Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Methods
2.1. Study Protocol
2.2. Enrollment
2.3. Sample Collection
2.4. Sample Analysis
2.5. Data Analysis
3. Results
3.1. Participants
3.2. Metabolomic Multivariate Analysis
3.3. VIP and Univariate Analysis
4. Discussion
4.1. Metabolomics in Hematological Malignancies
4.2. Metabolomics in ALL
4.3. Fatty Acid Alterations
4.4. Carnitine and Esters
4.5. Organic and Amino Acids and Alterations
4.6. Therapeutic Implications of Metabolomic Pathways in Leukemia
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALL | Acute lymphoblastic leukemia |
AML | Acute myeloid leukemia |
BMI | Docosahexaenoic acid |
C0 | Carnitine |
C2:0 | Acetylcarnitine |
C16:0 | Palmitoylcarnitine |
C3:0 | Propionylcarnitine |
CACT | Carnitine acylcarnitine translocase |
CAD | Cationic amphiphilic drug |
CPT1 | Carnitine palmitoyl transferase 1 |
CPT2 | Carnitine palmitoyl transferase 2 |
DHA | Docosahexaenoic acid |
DGLA | Dihomo-γ-linolenic acid |
FA | Fatty acids |
FACS | Acyl-CoA synthetase |
GC-MS | Gas chromatography–mass spectrometry |
HCl | Hydrochloric acid |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
Log2(FC) | Log2Fold change |
OXPHOS | Oxidative phosphorylation |
PLS-DA, OPLS-DA | Partial and orthogonal-partial least squares discriminant analysis |
PCA | Principal component analysis |
TCA | Tricarboxylic acid |
VIP | Variable importance in projection |
References
- Howlader, N.; Noone, A.M.; Krapcho, M.; Garshell, J.; Neyman, N.; Altekruse, S.F.; Kosary, C.L. (Eds.) Childhood cancer. In SEER Cancer Statistics Review, 1975–2010; National Cancer Institute: Bethesda, MD, USA, 2013; https://seer.cancer.gov/archive/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, April 2013; (accessed on 28 February 2024). [Google Scholar]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2018; National Cancer Institute: Bethesda, MD, USA, 2014; https://seer.cancer.gov/csr/1975_2018/, based on November 2020 SEER data submission, posted to the SEER web site, April 2021; (accessed on 28 February 2024).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J Clin 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Bhojwani, D.; Pui, C.H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013, 14, e205–e217. [Google Scholar] [CrossRef] [PubMed]
- Kiem Hao, T.; Nhu Hiep, P.; Kim Hoa, N.T.; Van Ha, C. Causes of Death in Childhood Acute Lymphoblastic Leukemia at Hue Central Hospital for 10 Years (2008–2018). Glob. Pediatr. Health 2020, 7, 2333794 × 20901930. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.; Devidas, M.; Cheng, S.C.; La, M.; Raetz, E.A.; Carroll, W.L.; Winick, N.J.; Hunger, S.P.; Gaynon, P.S.; Loh, M.L. Factors influencing survival after relapse from acute lymphoblastic leukemia: A Children’s Oncology Group study. Leukemia 2008, 22, 2142–2150. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Li, J. Identification of biomarkers for the prediction of relapse-free survival in pediatric B-precursor acute lymphoblastic leukemia. Oncol. Rep. 2019, 41, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, T.; Jones, C.L.; Meyer, J.A.; Vitanza, N.A.; Raetz, E.A.; Carroll, W.L. The biology of relapsed acute lymphoblastic leukemia: Opportunities for therapeutic interventions. J. Pediatr. Hematol. Oncol. 