Ultrasound Biomicroscopy as a Novel, Potential Modality to Evaluate Anterior Segment Ophthalmic Structures during Spaceflight: An Analysis of Current Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Current Clinical Application of UBM
4. Logistics of Ultrasound Biomicroscopy in Spaceflight
5. UBM for Assessment of Pressure-Related Changes to the Eye
6. Cornea Risks during Spaceflight
7. Cataract Risks during Spaceflight
8. Intraocular Lenses in Spaceflight
9. Future Directions
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, A.G.; Tarver, W.J.; Mader, T.H.; Gibson, C.R.; Hart, S.F.; Otto, C.A. Neuro-Ophthalmology of Space Flight. J. Neuro-Ophthalmol. Off. J. N. Am. Neuro-Ophthalmol. Soc. 2016, 36, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.H.; Gibson, C.R.; Pass, A.F.; Kramer, L.A.; Lee, A.G.; Fogarty, J.; Tarver, W.J.; Dervay, J.P.; Hamilton, D.R.; Sargsyan, A.; et al. Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long-duration Space Flight. Ophthalmology 2011, 118, 2058–2069. [Google Scholar] [CrossRef] [PubMed]
- Stenger, M.B.; Tarver, W.J.; Brunstetter, T.; Gibson, C.R.; Laurie, S.S.; Lee, S.; Macias, B.R.; Pardon, L.P.; Greenwald, S.H.; Marshall-Goebel, K.; et al. Evidence Report: Risk of Spaceflight Associated Neuro-Ocular Syndrome (SANS); National Aeronautics and Space Administration. Lyndon B. Johnson Space Center: Houston, TX, USA, 2017. [Google Scholar]
- Lee, A.G.; Mader, T.H.; Gibson, C.R.; Tarver, W.; Rabiei, P.; Riascos, R.F.; Galdamez, L.A.; Brunstetter, T. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update. Npj Microgravity 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Pavlin, C.J.; Sherar, M.D.; Foster, F.S. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology 1990, 97, 244–250. [Google Scholar] [CrossRef]
- Ishikawa, H.; Schuman, J.S. Anterior segment imaging: Ultrasound biomicroscopy. Ophthalmol. Clin. N. Am. 2004, 17, 7–20. [Google Scholar] [CrossRef]
- Tandon, A.; Watson, C.; Ayyala, R. Ultrasound biomicroscopy measurement of Schlemm’s canal in pediatric patients with and without glaucoma. J. AAPOS Off. Publ. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2017, 21, 234–237. [Google Scholar] [CrossRef]
- Yan, X.; Li, M.; Chen, Z.; Zhu, Y.; Song, Y.; Zhang, H. Schlemm’s Canal and Trabecular Meshwork in Eyes with Primary Open Angle Glaucoma: A Comparative Study Using High-Frequency Ultrasound Biomicroscopy. PLoS ONE 2016, 11, e0145824. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.; Inferrera, L.; De Giacinto, C.; D’Aloisio, R.; Beccastrini, A.; Vinciguerra, A.L.; Perrotta, A.A.; Toro, M.D.; Zweifel, S.; Tognetto, D. Changes in Anterior Segment Morphology and Intraocular Pressure after Cataract Surgery in Non-glaucomatous Eyes. Klin. Monatsbl Augenheilkd. 2023, 240, 449–455. [Google Scholar] [CrossRef]
- D’Andrea, L.; Montorio, D.; Concilio, M.; Giordano, M.; Cennamo, G.; Costagliola, C. Anterior segment-optical coherence tomography and diabetic retinopathy: Could it be an early biomarker? Photodiagnosis Photodyn. Ther. 2022, 39, 102995. [Google Scholar] [CrossRef]
- Elfalah, M.; Mohammad, M.; Toro, M.D.; Abu-Yaghi, N.; Rejdak, R.; Yousef, Y.A. Anterior Ocular Biometrics as Measured by Ultrasound Biomicroscopy. Healthcare 2022, 10, 1188. [Google Scholar] [CrossRef]
- Yousef, Y.A.; Mohammad, M.; AlNawaiseh, I.; AlJabari, R.; Toro, M.D.; Gharaibeh, A.; Rejdak, R.; Nowomiejska, K.; Zweifel, S.; Avitabile, T.; et al. Ultrasound Biomicroscopy Measurements of the Normal Thickness for the Ciliary Body and the Iris in a Middle East Population. Clin. Ophthalmol. Auckl. NZ 2022, 16, 101–109. [Google Scholar] [CrossRef]
- Primary vs. Secondary Angle Closure Glaucoma-EyeWiki [Internet]. Available online: https://eyewiki.aao.org/Primary_vs._Secondary_Angle_Closure_Glaucoma (accessed on 27 January 2024).
