Cardiac Magnetic Resonance Imaging Based Ischemic Injury Pattern in Patients with Acute Myocardial Infarction Sensu Left Ventricular Global Systolic Function
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bozkurt, B.; Ahmad, T.; Alexander, K.M.; Baker, W.L.; Bosak, K.; Breathett, K.; Fonarow, G.C.; Heidenreich, P.; Ho, J.E.; Hsich, E.; et al. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America. J. Card. Fail 2023, 29, 1412–1451. [Google Scholar] [CrossRef]
- Sulo, G.; Igland, J.; Vollset, S.E.; Nygård, O.; Ebbing, M.; Sulo, E.; Egeland, G.M.; Tell, G.S. Heart Failure Complicating Acute Myocardial Infarction; Burden and Timing of Occurrence: A Nation-wide Analysis Including 86,771 Patients from the Cardiovascular Disease in Norway (CVDNOR) Project. J. Am. Heart Assoc. 2016, 5, e002667. [Google Scholar] [CrossRef] [PubMed]
- Krikunov, P.V.; Vasyuk, Y.A.; Krikunova, O.V. Predictive value of echocardiography in post myocardial infarction setting. Part 1. Russ. J. Cardiol. 2017, 12, 120–128. [Google Scholar] [CrossRef]
- Hamilton, E.; Desta, L.; Lundberg, A.; Alfredsson, J.; Christersson, C.; Erlinge, D.; Kellerth, T.; Lindmark, K.; Omerovic, E.; Reitan, C.; et al. Prevalence and prognostic impact of left ventricular systolic dysfunction or pulmonary congestion after acute myocardial infarction. ESC Heart Fail 2023, 10, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Khaled, S.; Shalaby, G. Severe Left Ventricular Dysfunction Earlier after Acute Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention: Predictors and In-Hospital Outcome- A Middle Eastern Tertiary Center Experience. J. Saudi Heart Assoc. 2023, 34, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Im, M.S.; Kim, H.L.; Kim, S.H.; Lim, W.H.; Seo, J.B.; Chung, W.Y.; Zo, J.H.; Kim, M.A.; Park, K.W.; Koo, B.K.; et al. Other Korea Acute Myocardial Infarction Registry (KAMIR) and Korea Working Group on Myocardial Infarction (KorMI) Investigators. Different prognostic factors according to left ventricular systolic function in patients with acute myocardial infarction. Int. J. Cardiol. 2016, 221, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Pozo, E.; Sanz, J. Imaging techniques in the evaluation of post-infarction function and scar. Rev. Esp. Cardiol. 2014, 67, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Souto, A.L.M.; Souto, R.M.; Teixeira, I.C.R.; Nacif, M.S. Myocardial Viability on Cardiac Magnetic Resonance. Arq. Bras. Cardiol. 2017, 108, 458–469. [Google Scholar] [CrossRef]
- Garcia, M.J.; Kwong, R.Y.; Scherrer-Crosbie, M.; Taub, C.C.; Blankstein, R.; Lima, J.; Bonow, R.O.; Eshtehardi, P.; Bois, J.P. American Heart Association Council on Cardiovascular Radiology and Intervention and Council on Clinical Cardiology. State of the Art: Imaging for Myocardial Viability: A Scientific Statement from the American Heart Association. Circ. Cardiovasc. Imaging 2020, 13, e000053. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef]
- Mochula, O.V.; Sulejmanova, A.S.; Sukhareva, A.E.; Ryabov, V.V.; Zavadovsky, K.V. Relationship between the degree of myocardial damage according to contrast-enhanced cardiac magnetic resonance imaging and laboratory data in patients with acute myocardial infarction. Russ. J. Cardiol. 2022, 27, 5226. [Google Scholar] [CrossRef]