2014, 36, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Ahmed, S. Emerging field of metabolomics: Big promise for cancer biomarker identification and drug discovery. J. Pharm. Biomed. Anal. 2015, 107, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Tohrnheim, K.; Ruderman, N.B. Intermediary metabolism of Cabohydrate, fat and protein. In Metabolic Basis of Obesity; Ahima, R.S., Ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Griffin, J.L.; Shockcor, J.P. Metabolic profiles of cancer cells. Nat. Rev. Cancer 2004, 4, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Spratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009, 15, 431–440. [Google Scholar] [CrossRef]
- Kwon, H.; Oh, S.; Jin, X.; An, Y.J.; Park, S. Cancer metabolomics in basic science perspective. Arch. Pharmacal Res. 2015, 38, 372–380. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Zhong, H.; De Marzo, A.M.; Laughner, E.; Lim, M.; Hilton, D.A.; Zagzag, D.; Buechler, P.; Isaacs, W.B.; Semenza, G.L.; Simons, J.W. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999, 59, 5830–5835. [Google Scholar]
- Lu, H.; Forbes, R.A.; Verma, A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the warburg effect in carcinogenesis. J. Biol. Chem. 2002, 277, 23111–23115. [Google Scholar] [CrossRef]
- Semenza, G.L. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J. Bioenerg. Biomembr. 2007, 39, 231–234. [Google Scholar] [CrossRef]
- López-Ríos, F.; Sánchez-Aragó, M.; García-García, E.; Ortega, Á.D.; Berrendero, J.R.; Pozo-Rodríguez, F.; López-Encuentra, Á.; Ballestín, C.; Cuezva, J.M. Loss of the mitochondrial bioenergetic capacity underlies the glucose avidity of carcinomas. Cancer Res. 2007, 67, 9013–9017. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Sanderson, T.M.; El-Abbadi, M.M.; McGowan, R.; Mukherjee, P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br. J. Cancer 2003, 89, 1375–1382. [Google Scholar] [CrossRef]
- McGirt, M.J.; Chaichana, K.L.; Gathinji, M.; Attenello, F.; Than, K.; Ruiz, A.J.; Olivi, A.; Quiñones-Hinojosa, A. Persistent outpatient hyperglycemia is independently associated with decreased survival after primary resection of malignant brain astrocytomas. Neurosurgery 2008, 63, 286–291; discussion 291. [Google Scholar] [CrossRef]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA: A Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef] [PubMed]
- ALL IC BFM. 2009. Available online: https://www.bialaczka.org/wp-content/uploads/2016/10/ALLIC_BFM_2009.pdf (accessed on 28 February 2024).
- Lagerstedt, S.A.; Hinrichs, D.R.; Batt, S.M.; Magera, M.J.; Rinaldo, P.; McConnell, J.P. Quantitative determination of plasma C8–C26 Total Fatty Acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol. Genet. Metab. 2001, 73, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Hine, D.G.; West-Dull, A.; Lynn, T.B. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin. Chem. 1980, 26, 1839–1846. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, P. Organic acids. In Laboratory Guide to the Methods in Biochemical Genetics; Blau, N., Duran, M., Gibson, K.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 137–169. [Google Scholar]