- Sener, H.; Gulmez Sevim, D.; Evereklioglu, C.; Uludag, M.T.; Gunay Sener, A.B.; Polat, O.A.; Arda, H.; Horozoglu, F. Efficacy and Safety of Different Types of Intraocular Pressure-Lowering Surgeries in Patients with Primary Angle Closure (PAC) or PAC Glaucoma: Systematic Review and Network Meta-Analysis of Randomized Clinical Trials. Semin. Ophthalmol. 2024, 39, 17–26. [Google Scholar] [CrossRef]
- Gong, H.; Dong, X.; Zheng, B.; Gao, X.; Chen, L.; Zhang, S.; Zuo, C.; Lin, M. Ultrasound Biomicroscopy Might Predict the Outcome of Phacoemulsification-Visco Dissection in Medically Controlled Primary Angle-Closure Glaucoma Eye with Extensive Peripheral Anterior Synechia. Front. Med. 2021, 8, 705864. [Google Scholar] [CrossRef] [PubMed]
- Barkana, Y.; Dorairaj, S.K.; Gerber, Y.; Liebmann, J.M.; Ritch, R. Agreement between gonioscopy and ultrasound biomicroscopy in detecting iridotrabecular apposition. Arch. Ophthalmol. 2007, 125, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wang, D.; Jiang, Y. Overview of Ultrasound Biomicroscopy. J. Curr. Glaucoma Pract. 2012, 6, 25–53. [Google Scholar] [CrossRef] [PubMed]
- Pavlin, C.J.; Harasiewicz, K.; Foster, F.S. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am. J. Ophthalmol. 1992, 113, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Esaki, K.; Liebmann, J.M.; Uji, Y.; Ritch, R. Ultrasound biomicroscopy dark room provocative testing: A quantitative method for estimating anterior chamber angle width. Jpn. J. Ophthalmol. 1999, 43, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Dada, T.; Mohan, S.; Sihota, R.; Gupta, R.; Gupta, V.; Pandey, R.M. Comparison of ultrasound biomicroscopic parameters after laser iridotomy in eyes with primary angle closure and primary angle closure glaucoma. Eye 2007, 21, 956–961. [Google Scholar] [CrossRef]
- Pierro, L.; Conforto, E.; Resti, A.G.; Lattanzio, R. High-frequency ultrasound biomicroscopy versus ultrasound and optical pachymetry for the measurement of corneal thickness. Ophthalmologica 1998, 212 (Suppl. 1), 1–3. [Google Scholar] [CrossRef] [PubMed]
- Deramo, V.A.; Shah, G.K.; Baumal, C.R.; Fineman, M.S.; Corrêa, Z.M.; Benson, W.E.; Rapuano, C.J.; Cohen, E.J.; Augsburger, J.J. Ultrasound biomicroscopy as a tool for detecting and localizing occult foreign bodies after ocular trauma. Ophthalmology 1999, 106, 301–305. [Google Scholar] [CrossRef]
- Bhatt, D.C. Ultrasound biomicroscopy: An overview. J. Clin. Ophthalmol. Res. 2014, 2, 115. [Google Scholar] [CrossRef]
- Maharana, P.K.; Sharma, N.; Vajpayee, R.B. Acute corneal hydrops in keratoconus. Indian J. Ophthalmol. 2013, 61, 461–464. [Google Scholar] [PubMed]
- Real-Time Intraoperative Ultrasound Biomicroscopy for Determining Graft Orientation during Descemet’s Membrane Endothelial Keratoplasty-PubMed [Internet]. Available online: https://pubmed.ncbi.nlm.nih.gov/32578923/ (accessed on 10 January 2024).
