Antenatal Determinants of Postnatal Renal Function in Fetal Megacystis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overall
3.2. Demographic Data
3.3. Fetal Urinary Analytes
3.4. Prenatal Imaging Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Taghavi, K.; Sharpe, C.; Stringer, M.D. Fetal megacystis: A systematic review. J. Pediatr. Urol. 2017, 13, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Capone, V.; Persico, N.; Berrettini, A.; Decramer, S.; De Marco, E.A.; De Palma, D.; Familiari, A.; Feitz, W.; Herthelius, M.; Kazlauskas, V.; et al. Definition, diagnosis and management of fetal lower urinary tract obstruction: Consensus of the ERKNet CAKUT-Obstructive Uropathy Work Group. Nat. Rev. Urol. 2022, 19, 295–303. [Google Scholar] [CrossRef]
- Morris, R.K.; Middleton, L.J.; Malin, G.L.; Quinlan-Jones, E.; Daniels, J.; Khan, K.S.; Deeks, J.; Kilby, M.D.; on behalf of the PLUTO Collaborative Group. Outcome in fetal lower urinary tract obstruction: A prospective registry study. Ultrasound Obstet. Gynecol. 2015, 46, 424–431. [Google Scholar] [CrossRef]
- Lee, J.; Kimber, C.; Shekleton, P.; Cheng, W. Prognostic factors of severe foetal megacystis. ANZ J. Surg. 2011, 81, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.K.; Malin, G.L.; Quinlan-Jones, E.; Middleton, L.J.; Hemming, K.; Burke, D.; Daniels, J.P.; Khan, K.S.; Deeks, J.; Kilby, M.D. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): A randomised trial. Lancet 2013, 382, 1496–1506. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.K.; Malin, G.L.; Khan, K.S.; Kilby, M.D. Antenatal ultrasound to predict postnatal renal function in congenital lower urinary tract obstruction: Systematic review of test accuracy. BJOG 2009, 116, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.K.; Quinlan-Jones, E.; Kilby, M.D.; Khan, K.S. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat. Diagn. 2007, 27, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Anumba, D.O.; Scott, J.E.; Plant, N.D.; Robson, S.C. Diagnosis and outcome of fetal lower urinary tract obstruction in the northern region of England. Prenat. Diagn. 2005, 25, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Bornes, M.; Spaggiari, E.; Schmitz, T.; Dreux, S.; Czerkiewicz, I.; Delezoide, A.; El-Ghoneimi, A.; Oury, J.; Muller, F. Outcome and etiologies of fetal megacystis according to the gestational age at diagnosis: Etiologies and outcome of fetal megacystis. Prenat. Diagn. 2013, 33, 1162–1166. [Google Scholar] [CrossRef]
- Duin, L.K.; Fontanella, F.; Groen, H.; van Scheltema, P.N.A.; Cohen-Overbeek, T.E.; Pajkrt, E.; Bekker, M.; Willekes, C.; Bax, C.J.; Oepkes, D.; et al. Prediction model of postnatal renal function in fetuses with lower urinary tract obstruction (LUTO)—Development and internal validation. Prenat. Diagn. 2019, 39, 1235–1241. [Google Scholar] [CrossRef]
- Fontanella, F.; van Scheltema, P.N.A.; Duin, L.; Cohen-Overbeek, T.E.; Pajkrt, E.; Bekker, M.N.; Willekes, C.; Oepkes, D.; Bilardo, C.M. Antenatal staging of congenital lower urinary tract obstruction. Ultrasound Obstet. Gynecol. 2019, 53, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Favre, R.; Weingertner, A.S.; Zaloszyc, A.; Kohler, M.; Guerra, F.; Rosenblatt, J.; Muller, F.; Dreux, S.; Sananès, N. Evaluation of Sequential Urine Analysis when Selecting Candidates for Vesicoamniotic Shunting in Lower Urinary Tract Obstruction. Fet. Diagn. Ther. 2021, 48, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Dreux, S.; Rosenblatt, J.; Moussy-Durandy, A.; Patin, F.; Favre, R.; Lortat-Jacob, S.; El Ghoneimi, A.; Oury, J.; Deschenes, G.; Ville, Y.; et al. Urine biochemistry to predict long-term outcomes in fetuses with posterior urethral valves. Prenat. Diagn. 