- Ibanez, B.; Aletras, A.H.; Arai, A.E.; Arheden, H.; Bax, J.; Berry, C.; Bucciarelli-Ducci, C.; Croisille, P.; Dall’Armellina, E.; Dharmakumar, R.; et al. Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2019, 74, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Furtado, R.H.M.; Juliasz, M.G.; Chiu, F.Y.J.; Bastos, L.B.C.; Dalcoquio, T.F.; Lima, F.G.; Rosa, R.; Caporrino, C.A.; Bertolin, A.; Genestreti, P.R.R.; et al. Long-term mortality after acute coronary syndromes among patients with normal, mildly reduced, or reduced ejection fraction. ESC Heart Fail 2023, 10, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Bulluck, H.; Dharmakumar, R.; Arai, A.E.; Berry, C.; Hausenloy, D.J. Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation 2018, 137, 1949–1964. [Google Scholar] [CrossRef] [PubMed]
- Locca, D.; Bucciarelli-Ducci, C.; Ferrante, G.; La Manna, A.; Keenan, N.G.; Grasso, A.; Barlis, P.; Del Furia, F.; Prasad, S.K.; Kaski, J.C.; et al. New universal definition of myocardial infarction applicable after complex percutaneous coronary interventions? JACC Cardiovasc. Interv. 2010, 3, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Robbers, L.F.H.J.; Delewi, R.; Nijveldt, R.; Hirsch, A.; Beek, A.M.; Kemme, M.J.B.; van Beurden, Y.; van der Laan, A.M.; van der Vleuten, P.A.; Tio, R.A.; et al. Myocardial infarct heterogeneity assessment by late gadolinium enhancement cardiovascular magnetic resonance imaging shows predictive value for ventricular arrhythmia development after acute myocardial infarction. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 1150–1158. [Google Scholar] [CrossRef]
- Jensch, P.J.; Stiermaier, T.; Reinstadler, S.J.; Feistritzer, H.J.; Desch, S.; Fuernau, G.; de Waha-Thiele, S.; Thiele, H.; Eitel, I. Prognostic relevance of peri-infarct zone measured by cardiovascular magnetic resonance in patients with ST-segment elevation myocardial infarction. Int. J. Cardiol. 2022, 347, 83–88. [Google Scholar] [CrossRef]
- Jones, R.E.; Zaidi, H.A.; Hammersley, D.J.; Hatipoglu, S.; Owen, R.; Balaban, G.; de Marvao, A.; Simard, F.; Lota, A.S.; Mahon, C.; et al. Comprehensive Phenotypic Characterization of Late Gadolinium Enhancement Predicts Sudden Cardiac Death in Coronary Artery Disease. JACC Cardiovasc. Imaging 2023, 16, 628–638. [Google Scholar] [CrossRef]
- Yan, A.T.; Shayne, A.J.; Brown, K.A.; Gupta, S.N.; Chan, C.W.; Luu, T.M.; Di Carli, M.F.; Reynolds, H.G.; Stevenson, W.G.; Kwong, R.Y. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 2006, 114, 32–39. [Google Scholar] [CrossRef]
- Wu, K.C. CMR of microvascular obstruction and hemorrhage in myocardial infarction. J. Cardiovasc. Magn. Reson. 2012, 14, 68. [Google Scholar] [CrossRef]
- Niccoli, G.; Scalone, G.; Lerman, A.; Crea, F. Coronary microvascular obstruction in acute myocardial infarction. Eur. Heart J. 2016, 37, 1024–1033. [Google Scholar] [CrossRef]
