions for chronic disease surveillance in a primary care database of electronic health records. Ann. Fam. Med. 2014, 12, 367–372. [Google Scholar] [CrossRef]
- Pickrell, W.O.; Lacey, A.S.; Bodger, O.G.; Demmler, J.C.; Thomas, R.H.; Lyons, R.A.; Smith, P.E.; Rees, M.I.; Kerr, M.P. Epilepsy and deprivation, a data linkage study. Epilepsia 2015, 56, 585–591. [Google Scholar] [CrossRef]
- Mbizvo, G.K.; Bennett, K.H.; Simpson, C.R.; Duncan, S.E.; Chin, R.F.M.; Larner, A.J. Using Critical Success Index or Gilbert Skill score as composite measures of positive predictive value and sensitivity in diagnostic accuracy studies: Weather forecasting informing epilepsy research. Epilepsia 2023, 64, 1466–1468. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.; Ly, A.; Schnier, C.; Rannikmae, K.; Bush, K.; Brayne, C.; Quinn, T.J.; Sudlow, C.L.M.; Group, U.K.B.N.O.; Dementias Platform, U.K. Identifying dementia cases with routinely collected health data: A systematic review. Alzheimer’s Dement. 2018, 14, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Horrocks, S.; Wilkinson, T.; Schnier, C.; Ly, A.; Woodfield, R.; Rannikmae, K.; Quinn, T.J.; Sudlow, C.L. Accuracy of routinely-collected healthcare data for identifying motor neurone disease cases: A systematic review. PLoS ONE 2017, 12, e0172639. [Google Scholar] [CrossRef] [PubMed]
- Kee, V.R.; Gilchrist, B.; Granner, M.A.; Sarrazin, N.R.; Carnahan, R.M. A systematic review of validated methods for identifying seizures, convulsions, or epilepsy using administrative and claims data. Pharmacoepidemiol. Drug Saf. 2012, 21, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Mbizvo, G.K.; Bennett, K.H.; Schnier, C.; Simpson, C.R.; Duncan, S.E.; Chin, R.F.M. The accuracy of using administrative healthcare data to identify epilepsy cases: A systematic review of validation studies. Epilepsia 2020, 61, 1319–1335. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Zhang, X.; Feng, C. Relations among sensitivity, specificity and predictive values of medical tests based on biomarkers. Gen. Psychiatr. 2021, 34, e100453. [Google Scholar] [CrossRef] [PubMed]
- Mbizvo, G.K.; Larner, A.J. Isolated headache is not a reliable indicator for brain cancer. Clin. Med. 2022, 22, 92–93. [Google Scholar] [CrossRef] [PubMed]
- Mbizvo, G.K.; Larner, A.J. Re: Realistic expectations are key to realising the benefits of polygenic scores. BMJ 2023. [Google Scholar] [CrossRef]
- Larner, A.J. Assessing cognitive screening instruments with the critical success index. Prog. Neurol. Psychiatry 2021, 25. in press. [Google Scholar] [CrossRef]
- Chae, S.; Shin, J.; Kwon, S.; Lee, S.; Kang, S.; Lee, D. PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network. Sci. Rep. 2021, 11, 11952. [Google Scholar] [CrossRef]
- Kim, R.S.; Moon, Y.J.; Gopalswamy, N.; Park, Y.D.; Kim, Y.H. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition. Space Weather 2014, 12, 246–256. [Google Scholar] [CrossRef]
- Pavlovic, R.; Chen, J.; Anderson, K.; Moran, M.D.; Beaulieu, P.A.; Davignon, D.; Cousineau, S. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season. J. Air Waste Manag. 2016, 66, 819–841. [Google Scholar] [CrossRef] [PubMed]
- El Jarroudi, M.; Kouadio, L.; Delfosse, P.; Tychon, B. Brown rust disease control in winter wheat: I. Exploring an approach for disease progression based on night weather conditions. Environ. Sci. Pollut. Res. 2014, 21, 4797–4808. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Kim, J.H. A New Application of Unsupervised Learning to Nighttime Sea Fog Detection. Asia-Pac. J. Atmos. Sci. 2018, 54, 527–544. [Google Scholar] [CrossRef] [PubMed]