2018, 38, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Moscardi, P.R.M.; Katsoufis, C.P.; Jahromi, M.; Blachman-Braun, R.; DeFreitas, M.J.; Kozakowski, K.; Castellan, M.; Labbie, A.; Gosalbez, R.; Alam, A. Prenatal renal parenchymal area as a predictor of early end-stage renal disease in children with vesicoamniotic shunting for lower urinary tract obstruction. J. Pediatr. Urol. 2018, 14, e1–e320. [Google Scholar] [CrossRef] [PubMed]
- Lipitz, S.; Ryan, G.; Samuell, C.; Haeusler, M.C.; Robson, S.C.; Dhillon, H.K.; Nicolini, U.; Rodeck, C.H. Fetal urine analysis for the assessment of renal function in obstructive uropathy. Am. J. Obstet. Gynecol. 1993, 168 Pt 1, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.P.; Danzer, E.; Koh, J.; Polzin, W.; Harman, C.; O’Shaughnessy, R.; Brown, R.; Zaretsky, M.V.; for the North American Fetal Therapy Network (NAFTNet). Natural History of Fetal Lower Urinary Tract Obstruction with Normal Amniotic Fluid Volume at Initial Diagnosis. Fet. Diagn. Ther. 2018, 44, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.P.; Bukowski, T.P.; Reitleman, C.; Isada, N.B.; Pryde, P.G.; Evans, M.I. In utero surgical treatment of fetal obstructive uropathy: A new comprehensive approach to identify appropriate candidates for vesicoamniotic shunt therapy. Am. J. Obstetr. Gynecol. 1994, 170, 1770–1779. [Google Scholar] [CrossRef]
- El-Ghoneimi, A.; Desgrippes, A.; Luton, D.; Macher, M.-A.; Guibourdenche, J.; Garel, C.; Muller, F.; Vuillard, E.; Lottmann, H.; Nessmann, C.; et al. Outcome of posterior urethral valves: To what extent is it improved by prenatal diagnosis? J. Urol. 1999, 162 Pt 1, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Faure, A.; Panait, N.; Panuel, M.; Alessandrini, P.; D’Ercole, C.; Chaumoitre, K.; Merrot, T. Predicting postnatal renal function of prenatally detected posterior urethral valves using fetal diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient determination: Predicting renal function of PUV using fetal diffusion-weighted MRI. Prenat. Diagn. 2017, 37, 666–672. [Google Scholar] [CrossRef]
- Jeong, B.D.; Won, H.S.; Lee, M.Y. Perinatal Outcomes of Fetal Lower Urinary Tract Obstruction After Vesicoamniotic Shunting Using a Double-Basket Catheter: Outcomes of Fetal Lower Urinary Tract Obstruction. J. Ultrasound Med. 2018, 37, 2147–2156. [Google Scholar] [CrossRef]
- Zaccara, A.; Giorlandino, C.; Mobili, L.; Brizzi, C.; Bilancioni, E.; Capolupo, I.; Capitanucci, M.L.; De Gennaro, M. Amniotic fluid index and fetal bladder outlet obstruction. do we really need more? J. Urol. 2005, 174 Pt 2, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Hutton, K.A.; Thomas, D.F.; Davies, B.W. Prenatally detected posterior urethral valves: Qualitative assessment of second trimester scans and prediction of outcome. J. Urol. 1997, 158 Pt 2, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Won, H.S.; Kim, S.K.; Shim, J.Y.; Lee, P.R.; Kim, A. Vesicoamniotic shunting using a double-basket catheter appears effective in treating fetal bladder outlet obstruction. Acta Obstet. Gynecol. Scand. 2006, 85, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Craparo, F.J.; Rustico, M.; Tassis, B.; Coviello, D.; Nicolini, U. Fetal serum beta2-microglobulin before and after bladder shunting: A 2-step approach to evaluate fetuses with lower urinary tract obstruction. J. Urol. 2007, 178, 2576–2579. [Google Scholar] [CrossRef] [PubMed]