- Casado, M.; Sierra, C.; Batllori, M.; Artuch, R.; Ormazabal, A. A targeted metabolomic procedure for amino acid analysis in different biological specimens by ultra-high-performance liquid chromatography–tandem mass spectrometry. Metabolomics 2018, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Dietzen, D.J.; Rinaldo, P.; Whitley, R.J.; Rhead, W.J.; Hannon, W.H.; Garg, U.C.; Lo, S.F.; Bennett, M.J. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: Follow-Up Testing for Metabolic Disease Identified by Expanded Newborn Screening Using Tandem Mass Spectrometry; Executive Summary. Clin. Chem. 2009, 55, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- Wojcicki, A.V.; Kasowski, M.M.; Sakamoto, K.M.; Lacayo, N. Metabolomics in acute myeloid leukemia. Mol. Genet. Metab. 2020, 130, 230–238. [Google Scholar] [CrossRef] [PubMed]
- A MacIntyre, D.; Jiménez, B.; Lewintre, E.J.; Martín, C.R.; Schäfer, H.; Ballesteros, C.G.; Mayans, J.R.; Spraul, M.; García-Conde, J.; Pineda-Lucena, A. Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia 2010, 24, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Puchades-Carrasco, L.; Lecumberri, R.; Martínez-López, J.; Lahuerta, J.J.; Mateos, M.V.; Prósper, F.; San-Miguel, J.F.; Pineda-Lucena, A. Multiple myeloma patients have a specific serum metabolomic profile that changes after achieving complete remission. Clin. Cancer Res. 2013, 19, 4770–4779. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Chen, W.-L.; Wang, J.-H.; Li, N.; Li, J.-M.; Mi, J.-Q.; Zhang, W.-N.; Li, Y.; Wu, S.-F.; et al. Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis. J. Proteome Res. 2013, 12, 4393–4401. [Google Scholar] [CrossRef] [PubMed]
- Schraw, J.M.; Woodhouse, J.P.; Bernhardt, M.B.; Taylor, O.A.; Horton, T.M.; Scheurer, M.E.; Okcu, M.F.; Rabin, K.R.; Lupo, P.J.; Brown, A.L. Comparison of the blood, bone marrow, and cerebrospinal fluid metabolomes in children with b-cell acute lymphoblastic leukemia. Sci. Rep. 2021, 11, 19613. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, H.; Sun, X.; Sun, C.; Ren, L. Biomarker identification and pathway analysis by serum metabolomics of childhood acute lymphoblastic leukemia. Clin. Chim. Acta 2014, 436, 207–216. [Google Scholar] [CrossRef]
- Petrick, L.M.; Schiffman, C.; Edmands, W.M.; Yano, Y.; Perttula, K.; Whitehead, T.; Metayer, C.; Wheelock, C.E.; Arora, M.; Grigoryan, H.; et al. Metabolomics of neonatal blood spots reveal distinct phenotypes of pediatric acute lymphoblastic leukemia and potential effects of early-life nutrition. Cancer Lett. 2019, 452, 71–78. [Google Scholar] [CrossRef]
- Zaravinos, A.; Tsartsalis, A.N.; Tagka, A.; Kotoulas, A.; Geronikolou, S.A.; Braoudaki, M.; Lambrou, G.I. Systems Approaches in the Common Metabolomics in Acute Lymphoblastic Leukemia and Rhabdomyosarcoma Cells: A Computational Approach. Adv Exp Med. Biol. 2021, 1338, 55–66. [Google Scholar]
- Isobe, T.; Takagi, M.; Sato-Otsubo, A.; Nishimura, A.; Nagae, G.; Yamagishi, C.; Tamura, M.; Tanaka, Y.; Asada, S.; Takeda, R.; et al. Multi-omics analysis defines highly refractory RAS burdened immature subgroup of infant acute lymphoblastic leukemia. Nat. Commun. 2022, 13, 4501. [Google Scholar] [CrossRef]
- Schraw, J.M.; Junco, J.J.; Brown, A.L.; Scheurer, M.E.; Rabin, K.R.; Lupo, P.J. Metabolomic profiling identifies pathways associated with minimal residual disease in childhood acute lymphoblastic leukaemia. EBioMedicine 2019, 48, 49–57. [Google Scholar] [CrossRef]