- Avitabile, T.; Marano, F.; Castiglione, F.; Reibaldi, A. Keratoconus Staging with Ultrasound Biomicroscopy. Ophthalmologica 1998, 212 (Suppl. 1), 10–12. [Google Scholar] [CrossRef] [PubMed]
- Pavlin, C.J.; McWhae, J.A.; McGowan, H.D.; Foster, F.S. Ultrasound Biomicroscopy of Anterior Segment Tumors. Ophthalmology 1992, 99, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; He, S.; Hu, L.; Zhu, J.; Xie, W.; Xiang, D. Ultrasound Biomicroscopy for the Assessment of Postoperative Complications after Congenital Cataract Surgery. Quant. Imaging Med. Surg. 2021, 11, 1483. [Google Scholar] [CrossRef] [PubMed]
- Silverman, R.H. High-resolution ultrasound imaging of the eye—A review. Clin. Experiment Ophthalmol. 2009, 37, 54–67. [Google Scholar] [CrossRef]
- Oliveira, C.; Liebmann, J.M.; Dodick, J.M.; Topilow, H.; Cykiert, R.; Ritch, R. Identification of retained nucleus fragment in the posterior chamber using ultrasound biomicroscopy. Am. J. Ophthalmol. 2006, 141, 964–966. [Google Scholar] [CrossRef]
- Landau, I.M.; Laurell, C.G. Ultrasound biomicroscopy examination of intraocular lens haptic position after phacoemulsification with continuous curvilinear capsulorhexis and extracapsular cataract extraction with linear capsulotomy. Acta Ophthalmol. Scand. 1999, 77, 394–396. [Google Scholar] [CrossRef]
- Martin, D.S.; South, D.A.; Garcia, K.M.; Arbeille, P. Ultrasound in space. Ultrasound Med. Biol. 2003, 29, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Themes UFO. Ultrasound imaging in space flight [Internet]. Radiol. Key 2016. Available online: https://radiologykey.com/ultrasound-imaging-in-space-flight/ (accessed on 27 January 2024).
- Advanced Diagnostic Ultrasound in Microgravity (ADUM) Experiment [Internet]. Space Foundation. Available online: https://www.spacefoundation.org/space_technology_hal/advanced-diagnostic-ultrasound-in-microgravity-adum-experiment/ (accessed on 27 January 2024).
- Cho, H.; Jun, R.; Choi, K. Ultrasound Biomicroscopy (UBM Plus, Model P45, Pardigm®) Intraobserver Reproducibility and Agreement of Measurements. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3606. [Google Scholar]
- Scott, J.M.; Downs, M.; Martin, D.S.; Hougland, E.; Sarmiento, L.; Arzeno, N.; Pettit, D.R.; Ploutz-Snyder, R.; Cunningham, D.; Jones, L.W.; et al. Teleguided self-ultrasound scanning for longitudinal monitoring of muscle mass during spaceflight. iScience 2021, 24, 102344. [Google Scholar] [CrossRef]
- Draeger, J.; Schwartz, R.; Groenhoff, S.; Stern, C. Self-tonometry under microgravity conditions. Clin. Investig. 1993, 71, 700–703. [Google Scholar] [CrossRef]
- Masalkhi, M.; Ong, J.; Waisberg, E.; Berdahl, J.; Lee, A.G. Intraocular Pressure during Spaceflight and Risk of Glaucomatous Damage in Prolonged Microgravity. Encyclopedia 2023, 3, 1187–1196. [Google Scholar] [CrossRef]
- Nelson, E.S.; Mulugeta, L.; Myers, J.G. Microgravity-Induced Fluid Shift and Ophthalmic Changes. Life 2014, 4, 621–665. [Google Scholar] [CrossRef]
- Khazaeni, B.; Zeppieri, M.; Khazaeni, L. Acute Angle-Closure Glaucoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK430857/ (accessed on 19 January 2024).