- Sarhan, O.; Zaccaria, I.; Macher, M.A.; Muller, F.; Vuillard, E.; Delezoide, A.L.; Sebag, G.; Oury, J.F.; Aigrain, Y.; El-Ghoneimi, A. Long-term outcome of prenatally detected posterior urethral valves: Single center study of 65 cases managed by primary valve ablation. J. Urol. 2008, 179, 307–312; discussion 312–313. [Google Scholar] [CrossRef] [PubMed]
- Ruano, R.; Sananes, N.; Wilson, C.; Au, J.; Koh, C.J.; Gargollo, P.; Shamshirsaz, A.A.; Espinoza, J.; Safdar, A.; Moaddab, A.; et al. Fetal lower urinary tract obstruction: Proposal for standardized multidisciplinary prenatal management based on disease severity. Ultrasound Obstet. Gynecol. 2016, 48, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Nassr, A.A.; Shamshirsaz, A.A.; Erfani, H.; Espinoza, J.; Sanz Cortes, M.; Koh, C.J.; Roth, D.R.; Angelo, J.R.; Mandy, G.T.; Braun, M.C.; et al. Outcome of fetuses with lower urinary tract obstruction and normal amniotic fluid volume in second trimester of pregnancy. Ultrasound Obstet. Gynecol. 2019, 54, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Muller, F.; Dommergues, M.; Mandelbrot, L.; Aubry, M.C.; Nihoul-Fekete, C.; Dumez, Y. Fetal urinary biochemistry predicts postnatal renal function in children with bilateral obstructive uropathies. Obstet. Gynecol. 1993, 82, 813–820. [Google Scholar]
- Nicolini, U.; Fisk, N.M.; Rodeck, C.H.; Beacham, J. Fetal urine biochemistry: An index of renal maturation and dysfunction. Br. J. Obstet. Gynaecol. 1992, 99, 46–50. [Google Scholar] [CrossRef]
- Grignon, A.; Filion, R.; Filiatrault, D.; Robitaille, P.; Homsy, Y.; Boutin, H.; Leblond, R. Urinary tract dilatation in utero: Classification and clinical applications. Radiology 1986, 160, 645–647. [Google Scholar] [CrossRef]
- Fédou, C.; Breuil, B.; Golovko, I.; Decramer, S.; Magalhães, P.; Muller, F.; Dreux, S.; Zürbig, P.; Klein, J.; Schanstra, J.P.; et al. Comparison of the amniotic fluid and fetal urine peptidome for biomarker discovery in renal developmental disease. Sci. Rep. 2020, 10, 21706. [Google Scholar] [CrossRef] [PubMed]
- Buffin-Meyer, B.; Klein, J.; Breuil, B.; Muller, F.; Moulos, P.; Groussolles, M.; Bouali, O.; Bascands, J.-L.; Decramer, S.; Schanstra, J.P. Combination of the fetal urinary metabolome and peptidome for the prediction of postnatal renal outcome in fetuses with PUV. J. Proteom. 2018, 184, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Buffin-Meyer, B.; Klein, J.; van der Zanden, L.F.M.; Levtchenko, E.; Moulos, P.; Lounis, N.; Conte-Auriol, F.; Hindryckx, A.; Wühl, E.; Persico, N.; et al. The ANTENATAL multicentre study to predict postnatal renal outcome in fetuses with posterior urethral valves: Objectives and design. Clin. Kidney J. 2020, 13, 371–379. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Study Design | Study Period | Target Population | Number of Patients Included in the Study | Underlying Diagnosis | Number of Patients Included in the Systematic Review | Prenatal Prognostic Factors Investigated | Timing of Renal Function Evaluation | ||
---|---|---|---|---|---|---|---|---|---|---|
Demographic Data | Prenatal Imaging Findings | Fetal Urinary Analytes | ||||||||
Anumba et al. [8], 2005 | Retrospective multicentric study | 1984–1997 | Fetuses with an enlarged bladder failing to empty during the prenatal ultrasound assessment | 113 | PUVs n = 72; urethral atresia n = 33; PBS n = 4; unknown = 4 | 15 | no | yes | no | 18 months of age |