- Ma, M.; Diao, K.Y.; Yang, Z.G.; Zhu, Y.; Guo, Y.K.; Yang, M.X.; Zhang, Y.; He, Y. Clinical associations of microvascular obstruction and intramyocardial hemorrhage on cardiovascular magnetic resonance in patients with acute ST segment elevation myocardial infarction (STEMI): An observational cohort study. Medicine 2018, 97, e11617. [Google Scholar] [CrossRef]
- Galea, N.; Dacquino, G.M.; Ammendola, R.M.; Coco, S.; Agati, L.; De Luca, L.; Carbone, I.; Fedele, F.; Catalano, C.; Francone, M. Microvascular obstruction extent predicts major adverse cardiovascular events in patients with acute myocardial infarction and preserved ejection fraction. Eur. Radiol. 2019, 29, 2369–2377. [Google Scholar] [CrossRef]
- Symons, R.; Pontone, G.; Schwitter, J.; Francone, M.; Iglesias, J.F.; Barison, A.; Zalewski, J.; de Luca, L.; Degrauwe, S.; Claus, P.; et al. Long-Term Incremental Prognostic Value of Cardiovascular Magnetic Resonance After ST-Segment Elevation Myocardial Infarction: A Study of the Collaborative Registry on CMR in STEMI. JACC Cardiovasc. Imaging 2018, 11, 813–825. [Google Scholar] [CrossRef]
- Wu, Z.; Jin, X.; Tudahun, I.; Wu, S.; Chen, M.; Tang, J. Intramyocardial Hemorrhage Leads to Higher MACE Rate by Increasing Myocardial Infarction Volume in Patients with STEMI. Int. J. Gen. Med. 2024, 17, 275–285. [Google Scholar] [CrossRef]
- Abdel-Aty, H.; Boyé, P.; Zagrosek, A.; Wassmuth, R.; Kumar, A.; Messroghli, D.; Bock, P.; Dietz, R.; Friedrich, M.G.; Schulz-Menger, J. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J. Am. Coll. Cardiol. 2005, 45, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Vyas, R.; Changal, K.H.; Bhuta, S.; Pasadyn, V.; Katterle, K.; Niedoba, M.J.; Vora, K.; Dharmakumar, R.; Gupta, R. Impact of intramyocardial hemorrhage on clinical outcomes in ST-elevation myocardial infarction: A systematic review and meta-analysis. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 1100444. [Google Scholar] [CrossRef]
- Alekseeva, Y.V.; Vyshlov, E.V.; Mochula, O.V.; Ussov, V.Y.; Ryabov, V.V. Effect of intramyocardial haemorrhage on structural and functional echocardiographic parameters of myocardium after ST-segment elevation myocardial infarction with. Russ. J. Cardiol. 2020, 25, 4032. [Google Scholar] [CrossRef]
- Pontone, G.; Guaricci, A.I.; Andreini, D.; Ferro, G.; Guglielmo, M.; Baggiano, A.; Fusini, L.; Muscogiuri, G.; Lorenzoni, V.; Mushtaq, S.; et al. Prognostic stratification of patients with ST-segment–elevation myocardial infarction: A cardiac magnetic resonance study. Circ. Cardiovasc. Imaging 2017, 10, e006428. [Google Scholar] [CrossRef]
- Demirkiran, A.; Beijnink, C.W.H.; Kloner, R.A.; Hopman, L.H.G.A.; van der Hoeven, N.W.; van Pouderoijen, N.; Janssens, G.N.; Everaars, H.; van Leeuwen, M.A.H.; van Rossum, A.C.; et al. Impact of symptom-to-reperfusion-time on transmural infarct extent and left ventricular strain in patients with ST-segment elevation myocardial infarction: A 3D view on the wavefront phenomenon. Eur. Heart J. Cardiovasc. Imaging 2024, 25, 347–355. [Google Scholar] [CrossRef]
- Kontsevaya, A.V.; Myrzamatova, A.O.; Drapkina, O.M. Biomarkers in predicting cardiovascular risk: New prospects of troponin I. Cardiovasc. Ther. Prev. 2020, 19, 2584. [Google Scholar] [CrossRef]
