Development of a Non-Invasive Machine-Learned Point-of-Care Rule-Out Test for Coronary Artery Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Studies and Population
2.2. Overview of Development Process
2.3. Data
2.4. Dimensionality Reduction by Feature Selection
2.5. Out-Of-Fold Prediction
2.6. Modeling
3. Results
3.1. Demographics and Disease in the Intended Use Dataset
3.2. Feature Selection
3.3. Relationship between Elastic Net and Random Forest
3.4. Model Performance
3.5. Model Performance in the Presence of Confounders
3.6. Feature Importance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; He, B.; Ghorbani, A.; Yuan, N.; Ebinger, J.; Langlotz, C.P.; Heidenreich, P.A.; Harrington, R.A.; Liang, D.H.; Ashley, E.A.; et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 2020, 580, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, Z.; Loni, M.; Daneshtalab, M.; Gharehbaghi, A. A review on deep learning methods for ECG arrhythmia classification. Expert Syst. Appl. X 2020, 7, 100033. [Google Scholar] [CrossRef]
- Sanders, W.E., Jr.; Khedraki, R.; Rabbat, M.; McMinn, T.R.; Burton, T.; Khosousi, A.; Fathieh, F.; Gillins, H.R.; Ramchandani, S.; Shadforth, I.P. Machine Learning Algorithms: Selection of Appropriate Validation Populations for Cardiology Research—Be Careful! JACC Adv. 2023, 2, 100166. [Google Scholar] [CrossRef]
- Bizopoulos, P.; Koutsouris, D.D. Deep Learning in Cardiology. IEEE Rev. Biomed. Eng. 2019, 12, 168–193. [Google Scholar] [CrossRef]
- Crigger, E.; Reinbold, K.; Hanson, C.; Kao, A.; Blake, K.; Irons, M. Trustworthy augmented intelligence in health care. J. Med. Syst. 2022, 46, 12. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef] [PubMed]
- Knuuti, J.; Ballo, H.; Juarez-Orozco, L.E.; Saraste, A.; Kolh, P.; Rutjes, A.W.S.; Jüni, P.; Windecker, S.; Bax, J.J.; Wijns, W. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: A meta-analysis focused on post-test disease probability. Eur. Heart J. 2018, 39, 3322–3330. [Google Scholar] [CrossRef] [PubMed]
- Peterman, N.J.; Yeo, E.; Kaptur, B.; Smith, E.J.; Christensen, A.; Huang, E.; Rasheed, M. Analysis of Rural Disparities in Ultrasound Access. Cureus 2022, 14, e25425. [Google Scholar] [CrossRef] [PubMed]
- Bossard, M.; Latifi, Y.; Fabbri, M.; Kurmann, R.; Brinkert, M.; Wolfrum, M.; Berte, B.; Cuculi, F.; Toggweiler, S.; Kobza, R.; et al. Increasing mortality from premature coronary artery disease in women in the rural United States. J. Am. Heart Assoc. 2020, 9, e015334. [Google Scholar] [CrossRef] [PubMed]
- Keteepe-Arachi, T.; Sharma, S. Cardiovascular disease in women: Understanding symptoms and risk factors. Eur. Cardiol. Rev. 2017, 12, 10–13. [Google Scholar] [CrossRef]
- Patel, M.R.; Peterson, E.D.; Dai, D.; Brennan, J.M.; Redberg, R.F.; Anderson, H.V.; Brindis, R.G.; Douglas, P.S. Low diagnostic yield of elective coronary angiography. N. Engl. J. Med. 2010, 362, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Fathieh, F.; Paak, M.; Khosousi, A.; Burton, T.; Sanders, W.E.; Doomra, A.; Lange, E.; Khedraki, R.; Bhavnani, S.; Ramchandani, S. Predicting cardiac disease from interactions of simultaneously-acquired hemodynamic and cardiac signals. Comput. Methods Programs Biomed. 2021, 202, 105970. [Google Scholar] [CrossRef] [PubMed]
- Bhavnani, S.P.; Khedraki, R.; Cohoon, T.J.; Meine, F.J.; Stuckey, T.D.; McMinn, T.; Depta, J.P.; Bennett, B.; McGarry, T.; Carroll, W.; et al. Multicenter validation of a machine learning phase space electro-mechanical pulse wave analysis to predict elevated left ventricular end diastolic pressure at the point-of-care. PLoS ONE 2022, 17, e0277300. [Google Scholar] [CrossRef]