- Saito, T.; Wei, Y.; Wen, L.; Srinivasan, C.; Wolthers, B.O.; Tsai, C.-Y.; Harris, M.H.; Stevenson, K.; Byersdorfer, C.; Oparaji, J.-A.; et al. Impact of acute lymphoblastic leukemia induction therapy: Findings from metabolomics on non-fasted plasma samples from a biorepository. Metabolomics 2021, 17, 64. [Google Scholar] [CrossRef]
- Verma, P.; Devaraj, J.; Skiles, J.L.; Sajdyk, T.; Ho, R.H.; Hutchinson, R.; Wells, E.; Li, L.; Renbarger, J.; Cooper, B.; et al. A Metabolomics Approach for Early Prediction of Vincristine-Induced Peripheral Neuropathy. Sci. Rep. 2020, 10, 9659. [Google Scholar] [CrossRef]
- Brown, A.L.; Sok, P.; Taylor, O.; Woodhouse, J.P.; Bernhardt, M.B.; Raghubar, K.P.; Kahalley, L.S.; Lupo, P.J.; Hockenberry, M.J.; Scheurer, M.E. Cerebrospinal Fluid Metabolomic Profiles Associated With Fatigue During Treatment for Pediatric Acute Lymphoblastic Leukemia. J. Pain Symptom Manag. 2021, 61, 464–473. [Google Scholar] [CrossRef]
- Hlozkova, K.; Pecinova, A.; Alquezar-Artieda, N.; Pajuelo-Reguera, D.; Simcikova, M.; Hovorkova, L.; Rejlova, K.; Zaliova, M.; Mracek, T.; Kolenova, A.; et al. Metabolic profile of leukemia cells influences treatment efficacy of L-asparaginase. BMC Cancer 2020, 20, 526. [Google Scholar] [CrossRef]
- Năstase, A.-M.; Barrett, M.P.; Cárdenas, W.B.; Cordeiro, F.B.; Zambrano, M.; Andrade, J.; Chang, J.; Regato, M.; Carrillo, E.; Botana, L.; et al. Alignment of multiple metabolomics LC-MS datasets from disparate diseases to reveal fever-associated metabolites. PLOS Neglected Trop. Dis. 2023, 17, e0011133. [Google Scholar] [CrossRef] [PubMed]
- Shrinet, J.; Shastri, J.S.; Gaind, R.; Bhavesh, N.S.; Sunil, S. Serum metabolomics analysis of patients with chikungunya and dengue mono/co-infections reveals distinct metabolite signatures in the three disease conditions. Sci. Rep. 2016, 6, 36833. [Google Scholar] [CrossRef]
- Lee, C.H.; Banoei, M.M.; Ansari, M.; Cheng, M.P.; Lamontagne, F.; Griesdale, D.; Lasry, D.E.; Demir, K.; Dhingra, V.; Tran, K.C.; et al. Using a targeted metabolomics approach to explore differences in ARDS associated with COVID-19 compared to ARDS caused by H1N1 influenza and bacterial pneumonia. Crit. Care 2024, 28, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Yang, X.; Zhang, W.X.; Zhou, Y.; Wei, T.T.; Cui, N.; Du, J.; Liu, W.; Lu, Q.B. Metabolic alterations in urine among the patients with severe fever with thrombocytopenia syndrome. Virol. J. 2024, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef]
- Mashima, T.; Seimiya, H.; Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer 2009, 100, 1369–1372. [Google Scholar] [CrossRef]
- Kuhajda, F.P. Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition 2000, 16, 202–208. [Google Scholar] [CrossRef]
- Virmani, M.A.; Cirulli, M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int. J. Mol. Sci. 2022, 23, 2717. [Google Scholar] [CrossRef] [PubMed]
- Gugiatti, E.; Tenca, C.; Ravera, S.; Fabbi, M.; Ghiotto, F.; Mazzarello, A.N.; Bagnara, D.; Reverberi, D.; Zarcone, D.; Cutrona, G.; et al. A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells. Haematologica 2018, 103, e531–e536. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, Q.; Xiang, J.; Zhang, H.; Sun, H.; Ruan, G.; Tang, Y. NMR-based plasma metabolomics of adult B-cell acute lymphoblastic leukemia. Mol. Omics 2021, 17, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Vance, J.E.; Tasseva, G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta 2013, 1831, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Netzel-Arnett, S.; Hooper, J.D.; Szabo, R.; Madison, E.L.; Quigley, J.P.; Bugge, T.H.; Antalis, T.M. Membrane anchored serine proteases: A rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev. 2003, 22, 237–258. [Google Scholar] [CrossRef]
