Quantification of Choroidal Vascular Hyperpermeability on Ultra-Widefield Indocyanine Green Angiography in Macular Neovascularization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CVH Measurement
2.3. Other Choroidal Parameter Measurements
Statistical Analysis
3. Results
3.1. Demographics of the Study Subjects
3.2. CVH Measured on UWICGA Images by Group
3.3. Other Choroidal Parameters Measured on UWICGA and OCT Images by Group
3.4. Correlation among Parameters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piccolino, F.C.; Borgia, L. Central serous chorioretinopathy and indocyanine green angiography. Retina 1994, 14, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Guyer, D.R.; Yannuzzi, L.A.; Slakter, J.S.; Sorenson, J.A.; Ho, A.; Orlock, D. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch. Ophthalmol. 1994, 112, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Sasahara, M.; Tsujikawa, A.; Musashi, K.; Gotoh, N.; Otani, A.; Mandai, M.; Yoshimura, N. Polypoidal choroidal vasculopathy with choroidal vascular hyperpermeability. Am. J. Ophthalmol. 2006, 142, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Usman Akram, M.; Khalid, S.; Tariq, A.; Younus Javed, M. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Comput. Med. Imaging Graph. 2013, 37, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.E.; Freund, K.B. Pachychoroid neovasculopathy. Retina 2015, 35, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.M.G.; Lee, W.K.; Koizumi, H.; Dansingani, K.; Lai, T.Y.Y.; Freund, K.B. Pachychoroid disease. Eye 2019, 33, 14–33. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, N.; Duker, J.S.; Freund, K.B.; Kiss, S.; Querques, G.; Rosen, R.; Sarraf, D.; Souied, E.H.; Stanga, P.E.; Staurenghi, G.; et al. Classification and Guidelines for Widefield Imaging: Recommendations from the International Widefield Imaging Study Group. Ophthalmol Retin. 2019, 3, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Koizumi, H.; Pozonni, M.C. Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2008, 146, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Ra, H.; Baek, J. Choroidal vascular densities of macular disease on ultra-widefield indocyanine green angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Lee, J.H.; Jung, B.J.; Kook, L.; Lee, W.K. Morphologic features of large choroidal vessel layer: Age-related macular degeneration, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 2309–2317. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, S.; Sakamoto, T.; Otsuka, H.; Yoshinaga, N.; Yamashita, T.; Ki, I.Y.; Okubo, A.; Yamashita, T.; Arimura, N. Responsiveness of eyes with polypoidal choroidal vasculopathy with choroidal hyperpermeability to intravitreal ranibizumab. BMC Ophthalmol. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Yanagi, Y.; Ting, D.S.W.; Ng, W.Y.; Lee, S.Y.; Mathur, R.; Chan, C.M.; Yeo, I.; Wong, T.Y.; Cheung, G.C.M. Choroidal vascular hyperpermeability as a predictor of treatment response for polypoidal choroidal vasculopathy. Retina 2018, 38, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Prünte, C.; Flammer, J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am. J. Ophthalmol. 1996, 121, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Jirarattanasopa, P.; Ooto, S.; Nakata, I.; Tsujikawa, A.; Yamashiro, K.; Oishi, A.; Yoshimura, N. Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3663–3672. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, X.; Mi, L.; Peng, Y.; Wen, F. Choroidal structure in subtypes of polypoidal choroidal vasculopathy determined by binarization of optical coherence tomographic images. Clin. Exp. Ophthalmol. 2019, 47, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Ryu, G.; Moon, C.; van Hemert, J.; Sagong, M. Quantitative analysis of choroidal vasculature in polypoidal choroidal vasculopathy using ultra-widefield indocyanine green angiography. Sci. Rep. 2020, 10, 18272. [Google Scholar] [CrossRef] [PubMed]
- Jeong, A.; Lim, J.; Sagong, M. Choroidal Vascular Abnormalities by Ultra-widefield Indocyanine Green Angiography in Polypoidal Choroidal Vasculopathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 29. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Takahashi, H.; Tan, X.; Obata, R.; Yanagi, Y. Widespread choroidal thickening and abnormal midperipheral fundus autofluorescence characterize exudative age-related macular degeneration with choroidal vascular hyperpermeability. Clin. Ophthalmol. 2015, 9, 297–304. [Google Scholar] [CrossRef] [PubMed]