- Jonas, J.B.; Iribarren, R.; Nangia, V.; Sinha, A.; Pardhi, P.; Shukla, R.; Panda-Jonas, S. Lens Position and Age: The Central India Eye and Medical Study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5309–5314. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Nolan, W.P.; Machin, D.; Seah, S.K.L.; Baasanhu, J.; Khaw, P.T.; Johnson, G.J.; Foster, P.J. Anterior Chamber Depth and the Risk of Primary Angle Closure in 2 East Asian Populations. Arch. Ophthalmol. 2005, 123, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Macias, B.R.; Patel, N.B.; Gibson, C.R.; Samuels, B.C.; Laurie, S.S.; Otto, C.; Ferguson, C.R.; Lee, S.M.C.; Ploutz-Snyder, R.; Kramer, L.A.; et al. Association of Long-Duration Spaceflight with Anterior and Posterior Ocular Structure Changes in Astronauts and Their Recovery. JAMA Ophthalmol. 2020, 138, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Marshall-Goebel, K.; Laurie, S.S.; Alferova, I.V.; Arbeille, P.; Auñón-Chancellor, S.M.; Ebert, D.J.; Lee, S.M.C.; Macias, B.R.; Martin, D.S.; Pattarini, J.M.; et al. Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Netw. Open 2019, 2, e1915011. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.M. Clinical measurements of aqueous outflow. Am. J. Ophthalmol. 1951, 34, 1603–1605. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Francis, A. Schlemm’s Canal and Collector Channels as Therapeutic Targets. In Innovations in Glaucoma Surgery; Springer: New York, NY, USA, 2014; pp. 3–25. [Google Scholar]
- Goldmann, H. Minute volume of the aqueous in the anterior chamber of the human eye in normal state and in primary glaucoma. Ophthalmol. J. Int. Ophtalmol. Z. Augenheilkd 1950, 120, 19–21. [Google Scholar]
- Allingham, R.R.; de Kater, A.W.; Ethier, C.R. Schlemm’s canal and primary open angle glaucoma: Correlation between Schlemm’s canal dimensions and outflow facility. Exp. Eye Res. 1996, 62, 101–109. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Masalkhi, M.; Paladugu, P.; Lee, A.G.; Berdahl, J. Precisional modulation of translaminar pressure gradients for ophthalmic diseases. Eur. J. Ophthalmol. 2023, 11206721231199779. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.M.; Tucker, W.J.; Martin, D.; Crowell, J.B.; Goetchius, E.; Ozgur, O.; Hamilton, S.; Otto, C.; Gonzales, R.; Ritter, M.; et al. Association of Exercise and Swimming Goggles With Modulation of Cerebro-ocular Hemodynamics and Pressures in a Model of Spaceflight-Associated Neuro-ocular Syndrome. JAMA Ophthalmol. 2019, 137, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Meer, E.; Grob, S.; Antonsen, E.L.; Sawyer, A. Ocular conditions and injuries, detection and management in spaceflight. Npj Microgravity 2023, 9, 1–13. [Google Scholar] [CrossRef]
- Meyers, V.E.; Garcìa, H.D.; Monds, K.; Cooper, B.L.; James, J.T. Ocular toxicity of authentic lunar dust. BMC Ophthalmol. 2012, 12, 26. [Google Scholar] [CrossRef]
- Gaier, J.R. The Effects of Lunar Dust on EVA Systems during the Apollo Missions [Internet]. 2005 March. Report No.: E-15071. Available online: https://ntrs.nasa.gov/citations/20050160460 (accessed on 12 January 2024).
- Wagner, S. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management [Internet]. 2006. Available online: https://ntrs.nasa.gov/citations/20060050035 (accessed on 12 January 2024).
- Theriot, C.A.; Glass, A.; Lam, C.W.; James, J.; Zanello, S.B. Chronic Lunar Dust Exposure on Rat Cornea: Evaluation by Gene Expression Profiling. In Proceedings of the 2014 NASA Human Research Program Investigators’ Workshop, Galveston, TX, USA, 12–13 February 2014; Available online: https://ntrs.nasa.gov/citations/20140003859 (accessed on 12 January 2024).
- Waisberg, E.; Ong, J.; Lee, A.G. Corneal Abrasions in Space: Current Therapeutics and Future Directions. Eye [Internet]. 4 January 2024. Available online: https://www.nature.com/articles/s41433-023-02911-3 (accessed on 20 January 2024).
- Zanello, S.B.; Theriot, C.A.; Ponce, C.M.P.; Chevez-Barrios, P. Spaceflight Effects and Molecular Responses in the Mouse Eye: Preliminary Observations After Shuttle Mission STS-133. Gravitational Space Res. 2013, 1, 29–46. [Google Scholar] [CrossRef]
- Barabino, S.; Raghavan, A.; Loeffler, J.; Dana, R. Radiotherapy-Induced Ocular Surface Disease. Cornea 2005, 24, 909. [Google Scholar] [CrossRef]
- Fujishima, H.; Shimazaki, J.; Tsubota, K. Temporary corneal stem cell dysfunction after radiation therapy. Br. J. Ophthalmol. 1996, 80, 911–914. [Google Scholar] [CrossRef]
- Whitmore, M.; Boyer, J.; Holubec, K. NASA-STD-3001, Space Flight Human-System Standard and the Human Integration Design Handbook. In Proceedings of the Industrial and Systems Engineering Research Conference, Orlando, FL, USA, 19–23 May 2012; Available online: https://ntrs.nasa.gov/citations/20130000738 (accessed on 12 January 2024).