- Skinner, P.S.; Wheatley, D.M.; Knopfmeier, K.H.; Reinhart, A.E.; Choate, J.J.; Jones, T.A.; Creager, G.J.; Dowell, D.C.; Alexander, C.R.; Ladwig, T.T.; et al. Object-Based Verification of a Prototype Warn-on-Forecast System. Weather Forecast. 2018, 33, 1225–1250. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Gorooh, V.A.; Shearer, E.J.; Sadeghi, M.; Sorooshian, S.; Hsu, K.L.; Bolvin, D.; Ralph, M.F. PERSIANN Dynamic Infrared-Rain Rate (PDIR-Now): A Near-Real-Time, Quasi-Global Satellite Precipitation Dataset. J. Hydrometeorol. 2020, 21, 2893–2906. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.R.; Li, Q.; Peng, X. MLC-LSTM: Exploiting the Spatiotemporal Correlation between Multi-Level Weather Radar Echoes for Echo Sequence Extrapolation. Sensors 2019, 19, 3988. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, G.K. Finley’s tornado predictions. Am. Meteorol. J. 1884, 1, 166–172. [Google Scholar]
- World Meteorological Organization. Forecast Verification for the African Severe Weather Forecasting Demonstration Projects; No. 1132; World Meteorological Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Jaccard, P. The Distribution of the Flora in the Alpine Zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Palmer, W.C.; Allen, R.A. Note on the Accuracy of Forecasts Concerning the Rain Problem; U.S. Weather Bureau manuscript: Washington, DC, USA, 1949. [Google Scholar]
- Donaldson, R.J.; Dyer, R.M.; Kraus, M.J. An objective evaluator of techniques for predicting severe weather events. In Preprints, 9th Conference on Severe Local Storms. Norman, Oklahoma; National Technical Information Service: Springfield, VI, USA, 1975; pp. 312–326. [Google Scholar]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef]
- Hand, D.J.; Christen, P.; Kirielle, N. F*: An interpretable transformation of the F-measure. Mach. Learn. 2021, 110, 451–456. [Google Scholar] [CrossRef]
- Space Weather Prediction Center. Forecast Verification Glossary; National Oceanic and Atmospheric Administration: Boulder, CO, USA, 2022. [Google Scholar]
- Mbizvo, G.K.; Simpson, C.R.; Duncan, S.E.; Chin, R.F.M.; Larner, A.J. Critical success index or F measure to validate the accuracy of administrative healthcare data identifying epilepsy in deceased adults in Scotland. Epilepsy Res. 2024, 199, 107275. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 1948, 5, 1–34. [Google Scholar]
- Van Rijsbergen, C.J. Foundation of evaluation. J. Doc. 1974, 30, 365–373. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Powers, D.M.W. What the F-measure doesn’t measure: Features, Flaws, Fallacies and Fixes. arXiv 2015, arXiv:1503.06410. [Google Scholar] [CrossRef]
- Jolliffe, I.T. The Dice co-efficient: A neglected verification performance measure for deterministic forecasts of binary events. Meteorol. Appl. 2016, 23, 89–90. [Google Scholar] [CrossRef]
- Larner, A.J. MACE for Diagnosis of Dementia and MCI: Examining Cut-Offs and Predictive Values. Diagnostics 2019, 9, 51. [Google Scholar] [CrossRef]
- Hsieh, S.; McGrory, S.; Leslie, F.; Dawson, K.; Ahmed, S.; Butler, C.R.; Rowe, J.B.; Mioshi, E.; Hodges, J.R. The Mini-Addenbrooke’s Cognitive Examination: A new assessment tool for dementia. Dement. Geriatr. Cogn. Disord. 2015, 39, 1–11. [Google Scholar] [CrossRef]
- Kraemer, H.C. Evaluating Medical Tests: Objective and Quantitative Guidelines; Sage Publications: New York, NY, USA, 1992. [Google Scholar]