Variables | Controls | nAMD | Thin-Choroid PCV | Thick-Choroid PCV | PNV | p Value * |
---|---|---|---|---|---|---|
Case Numbers | 18 | 25 | 19 | 18 | 33 | |
Age, years (mean ± SD) | 69.22 ± 7.5 | 72.44 ± 12.95 | 70.63 ± 8.25 | 69.94 ± 6.13 | 64.12 ± 12.35 | 0.036 a |
BCVA, logMAR (mean ± SD) | 0.36 ± 0.66 | 0.48 ± 0.6 | 0.44 ± 0.5 | 0.48 ± 0.34 | 0.22 ± 0.23 | 0.198 a |
Sex, male (n, %) | 10 (56) | 7 (28) | 13 (68) | 11 (61) | 21 (64) | 0.040 b |
Laterality, right eye (n, %) | 11 (61) | 13 (52) | 14 (74) | 8 (44) | 19 (58) | 0.448 b |
CVH Area | Controls | nAMD | Thin-Choroid PCV | Thick-Choroid PCV | PNV | p Value * |
---|---|---|---|---|---|---|
Total (pixel intensity, mean ± SD) | 28.58 ± 4.97 | 33.79 ± 8.15 | 33.61 ± 11.50 | 42.19 ± 13.25 | 43.59 ± 7.86 | <0.001 |
PP (pixel intensity, mean ± SD) | 35.42 ± 10.62 | 44.56 ± 14.02 | 45.93 ± 19.74 | 61.5 ± 23.73 | 65.34 ± 15.33 | <0.001 |
MP (pixel intensity, mean ± SD) | 31.45 ± 5.67 | 38.36 ± 9.45 | 36.22 ± 12.38 | 46.53 ± 14.76 | 47.18 ± 8.31 | <0.001 |
FP (pixel intensity, mean ± SD) | 23.31 ± 5.22 | 25.7 ± 7.12 | 24.83 ± 9.19 | 30.23 ± 11.61 | 32.95 ± 10.18 | 0.001 |
CVD Area | Controls | nAMD | Thin-Choroid PCV | Thick-Choroid PCV | PNV | p Value * |
---|---|---|---|---|---|---|
Total (pixel intensity, mean ± SD) | 0.26 ± 0.03 | 0.27 ± 0.04 | 0.26 ± 0.04 | 0.29 ± 0.05 | 0.30 ± 0.04 | 0.001 |
PP (pixel intensity, mean ± SD) | 0.31 ± 0.07 | 0.29 ± 0.09 | 0.30 ± 0.06 | 0.32 ± 0.08 | 0.38 ± 0.08 | <0.001 |
MP (pixel intensity, mean ± SD) | 0.26 ± 0.04 | 0.28 ± 0.05 | 0.26 ± 0.04 | 0.30 ± 0.05 | 0.30 ± 0.05 | 0.006 |
FP (pixel intensity, mean ± SD) | 0.23 ± 0.04 | 0.25 ± 0.04 | 0.24 ± 0.04 | 0.27 ± 0.05 | 0.27 ± 0.05 | 0.026 |
Manual grades (score, mean ± SD) | 0.31 ± 0.52 | 0.66 ± 0.72 | 1.03 ± 0.68 | 1.92 ± 0.73 | 2.24 ± 0.47 | <0.001 |
SFCT (um, mean ± SD) | 210.28 ± 70.25 | 192.64 ± 70.67 | 249.37 ± 46.89 | 330.39 ± 26.4 | 369.88 ± 69.62 | <0.001 |
CVH Area | CVH | CVD | SFCT | BCVA | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total | PP | MP | FP | Total | PP | MP | FP | ||||
Total | Correlation coefficient | 1.000 | 0.887 ** | 0.971 ** | 0.806 ** | 0.305 ** | 0.247 ** | 0.250 ** | 0.310 ** | 0.330 ** | −0.113 |
p | <0.001 | <0.001 | <0.001 | 0.001 | 0.008 | 0.008 | 0.001 | <0.001 | 0.233 | ||
PP | Correlation coefficient | 0.887 ** | 1.000 | 0.904 ** | 0.533 ** | 0.376 ** | 0.336 ** | 0.295 ** | 0.399 ** | 0.387 ** | −0.096 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | 0.312 | ||
MP | Correlation coefficient | 0.971 ** | 0.904 ** | 1.000 | 0.665 ** | 0.343 ** | 0.271 ** | 0.273 ** | 0.371 ** | 0.302 ** | −0.100 |
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.004 | 0.003 | <0.001 | 0.001 | 0.290 | ||
FP | Correlation coefficient | 0.806 ** | 0.533 ** | 0.665 ** | 1.000 | 0.106 | 0.078 | 0.107 | 0.075 | 0.226 * | −0.100 |
p | <0.001 | <0.001 | <0.001 | 0.263 | 0.413 | 0.261 | 0.431 | 0.016 | 0.291 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ra, H.; Jung, Y.; Lee, S.H.; Park, S.-w.; Chhablani, J.; Baek, J. Quantification of Choroidal Vascular Hyperpermeability on Ultra-Widefield Indocyanine Green Angiography in Macular Neovascularization. Diagnostics 2024, 14, 754. https://doi.org/10.3390/diagnostics14070754
Ra H, Jung Y, Lee SH, Park S-w, Chhablani J, Baek J. Quantification of Choroidal Vascular Hyperpermeability on Ultra-Widefield Indocyanine Green Angiography in Macular Neovascularization. Diagnostics. 2024; 14(7):754. https://doi.org/10.3390/diagnostics14070754
Chicago/Turabian StyleRa, Ho, Younhea Jung, Seung Hoon Lee, Seo-woo Park, Jay Chhablani, and Jiwon Baek. 2024. "Quantification of Choroidal Vascular Hyperpermeability on Ultra-Widefield Indocyanine Green Angiography in Macular Neovascularization" Diagnostics 14, no. 7: 754. https://doi.org/10.3390/diagnostics14070754
APA StyleRa, H., Jung, Y., Lee, S. H., Park, S. -w., Chhablani, J., & Baek, J. (2024). Quantification of Choroidal Vascular Hyperpermeability on Ultra-Widefield Indocyanine Green Angiography in Macular Neovascularization. Diagnostics, 14(7), 754. https://doi.org/10.3390/diagnostics14070754