- Waisberg, E.; Ong, J.; Lee, A.G. Space Radiation and the Potential for Early Cataract Development. Eye 2024, 38, 416–417. [Google Scholar] [CrossRef]
- Chylack, L.T.; Peterson, L.E.; Feiveson, A.H.; Wear, M.L.; Manuel, F.K.; Tung, W.H.; Hardy, D.S.; Marak, L.J.; Cucinotta, F.A. NASA study of cataract in astronauts (NASCA). Report 1, Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat. Res. 2009, 172, 10–20. [Google Scholar] [CrossRef]
- Rastegar, N.; Eckart, P.; Mertz, M. Radiation-induced cataract in astronauts and cosmonauts. Graefes Arch. Clin. Exp. Ophthalmol. 2002, 240, 543–547. [Google Scholar] [CrossRef]
- Jones, J.A.; McCarten, M.; Manuel, K.; Djojonegoro, B.; Murray, J.; Cucinotta, F.; Feiversen, A.; Wear, M. Understanding Cataract Risk in Aerospace Flight Crew and Review of Mechanisms of Cataract Formation [Internet]. 2006. Available online: https://ntrs.nasa.gov/citations/20060051793 (accessed on 12 January 2024).
- Cucinotta, F.A.; Manuel, F.K.; Jones, J.; Iszard, G.; Murrey, J.; Djojonegro, B.; Wear, M. Space Radiation and Cataracts in Astronauts. Radiat. Res. 2001, 156, 460–466. [Google Scholar] [CrossRef]
- Zhao, F.; Yu, J.; Yan, Q.; Zhang, J.; Shi, M. Clinical Application of 25-MHz Ultrasound Biomicroscopy for Lens Opacity Degree Measurements in Phacoemulsification. Transl. Vis. Sci. Technol. 2019, 8, 18. [Google Scholar] [CrossRef]
- Mader, T.H.; Gibson, C.R.; Manuel, F.K. Ophthalmologic Concerns. In Principles of Clinical Medicine for Space Flight; Springer: New York, NY, USA, 2019; pp. 841–859. Available online: https://link.springer.com/chapter/10.1007/978-1-4939-9889-0_28 (accessed on 12 January 2024).
- Mader, T.H.; Carey, W.G.; Friedl, K.E.; Wilson, W.R. Intraocular lenses in aviators: A review of the U. S. Army Exp. Aviat. Space Environ. Med. 1987, 58, 690–694. [Google Scholar]
- Liddy, B.S.; Boyd, K.; Takahashi, G.Y. Cataracts, intra-ocular lens implants, and a flying career. Aviat. Space Environ. Med. 1990, 61, 660–661. [Google Scholar]
- Loewenstein, A.; Geyer, O.; Biger, Y.; Bracha, R.; Shochat, I.; Lazar, M. Intraocular lens in a fighter aircraft pilot. Br. J. Ophthalmol. 1991, 75, 752. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.H.; Koch, D.D.; Manuel, K.; Gibson, C.R.; Effenhauser, R.K.; Musgrave, S. Stability of vision during space flight in an astronaut with bilateral intraocular lenses. Am. J. Ophthalmol. 1999, 127, 342–343. [Google Scholar] [CrossRef]
- Mader, T.H.; Gibson, C.R.; Schmid, J.F.; Lipsky, W.; Sargsyan, A.E.; Garcia, K.; Williams, J.N. Intraocular Lens Use in an Astronaut During Long Duration Spaceflight. Aerosp. Med. Hum. Perform. 2018, 89, 63–65. [Google Scholar] [CrossRef]
- Jones, J.A.; McCarten, M.; Manuel, K.; Djojonegoro, B.; Murray, J.; Feiversen, A.; Wear, M. Cataract formation mechanisms and risk in aviation and space crews. Aviat. Space Environ. Med. 2007, 78 (Suppl. 4), A56–A66. [Google Scholar] [PubMed]
- Helms, R.W.; Minhaz, A.T.; Wilson, D.L.; Örge, F.H. Clinical 3D Imaging of the Anterior Segment with Ultrasound Biomicroscopy. Transl. Vis. Sci. Technol. 2021, 10, 11. [Google Scholar] [CrossRef]
- Ong, J.; Lee, A.G.; Moss, H.E. Head-Down Tilt Bed Rest Studies as a Terrestrial Analog for Spaceflight Associated Neuro-Ocular Syndrome. Front. Neurol. 2021, 12, 648958. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Zaman, N.; Kamran, S.A.; Lee, A.G.; Tavakkoli, A. Stroboscopic Augmented Reality as an Approach to Mitigate Gravitational Transition Effects During Interplanetary Spaceflight. Int. J. Aviat. Aeronaut. Aerosp. 2022, 9, 6. Available online: https://commons.erau.edu/ijaaa/vol9/iss4/6 (accessed on 9 May 2023). [CrossRef]