- Li, C.; Zhang, G.; Zhao, L.; Ma, Z.; Chen, H. Metabolic reprogramming in cancer cells: Glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol. 2016, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Venneti, S.; Nagrath, D. Glutaminolysis: A Hallmark of Cancer Metabolism. Annu. Rev. Biomed. Eng. 2017, 19, 163–194. [Google Scholar] [CrossRef]
- Nie, H.; Ju, H.; Fan, J.; Shi, X.; Cheng, Y.; Cang, X.; Zheng, Z.; Duan, X.; Yi, W. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat. Commun. 2020, 11, 36. [Google Scholar] [CrossRef]
- Anselmi, L.; Bertuccio, S.N.; Lonetti, A.; Prete, A.; Masetti, R.; Pession, A. Insights on the Interplay between Cells Metabolism and Signaling: A Therapeutic Perspective in Pediatric Acute Leukemias. Int. J. Mol. Sci. 2020, 21, 6251. [Google Scholar] [CrossRef]
- Rashkovan, M.; Ferrando, A. Metabolic dependencies and vulnerabilities in leukemia. Gene. Dev. 2019, 33, 1460–1474. [Google Scholar] [CrossRef]
- Stuani, L.; Sabatier, M.; Sarry, J.-E. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol. 2019, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Presti, C.L.; Yamaryo-Botté, Y.; Mondet, J.; Berthier, S.; Nutiu, D.; Botté, C.; Mossuz, P. Variation in Lipid Species Profiles among Leukemic Cells Significantly Impacts Their Sensitivity to the Drug Targeting of Lipid Metabolism and the Prognosis of AML Patients. Int. J. Mol. Sci. 2023, 24, 5988. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-L.; Wang, J.-H.; Zhao, A.-H.; Xu, X.; Wang, Y.-H.; Chen, T.-L.; Li, J.-M.; Mi, J.-Q.; Zhu, Y.-M.; Liu, Y.-F.; et al. A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value. Blood 2014, 124, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Minhajuddin, M.; Callahan, K.P.; Balys, M.; Ashton, J.M.; Neering, S.J.; Lagadinou, E.D.; Corbett, C.; Ye, H.; Liesveld, J.L.; et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem. 2013, 288, 33542–33558. [Google Scholar] [CrossRef] [PubMed]
- Stuani, L.; Riols, F.; Millard, P.; Sabatier, M.; Batut, A.; Saland, E.; Viars, F.; Tonini, L.; Zaghdoudi, S.; Linares, L.K.; et al. Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia. Int. J. Mol. Sci. 2018, 19, 3325. [Google Scholar] [CrossRef] [PubMed]
- Tucci, J.; Chen, T.; Margulis, K.; Orgel, E.; Paszkiewicz, R.L.; Cohen, M.D.; Oberley, M.J.; Wahhab, R.; Jones, A.E.; Divakaruni, A.S.; et al. Adipocytes Provide Fatty Acids to Acute Lymphoblastic Leukemia Cells. Front. Oncol. 2021, 11, 665763. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, I.; Groth-Pedersen, L.; Dicroce-Giacobini, J.; Jonassen, A.S.H.; Mortensen, M.; Bilgin, M.; Schmiegelow, K.; Jäättelä, M.; Maeda, K. Cationic amphiphilic drugs induce elevation in lysoglycerophospholipid levels and cell death in leukemia cells. Metabolomics 2020, 16, 91. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Byun, J.-K.; Choi, Y.-K.; Park, K.-G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715. [Google Scholar] [CrossRef]