- Douglas, P.S.; Hoffmann, U.; Patel, M.R.; Mark, D.B.; Al-Khalidi, H.R.; Cavanaugh, B.; Cole, J.; Dolor, R.J.; Fordyce, C.B.; Huang, M.; et al. Outcomes of anatomical versus functional testing for coronary artery disease. N. Engl. J. Med. 2015, 372, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Cantoni, V.; Petretta, M.; Acampa, W.; Panico, M.; Buongiorno, P.; Punzo, G.; Salvatore, M.; Cuocolo, A. Negative predictive value of stress myocardial perfusion imaging and coronary computed tomography angiography: A meta-analysis. J. Nucl. Cardiol. 2018, 25, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.D.; et al. Coronary artery disease-reporting and data system (CAD−RADS) an expert consensus document of SCCT, ACR and NASCI: Endorsed by the ACC. JACC Cardiovasc. Imaging 2016, 9, 1099–1113. [Google Scholar] [CrossRef] [PubMed]
- Stuckey, T.; Meine, F.; McMinn, T.; Depta, J.P.; Bennett, B.; McGarry, T.; Carroll, W.; Suh, D.; Steuter, J.A.; Roberts, M.; et al. Development and validation of a machine learned algorithm to IDENTIFY functionally significant coronary artery disease. Front. Cardiovasc. Med. 2022, 9, 956147. [Google Scholar] [CrossRef] [PubMed]
- Berisha, V.; Krantsevich, C.; Hahn, P.R.; Hahn, S.; Dasarathy, G.; Turaga, P.; Liss, J. Digital medicine and the curse of dimensionality. NPJ Digit. Med. 2021, 4, 153. [Google Scholar] [CrossRef] [PubMed]
- Vergara, J.R.; Estévez, P.A. A review of feature selection methods based on mutual information. Neural Comput. Appl. 2014, 24, 175–186. [Google Scholar] [CrossRef]
- Berrar, D. Cross-Validation; Encyclopedia of Bioinformatics and Computational Biology; Academic Press: Oxford, UK, 2019; pp. 542–545. [Google Scholar]
- Sætrom, O.; Snøve, O.; Sætrom, P. Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 2005, 11, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Stat. B Methodol. Ser. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Krittanawong, C.; Virk, H.U.H.; Bangalore, S.; Wang, Z.; Johnson, K.W.; Pinotti, R.; Zhang, H.; Kaplin, S.; Narasimhan, B.; Kitai, T.; et al. Machine learning prediction in cardiovascular diseases: A meta-analysis. Sci. Rep. 2020, 10, 16057. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Allgaier, J.; Mulansky, L.; Draelos, R.L.; Pryss, R. How does the model make predictions? A systematic literature review on the explainability power of machine learning in healthcare. Artif. Intell. Med. 2023, 143, 102616. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.L.; Rocha, M.X.; Vasconcelos, G.G.; Filho, J.E.V.; De Albuquerque, V.H.C.; Alexandria, A.R. Advances in photopletysmography signal analysis for biomedical applications. Sensors 2018, 18, 1894. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Zehir, R.; Karabay, C.Y.; Kalayci, A.; Akgun, T.; Kilicgedik, A.; Kirma, C. Evaluation of Tpe interval and Tpe/QT ratio in patients with slow coronary flow. Anatol. J. Cardiol. 2015, 15, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Platonov, P.G. P-wave morphology: Underlying mechanisms and clinical implications. Ann. Noninvasive Electrocardiol. 2012, 17, 161–169. [Google Scholar] [CrossRef]