- Salatzki, J.; Giannitsis, E.; Hegenbarth, A.; Mueller-Hennessen, M.; André, F.; Katus, H.A.; Frey, N.; Biener, M. Correlation of serial high-sensitivity cardiac Troponin T values to infarct mass determined by cardiac magnetic resonance imaging: A validation study. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Tiller, C.; Reindl, M.; Holzknecht, M.; Klapfer, M.; Beck, A.; Henninger, B.; Mayr, A.; Klug, G.; Reinstadler, S.J.; Metzler, B. Biomarker assessment for early infarct size estimation in ST-elevation myocardial infarction. Eur. J. Intern. Med. 2019, 64, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Bruder, O.; Jensen, C.; Jochims, M.; Farazandeh, M.; Barkhausen, J.; Schlosser, T.; Sabin, G.V.; Hunold, P. Relation of B-type natriuretic peptide (BNP) and infarct size as assessed by contrast-enhanced MRI. Int. J. Cardiol. 2010, 144, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Rahsepar, A.A.; Bluemke, D.A.; Habibi, M.; Liu, K.; Kawel-Boehm, N.; Ambale-Venkatesh, B.; Fernandes, V.R.S.; Rosen, B.D.; Lima, J.A.C.; Carr, J.C. Association of Pro-B-Type Natriuretic Peptide with Cardiac Magnetic Resonance-Measured Global and Regional Cardiac Function and Structure Over 10 Years: The MESA Study. J. Am. Heart Assoc. 2021, 10, e019243. [Google Scholar] [CrossRef]
Parameter | LVEF ≥ 50% (n = 74) | LVEF 40–49% (n = 27) | LVEF < 40% (n = 8) | p |
---|---|---|---|---|
Group 1 | Group 2 | Group 3 | ||
Age, years | 57 (50; 61) | 58 (54; 62) | 61.8 ± 6.0 | p1–3 = 0.013 |
Male/female, n (%) | 62/12 (84/16) | 27/0 (100/0) | 8/0 (100/0) | p1–2 = 0.026 |
Body mass index, kg/m2 | 27.9 ± 3.9 | 27.5 ± 3.9 | 26.5 (23.3; 29.2) | ns |
Systolic blood pressure, mm Hg | 130 (122; 135) | 131.5 ± 15.4 | 129.3 ± 24.8 | ns |
Diastolic blood pressure, mm Hg | 80 (78; 90) | 79.8 ± 9.4 | 82.7 ± 14.7 | ns |
Anamnesis of CAD, n (%) | 19 (25.7) | 8 (29.6) | 2 (25.0) | ns |
Arterial hypertension, n (%) | 62 (83.8) | 24 (88.9) | 6 (75.0) | ns |
SYNTAX score, points | 15.3 ± 7.1 | 19.7 ± 10.3 | 21.0 ± 9.9 | p1–2 = 0.017 p1–3 = 0.042 |
Infarct-related artery: | ||||
ADA, n (%) | 32 (43.2) | 15 (55.6) | 7 (87.5) | p1–3 = 0.017 |
RCA, n (%) | 28 (37.8) | 7 (25.9) | 0 (0) | p1–3 = 0.032 |
Other artery, n (%) | 14 (19.0) | 5 (18.5) | 1 (12.5) | ns |
Pharmaco-invasive revascularization/primary PCI, n (%) | 27/47 (36.5/63.5) | 8/19 (29.6/70.4) | 6/2(75.0/25.0) | p1–3 = 0.035 p2–3 = 0.021 |
Pain-to-needle time (pharmaco-invasive revascularization), min | 90 (50; 120) | 135.0 ± 79.3 | 200.0 (120; 270) | p1–3 = 0.004 |
Pain-to-balloon time (pharmaco-invasive revascularization/Primary PCI), min | 223 (145; 330) | 305 (210; 560) | 305.0 (227.5; 432.5) | p1–2 = 0.019 |
Parameter | LVEF ≥ 50% (n = 74) | LVEF 40–49% (n = 27) | LVEF < 40% (n = 8) | p1–2 | p1–3 | p2–3 |
---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | ||||
Standard cardiac MRI indicators | ||||||
EDVI, mL/m2 | 76.8 (67.0; 86.0) | 79.6 ± 14.8 | 90.7 ± 24.0 | 0.620 | 0.169 | 0.069 |
ESVI, mL/m2 | 33.4 (28.3; 38.3) | 41.6 ± 10.1 | 58.8 ± 18.8 | <0.001 | <0.001 | 0.002 |
LVMI, g/m2 | 57.9 (51.9; 69.5) | 60.1 (56.1; 71.8) | 73.9 ± 17.6 | 0.0936 | 0.018 | 0.121 |
LVEF, % | 55.5 (52.6; 59.2) | 47.0 (44.1; 49.0) | 37.4 (34.7; 38.3) | <0.001 | <0.001 | <0.001 |