- Zaman, N.; Ong, J.; Waisberg, E.; Masalkhi, M.; Lee, A.G.; Tavakkoli, A.; Zuckerbrod, S. Advanced Visualization Engineering for Vision Disorders: A Clinically Focused Guide to Current Technology and Future Applications. Ann. Biomed. Eng. 2024, 52, 178–207. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Zaman, N.; Kamran, S.A.; Waisberg, E.; Tavakkoli, A.; Lee, A.G.; Webster, M. A Multi-Modal Visual Assessment System for Monitoring Spaceflight Associated Neuro-Ocular Syndrome (SANS) during Long Duration Spaceflight. J. Vis. 2022, 22, 6. [Google Scholar] [CrossRef]
- Hossain, K.F.; Kamran, S.A.; Ong, J.; Lee, A.G.; Tavakkoli, A. Revolutionizing Space Health (Swin-FSR): Advancing Super-Resolution of Fundus Images for SANS Visual Assessment Technology. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2023; Greenspan, H., Madabhushi, A., Mousavi, P., Salcudean, S., Duncan, J., Syeda-Mahmood, T., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2023; Volume 14226, pp. 693–703. Available online: https://link.springer.com/10.1007/978-3-031-43990-2_65 (accessed on 20 January 2024).
- Kamran, S.A.; Hossain, K.F.; Ong, J.; Lee, A.G.; Tavakkoli, A. Poster Session: Detecting spaceflight associated neuro-ocular syndrome (SANS) using light-weight convolutional neural networks. J. Vis. 2023, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Brent Woodland, M.; Ong, J.; Zaman, N.; Hirzallah, M.; Waisberg, E.; Masalkhi, M.; Amit Kamran, S.; Lee, A.G.; Tavakkoli, A. Applications of extended reality in spaceflight for human health and performance. Acta Astronaut. 2024, 214, 748–756. [Google Scholar] [CrossRef]
- Shelhamer, M. Parabolic flight as a spaceflight analog. J. Appl. Physiol. 2016, 120, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Brümmer, V.; Göbel, S.; Carnahan, H.; Dubrowski, A.; Strüder, H.K. Parabolic flight experience is related to increased release of stress hormones. Eur. J. Appl. Physiol. 2007, 100, 301–308. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, B.; Ong, J.; Osteicoechea, D.; Kadipasaoglu, C.M.; Waisberg, E.; Sarker, P.; Zaman, N.; Tavakkoli, A.; Vizzeri, G.; Lee, A.G. Ultrasound Biomicroscopy as a Novel, Potential Modality to Evaluate Anterior Segment Ophthalmic Structures during Spaceflight: An Analysis of Current Technology. Diagnostics 2024, 14, 639. https://doi.org/10.3390/diagnostics14060639
Soares B, Ong J, Osteicoechea D, Kadipasaoglu CM, Waisberg E, Sarker P, Zaman N, Tavakkoli A, Vizzeri G, Lee AG. Ultrasound Biomicroscopy as a Novel, Potential Modality to Evaluate Anterior Segment Ophthalmic Structures during Spaceflight: An Analysis of Current Technology. Diagnostics. 2024; 14(6):639. https://doi.org/10.3390/diagnostics14060639
Chicago/Turabian StyleSoares, Benjamin, Joshua Ong, Daniela Osteicoechea, Cihan Mehmet Kadipasaoglu, Ethan Waisberg, Prithul Sarker, Nasif Zaman, Alireza Tavakkoli, Gianmarco Vizzeri, and Andrew G. Lee. 2024. "Ultrasound Biomicroscopy as a Novel, Potential Modality to Evaluate Anterior Segment Ophthalmic Structures during Spaceflight: An Analysis of Current Technology" Diagnostics 14, no. 6: 639. https://doi.org/10.3390/diagnostics14060639
APA StyleSoares, B., Ong, J., Osteicoechea, D., Kadipasaoglu, C. M., Waisberg, E., Sarker, P., Zaman, N., Tavakkoli, A., Vizzeri, G., & Lee, A. G. (2024). Ultrasound Biomicroscopy as a Novel, Potential Modality to Evaluate Anterior Segment Ophthalmic Structures during Spaceflight: An Analysis of Current Technology. Diagnostics, 14(6), 639. https://doi.org/10.3390/diagnostics14060639