- Sharma, S.; Agnihotri, N.; Kumar, S. Targeting fuel pocket of cancer cell metabolism: A focus on glutaminolysis. Biochem. Pharmacol. 2022, 198, 114943. [Google Scholar] [CrossRef] [PubMed]
- Sbirkov, Y.; Vergov, B.; Dzharov, V.; Schenk, T.; Petrie, K.; Sarafian, V. Targeting Glutaminolysis Shows Efficacy in Both Prednisolone-Sensitive and in Metabolically Rewired Prednisolone-Resistant B-Cell Childhood Acute Lymphoblastic Leukaemia Cells. Int. J. Mol. Sci. 2023, 24, 3378. [Google Scholar] [CrossRef] [PubMed]
Patients (N = 34) | ||||
---|---|---|---|---|
Age a | Median in years (IQR) | |||
5 (7) | ||||
Sex (N, %) | Female | Male | ||
6 (17.6%) | 28 (82.4%) | |||
BMI a | Median in kg/m2 (IQR) | |||
16 (5.4) | ||||
Type of ALL (N, %) | Common B-ALL | Pre-B ALL | T-ALL | |
20 (58.8%) | 8 (23.5%) | 6 (17.6%) | ||
Risk group a (N, %) | Low | Intermediate | High | |
14 (41.2%) | 16 (47.1%) | 4 (11.8%) | ||
Complete initial remission b (N, %) | Yes | No | ||
27 (79.4%) | 7 (20.6%) |
Metabolite (Plasma) | VIP | Log2fc (Patients/Controls) |
---|---|---|
Carnitines | ||
C0 (Carnitine) | 2.62 | 0.98 |
C2:0 (Acetylcarnitine) | 2.02 | 1.04 |
C16:0 (Palmitoylcarnitine) | 1.56 | 1.26 |
C3:0 (Propionylcarnitine) | 1.33 | 1.01 |
Fatty acids | ||
Saturated | ||
Myristic acid | 2.32 | 1.43 |
Lauric acid | 1.5 | 0.8 |
Palmitic acid | 1.22 | 0.48 |
Mono-unsaturated | ||
Palmitelaidic acid | 2.1 | 1.6 |
Nervonic acid | 1.62 | −0.7 |
Myristoleic acid | 1.6 | 1.76 |
Polyunsaturated | ||
Dihomo-γ-linolenic acid (DGLA, omega-6) | 2. 3 | 1.22 |
Docosahexaenoic acid (DHA, omega-3) | 1.71 | −0.9 |
Gamma-linolenic acid (GLA- omega-6) | 1.54 | 2.25 |
Alpha-linolenic acid (ALA, omega-3) | 1.33 | 0.63 |
Eicosapentaenoic acid (EPA, omega-3) | 1.21 | 0.91 |
Aminoacids | ||
Taurine | 1.23 | −0.36 |
Serine | 1.18 | −0.34 |
Proline | 1.05 | −0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, M.T.; Panagopoulou, P.; Paramera, E.; Pechlivanis, A.; Virgiliou, C.; Papakonstantinou, E.; Palabougiouki, M.; Ioannidou, M.; Vasileiou, E.; Tragiannidis, A.; et al. Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia. Diagnostics 2024, 14, 682. https://doi.org/10.3390/diagnostics14070682
Papadopoulou MT, Panagopoulou P, Paramera E, Pechlivanis A, Virgiliou C, Papakonstantinou E, Palabougiouki M, Ioannidou M, Vasileiou E, Tragiannidis A, et al. Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia. Diagnostics. 2024; 14(7):682. https://doi.org/10.3390/diagnostics14070682
Chicago/Turabian StylePapadopoulou, Maria T., Paraskevi Panagopoulou, Efstathia Paramera, Alexandros Pechlivanis, Christina Virgiliou, Eugenia Papakonstantinou, Maria Palabougiouki, Maria Ioannidou, Eleni Vasileiou, Athanasios Tragiannidis, and et al. 2024. "Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia" Diagnostics 14, no. 7: 682. https://doi.org/10.3390/diagnostics14070682
APA StylePapadopoulou, M. T., Panagopoulou, P., Paramera, E., Pechlivanis, A., Virgiliou, C., Papakonstantinou, E., Palabougiouki, M., Ioannidou, M., Vasileiou, E., Tragiannidis, A., Papakonstantinou, E., Theodoridis, G., Hatzipantelis, E., & Evangeliou, A. (2024). Metabolic Fingerprint in Childhood Acute Lymphoblastic Leukemia. Diagnostics, 14(7), 682. https://doi.org/10.3390/diagnostics14070682