- Leeflang, M.M.; Rutjes, A.W.; Reitsma, J.B.; Hooft, L.; Bossuyt, P.M. Variation of a test’s sensitivity and specificity with disease prevalence. CMAJ 2013, 185, E537–E544. [Google Scholar] [CrossRef] [PubMed]
MACE Cut-off ≤ 20/30 Sens = 0.912 | |||
---|---|---|---|
P | P′ | Recalculated PPV (from Equation (2)) | Recalculated CSI (from Equation (1)) |
0.1 | 0.9 | 0.257 | 0.251 |
0.2 | 0.8 | 0.437 | 0.420 |
0.3 | 0.7 | 0.571 | 0.542 |
0.4 | 0.6 | 0.675 | 0.634 |
0.5 | 0.5 | 0.757 | 0.705 |
0.6 | 0.4 | 0.824 | 0.763 |
0.7 | 0.3 | 0.879 | 0.810 |
0.8 | 0.2 | 0.926 | 0.850 |
0.9 | 0.1 | 0.966 | 0.883 |
P | P + Q | CSI (Equation (3)) Sens = 0.912 | CSI (Equation (4)) PPV = 0.356 |
---|---|---|---|
0.1 | 0.2 | 0.838 | 0.217 |
0.2 | 0.3 | 1.55 | 0.135 |
0.3 | 0.4 | 2.16 | 0.098 |
0.4 | 0.5 | 2.70 | 0.077 |
0.5 | 0.6 | 3.17 | 0.063 |
0.6 | 0.7 | 3.58 | 0.054 |
0.7 | 0.8 | 3.95 | 0.047 |
0.8 | 0.9 | 4.28 | 0.041 |
0.9 | 1.0 | 4.58 | 0.037 |
P | P + Q | CSI (Equation (3)) Sens = 0.912 | CSI (Equation (4)) PPV = 0.356 |
---|---|---|---|
0.1 | 0.6 | 0.179 | 0.421 |
0.2 | 0.7 | 0.352 | 0.341 |
0.3 | 0.8 | 0.520 | 0.286 |
0.4 | 0.9 | 0.682 | 0.247 |
0.5 | 1.0 | 0.838 | 0.217 |
0.6 | 1.1 | 0.990 | 0.193 |
0.7 | 1.2 | 1.14 | 0.174 |
0.8 | 1.3 | 1.28 | 0.159 |
0.9 | 1.4 | 1.42 | 0.146 |
P | P + Q | CSI (Equation (3)) Sens = 0.912 | CSI (Equation (4)) PPV = 0.356 |
---|---|---|---|
0.1 | 1.0 | 0.100 | 0.473 |
0.2 | 1.1 | 0.199 | 0.412 |
0.3 | 1.2 | 0.295 | 0.365 |
0.4 | 1.3 | 0.390 | 0.328 |
0.5 | 1.4 | 0.483 | 0.297 |
0.6 | 1.5 | 0.574 | 0.272 |
0.7 | 1.6 | 0.664 | 0.251 |
0.8 | 1.7 | 0.752 | 0.233 |
0.9 | 1.8 | 0.838 | 0.217 |
P | P′ | Recalculated PPV (from Equation (2)) | Recalculated Sens (from Equation (6)) | Recalculated CSI (from Equation (1)) |
---|---|---|---|---|
0.1 | 0.9 | 0.257 | 0.914 | 0.251 |
0.2 | 0.8 | 0.437 | 0.908 | 0.418 |
0.3 | 0.7 | 0.571 | 0.896 | 0.536 |
0.4 | 0.6 | 0.675 | 0.884 | 0.620 |
0.5 | 0.5 | 0.757 | 0.865 | 0.677 |
0.6 | 0.4 | 0.824 | 0.840 | 0.712 |
0.7 | 0.3 | 0.879 | 0.803 | 0.723 |
0.8 | 0.2 | 0.926 | 0.746 | 0.704 |
0.9 | 0.1 | 0.966 | 0.640 | 0.625 |
Unitary Measure | Dependence on P and Q |
---|---|
Critical success index (CSI) | CSI = 1/[(P + Q)/Sens.P] − 1 CSI = 1/[(P + Q)/PPV.Q] − 1 |
F measure (F) | F = 2.Sens.P/(Q + P) F = 2.PPV.Q/(Q + P) |
Youden index (Y) | Y = (Sens − Q)/P′ Y = (Spec − Q′)/P Y = (Q − Q2/P − P2).PSI |
Predictive summary index (PSI) | PSI = (PPV − P)/Q′ PSI = (NPV − P′)/Q PSI = (P − P2/Q − Q2).Y |
Matthews’ correlation coefficient (MCC) | MCC = √(P − P2/Q − Q2).Y MCC = √(Q − Q2/P − P2).PSI |
Harmonic mean of Y and PSI (HMYPSI) | HMYPSI = 2/(1/Y).[(1 + (Q − Q2)/(P − P2)] HMYPSI= 2/(1/PSI).[(P − P2)/(Q − Q2) + 1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbizvo, G.K.; Larner, A.J. On the Dependence of the Critical Success Index (CSI) on Prevalence. Diagnostics 2024, 14, 545. https://doi.org/10.3390/diagnostics14050545
Mbizvo GK, Larner AJ. On the Dependence of the Critical Success Index (CSI) on Prevalence. Diagnostics. 2024; 14(5):545. https://doi.org/10.3390/diagnostics14050545
Chicago/Turabian StyleMbizvo, Gashirai K., and Andrew J. Larner. 2024. "On the Dependence of the Critical Success Index (CSI) on Prevalence" Diagnostics 14, no. 5: 545. https://doi.org/10.3390/diagnostics14050545
APA StyleMbizvo, G. K., & Larner, A. J. (2024). On the Dependence of the Critical Success Index (CSI) on Prevalence. Diagnostics, 14(5), 545. https://doi.org/10.3390/diagnostics14050545