Bornes et al. [9], 2013 | Retrospective unicentric study | 1989–2009 | Fetuses prenatally diagnosed with megacystis | 84 | PUVs n = 25; urethral atresia n = 10; congenital megalourethra n = 3; VUR n = 9; trisomy 18 n = 7; trisomy 13 n = 2; complex chromosomal defects n = 2; anorectal malformations n = 3; cloacae n = 2; urogenital sinus n = 1; VACTERL associations n = 5; MMIHS n = 4; OEIS n = 1; PBS n = 1; unlabeled syndromes n = 4; spontaneous resolution n = 5 | 32 | yes | no | no | 1 year of minimum follow-up |
Duin et al. [10], 2019 | Retrospective multicentric study | 2000–2015 | Fetuses with a prenatal diagnosis of megacystis and a confirmed postnatal diagnosis of LUTO | 95 | nd | 95 | yes | yes | no | 1st year after diagnosis |
Fontanella et al. [11], 2019 | Retrospective multicentric study | 2007–2014 | Fetuses with early/late megacystsis at a high risk of isolated LUTO | 261 | nd | 66 | no | yes | no | 1st year after birth |
Koch et al. [12], 2021 | Retrospective unicentric study | 1994–2013 | Fetuses with isolated LUTO (defined as megacystsis with a dilated posterior urethra and bilateral hydronephrosis) undergoing 2 sequential urine analyses | 26 | PUVs n = 17; megalourethra n = 2; PBS n = 2; urethral atresia/stenosis n = 2; multicystic kidney dysplasia n = 2; VUR n = 1 | 9 | no | no | yes | 5 years of age |
Dreux et al. [13], 2018 | Retrospective multicentric study | 1986–2005 | Fetuses with a prenatal diagnosis of megacystis in the 2nd–3rd trimesters of pregnancy and a confirmed postnatal diagnosis of PUVs | 89 | PUVs n = 89 | 89 | no | no | yes | Minimum of 10 years of age |
Moscardi et al. [14], 2018 | Retrospective unicentric study | 2009–2015 | Fetuses with megacystsis who survived to birth following VAS | 15 | PUVs n = 8; PBS n = 4; urethral atresia n = 2; MMIHS n = 1 | 15 | yes | yes | no | 1 year of age |
Lipitz et al. [15], 1993 | Retrospective unicentric study | nd | Fetuses with LUTO (as defined by an enlarged bladder) | 25 | PUVs n = 15 | 8 | no | yes | yes | Last follow-up |
Johnson et al. [16], 2018 | Retrospective multicentric study | 2007–2012 | Fetuses prenatally diagnosed with LUTO (as defined by an enlarged bladder with dilated proximal urethra and the presence of hydronephrosis with pyelicocaliectasis) with normal midgestational amniotic fluid volume | 32 | PUVs n = 18; PBS n = 8; VUR n = 4; urethral stricture n = 1; pseudo-PBS n = 1 | 25 | yes | yes | no | Newborn discharge, 1-year follow-up, and 2-year follow-up |
Johnson et al. [17], 1994 | Retrospective unicentric review (n = 6)/prospective analysis (n = 28) | nd | Fetuses diagnosed with LUTO (described as megacystis, bilateral hydronephrosis and a decreased amniotic fluid volume) | 34 | TOP n = 11; spontaneous resolution n = 3; IUFD n = 4; neonatal death n = 1; cloacal anomalies n = 2; PUVs n = 3; anterior urethral valves and megalourethra n = 1; MMIHS n = 1; urethral atresia n = 3; PBS n = 5 | 8 | no | yes | yes | 1 year of age |
El-ghoneimi et al. [18], 1999 | Retrospective unicentric study | 1989–1996 | Fetuses prenatally diagnosed with PUVs (as defined by megacystis and severe bilateral hydronephrosis) | 30 | PUVs n = 30 | 9 | yes | yes | yes | Last follow-up (median: 3 years; q1–q3: 2.0–6.0 years) |
Faure et al. [19], 2017 | Retrospective unicentric study | 2003–2014 | Fetuses with suspected PUVs on the basis of the ultrasonographic finding of severe urinary tract anomalies (oligohydramnios, hyperechoic kidneys, megacystis and/or bilateral hydronephrosis) undergoing fetal MRI | 11 | PUVs n = 9; TOP n = 2 | 9 | yes | yes | no | 1st year after birth |