LCI | 1.4 (1.1; 1.6) | 1.9 ± 0.4 | 2.6 ± 0.4 | <0.001 | <0.001 | <0.001 |
Cardiac MRI-based parameters of ischemic injury | ||||||
Scar tissue mass, g | 15.7 (5.6; 24.7) | 41.1 (13.6; 56.4) | 62.5 ± 35.9 | <0.001 | <0.001 | 0.036 |
PIZ mass, g | 10.4 (5.8; 16.5) | 17.6 ± 7.7 | 17.0 ± 8.0 | <0.001 | 0.089 | 0.839 |
Ischemic injury mass, g | 27.8 (10.8; 39.8) | 53.9 ± 24.4 | 79.5 ± 35.1 | <0.001 | <0.001 | 0.025 |
MVO mass, g | 0.0 (0.0; 1.0) | 1.0 (0.0; 3.1) | 7.3 ± 6.8 | 0.028 | <0.001 | 0.011 |
IMH mass, g | 0.0 (0.0; 0,1) | 0.0 (0.0; 0.5) | 0.0 (0.0; 3.5) | 0.221 | 0.167 | 0.421 |
GCI, % | 17.7 (11.8; 29.4) | 34.2 ± 12.2 | 64.0 (41.2; 66.9) | <0.001 | <0.001 | 0.007 |
Parameter | β | b | p |
---|---|---|---|
Gender | 0.242 | 0.361 | 0.011 |
Pain-to-needle time, min | 0.482 | 0.003 | 0.002 |
Pain-to-balloon time, min | 0.195 | 0.001 | 0.042 |
SYNTAX score, points | 0.262 | 0.015 | 0.006 |
Lesion of ADA, RCA, or any other artery as infarct-related one | 0.197 | 0.104 | 0.039 |
ESVI, mL/m2 | 0.417 | 0.016 | <0.001 |
LVMI, g/m2 | 0.230 | 0.008 | 0.016 |
LCI | 0.574 | 0.017 | <0.001 |
Scar tissue mass, g | 0.549 | 0.012 | <0.001 |
Scar zone of the total myocardium mass, % | 0.547 | 0.017 | <0.001 |
PIZ mass, g | 0.329 | 0.019 | <0.001 |
PIZ of the total myocardium mass, % | 0.282 | 0.022 | 0.003 |
Ischemic injury mass, g | 0.548 | 0.009 | <0.001 |
Ischemic injury of the total myocardium mass, % | 0.529 | 0.013 | <0.001 |
Presence of MVO | 0.261 | 0.244 | 0.006 |
MVO mass, g | 0.382 | 0.065 | <0.001 |
MVO of the scar tissue mass, % | 0.259 | 0.019 | 0.006 |
IMH mass, g | 0.266 | 0.120 | 0.005 |
Global contrast index, % | 0.664 | 0.628 | <0.001 |
HsTI, pg/mL | 0.237 | 0.001 | 0.006 |
NT-proBNP, pg/mL | 0.325 | 0.001 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salyamova, L.; Oleynikov, V.; Donetskaya, N.; Vdovkin, A.; Chernova, A.; Avdeeva, I. Cardiac Magnetic Resonance Imaging Based Ischemic Injury Pattern in Patients with Acute Myocardial Infarction Sensu Left Ventricular Global Systolic Function. Diagnostics 2024, 14, 588. https://doi.org/10.3390/diagnostics14060588
Salyamova L, Oleynikov V, Donetskaya N, Vdovkin A, Chernova A, Avdeeva I. Cardiac Magnetic Resonance Imaging Based Ischemic Injury Pattern in Patients with Acute Myocardial Infarction Sensu Left Ventricular Global Systolic Function. Diagnostics. 2024; 14(6):588. https://doi.org/10.3390/diagnostics14060588
Chicago/Turabian StyleSalyamova, Lyudmila, Valentin Oleynikov, Natalia Donetskaya, Alexander Vdovkin, Angelina Chernova, and Irina Avdeeva. 2024. "Cardiac Magnetic Resonance Imaging Based Ischemic Injury Pattern in Patients with Acute Myocardial Infarction Sensu Left Ventricular Global Systolic Function" Diagnostics 14, no. 6: 588. https://doi.org/10.3390/diagnostics14060588
APA StyleSalyamova, L., Oleynikov, V., Donetskaya, N., Vdovkin, A., Chernova, A., & Avdeeva, I. (2024). Cardiac Magnetic Resonance Imaging Based Ischemic Injury Pattern in Patients with Acute Myocardial Infarction Sensu Left Ventricular Global Systolic Function. Diagnostics, 14(6), 588. https://doi.org/10.3390/diagnostics14060588