- Greenwood, J.P.; Motwani, M.; Maredia, N.; Brown, J.M.; Everett, C.C.; Nixon, J.; Bijsterveld, P.; Dickinson, C.J.; Ball, S.G.; Plein, S. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation 2014, 129, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Vavas, E.; Hong, S.N.; Rosen, S.E.; Mieres, J.H. Noninvasive diagnostic techniques for coronary disease in women. Clin. Cardiol. 2012, 35, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.; Khan, M.; Salhan, A.K. A Review of Measurement and Analysis of Heart Rate Variability. In Proceedings of the 2009 International Conference on Computer and Automation Engineering, Bangkok, Thailand, 8–10 March 2009; pp. 243–246. [Google Scholar] [CrossRef]
- Călburean, P.A.; Pannone, L.; Sorgente, A.; Gauthey, A.; Monaco, C.; Strazdas, A.; Almorad, A.; Bisignani, A.; Bala, G.; Ramak, R.; et al. Heart rate variability and microvolt T wave alternans changes during ajmaline test may predict prognosis in Brugada syndrome. Clin. Auton. Res. 2023, 33, 51–62. [Google Scholar] [CrossRef] [PubMed]
Dataset | Total Subjects | Function | |
---|---|---|---|
Feature Selection | Training and Internal Validation * | ||
CADLAD | 624 | N = 208 CAD− N = 208 CAD+ | N = 416 CAD+ ** |
IDENTIFY Group 2 | 225 | None | N = 225 CAD+ |
IDENTIFY Group 4 | 513 | None | N = 513 CAD− |
Total | 1362 | 416 | 1154 |
Characteristic * | CAD− IDENTIFY G4 | CAD+ CADLAD and IDENTIFY G2 | p-Value |
---|---|---|---|
Number of Subjects | 513 | 641 | |
Age | |||
Mean ± STD | 55 ± 12.0 | 64.9 ± 9.6 | <0.05 |
Age ≥ 65 | 23.0% | 56.3% | <0.05 |
Female | 64.5% | 26.7% | <0.05 |
BMI | |||
Mean ± STD | 31.3 ± 6.6 | 30.9 ± 6.2 | 0.316 |
BMI ≥ 30 | 52.2% | 54.3% | 0.526 |
Hypertension | 60.0% | 78.6% | <0.05 |
Diabetes | 15.8% | 34.5% | <0.05 |
Hyperlipidemia | 52.6% | 76.6% | <0.05 |
Degree of CAD ** | |||
CADRADS 0 | 43.5% | ||
CADRADS 1 | 26.7% | ||
CADRADS 2 | 29.6% | ||
Single-vessel | 48.8% | ||
Multi-vessel | 51.2% |
(a) | ||||
Group | ROC-AUC | Cut Point | Sensitivity | Specificity |
Female | 0.87 | 0.482 | 90% | 61% |
Male | 0.81 | 0.361 | 90% | 54% |
Both Sexes | 0.85 | n/a | 90% | 59% |
CAD+ Subjects used for FA and ML | n/a | n/a | 88% | n/a |
(b) | ||||
CAD Test Result | Actual CAD Status | |||
CAD+ | CAD− | |||
Test-Positive | 574 | 212 | ||
Test-Negative | 67 | 300 | ||
Odds Ratio = 12.12 |
Predictor | Odds Ratio (95% CI) | p-Value |
---|---|---|
Test-Positive CAD Score | 7.50 (5.29, 10.64) | <0.05 |
Male | 5.81 (4.22, 8.00) | <0.05 |
Age (≥65) | 3.20 (2.31, 4.44) | <0.05 |
Diabetes | 2.37 (1.64, 3.43) | <0.05 |
Hyperlipidemia | 1.99 (1.43, 2.77) | <0.05 |
Hypertension | 1.21 (0.86, 1.71) | 0.277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burton, T.; Fathieh, F.; Nemati, N.; Gillins, H.R.; Shadforth, I.P.; Ramchandani, S.; Bridges, C.R. Development of a Non-Invasive Machine-Learned Point-of-Care Rule-Out Test for Coronary Artery Disease. Diagnostics 2024, 14, 719. https://doi.org/10.3390/diagnostics14070719
Burton T, Fathieh F, Nemati N, Gillins HR, Shadforth IP, Ramchandani S, Bridges CR. Development of a Non-Invasive Machine-Learned Point-of-Care Rule-Out Test for Coronary Artery Disease. Diagnostics. 2024; 14(7):719. https://doi.org/10.3390/diagnostics14070719
Chicago/Turabian StyleBurton, Timothy, Farhad Fathieh, Navid Nemati, Horace R. Gillins, Ian P. Shadforth, Shyam Ramchandani, and Charles R. Bridges. 2024. "Development of a Non-Invasive Machine-Learned Point-of-Care Rule-Out Test for Coronary Artery Disease" Diagnostics 14, no. 7: 719. https://doi.org/10.3390/diagnostics14070719
APA StyleBurton, T., Fathieh, F., Nemati, N., Gillins, H. R., Shadforth, I. P., Ramchandani, S., & Bridges, C. R. (2024). Development of a Non-Invasive Machine-Learned Point-of-Care Rule-Out Test for Coronary Artery Disease. Diagnostics, 14(7), 719. https://doi.org/10.3390/diagnostics14070719