Jeong et al. [20], 2018 | Retrospective unicentric study | 1998–2013 | Fetuses with LUTO (as defined by an enlarged urinary bladder and a dilated proximal urethra) undergoing VAS | 32 | PUVs n = 15; cloacal anomaly n = 7; urethral stenosis n = 3; TOP n = 5; IUFD n = 2 | 22 | no | yes | no | 28 days after birth and 2 years of age |
Zaccara et al. [21], 2005 | Retrospective unicentric study | 1999–2002 | Fetuses with a distended and thickened bladder and enlarged kidneys | 28 | Urethral atresia n = 6; PUVs n = 19; unknown n = 3 | 18 | no | yes | no | 1st year after birth |
Hutton et al. [22], 1997 | Retrospective unicentric study | 1982–1992 | Fetuses prenatally diagnosed with PUVs (as defined by a dilated urinary bladder and upper tract dilatation) | 32 | PUVs n = 32 | 13 | no | yes | no | Last follow-up (median: 5.7 years; range: 4.4– 10 years) |
Won et al. [23], 2006 | Retrospective unicentric study | 1998–2005 | Fetuses with bilateral hydronephrosis associated with evidence of bladder outlet obstruction and oligohydramnios | 8 | PUVs n = 5; cloacal anomaly n = 1; urethral stenosis n = 1; IUFD = 1 | 6 | yes | yes | yes | Last follow-up (median: 1.9 years; q1–q3: 0.5–3.2 years) |
Craparo et al. [24], 2007 | Retrospective unicentric study | 1999–2006 | Fetuses with megacystis and oligohydramnios | 12 | PUVs n = 12 | 10 | yes | no | yes | Last follow-up (median: 1.5 years; q1–q3: 1.0–1.8 years) |
Sarhan et al. [25], 2008 | Retrospective unicentric study | 1987–2004 | Fetuses with prenatally detected PUVs (as defined by megacystis and bilateral severe hydronephrosis) | 79 | PUVs n = 79 | 15 | yes | yes | yes | Last follow-up (median: 9.6 years; q1–q3: 6.4–10.8 years) |
Ruano et al. [26], 2016 | Retrospective unicentric study | 2013–2014 | Fetuses with primary LUTO (as defined by a dilated urinary bladder associated with bilateral hydroureter/hydronephrosis) | 25 | nd | 15 | yes | yes | yes | 6 months of age |
Nassr e al [27], 2019 | Retrospective unicentric study | 2013–2017 | Fetuses with LUTO (as defined by an enlarged urinary bladder with hydronephrosis and/or hydroureter) and a normal amniotic fluid volume in the 2nd trimester of pregnancy | 18 | PUVs n = 14; VUR n = 1; congenital bulbar urethral stricture n = 1; PBS n = 1; anterior urethral valve n = 1 | 14 | no | yes | no | 2 years of age |
Author, Year | Threshold | Criteria Adopted for Defining Renal Function | Timing of Renal Function Evaluation | Results |
---|---|---|---|---|
GA at diagnosis | ||||
Bornes et al. [9], 2013 | 2nd trimester vs. 3rd trimester | Good renal function: eGFR > 75 mL/min/1.73 m2 | 1 year of minimum follow-up | Good renal function: 7/8 (87.5%) patients diagnosed in the 2nd trimester vs. 23/24 (95.8%) patients diagnosed in the 3rd trimester (p-value: ns) |
Duin et al. [10], 2019 | na | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | OR (95% CI): 0.971 (0.917–1.027); p-value: 0.305 |
Dreux et al. [13], 2018 | 25 weeks | Poor renal function: eGFR < 30 mL/min/1.73 m2 | Minimum 10 years of age | AUC (95% CI): 0.44 (0.33–0.55) |
Moscardi et al. [14], 2018 | na | ESRD: eGFR < 15 mL/min/1.73 m2 | 1 year of age | Mean (±sd): 18.17 (±2.93) weeks in patients with ESRD vs. 18.92 (±3.37) weeks in non-ESRD patients (p-value: ns) |
El-Ghoneimi et al. [18], 1999 | na | Normal renal function: serum creatinine level < 50 µmol/L (0.56 mg/dL) | Last follow-up (median: 3 years; q1–q3: 2.0–6.0 years) | Median: 33 weeks (q1–q3: 24–33 weeks) in patients with normal renal function vs. 33 weeks (q1–q3: 29–34 weeks) in patients with impaired renal function (p-value: ns) |
Faure et al. [19], 2017 | 3rd trimester of gestation | Nadir serum creatinine level | 1st year after birth | Median nadir serum creatinine level: 24 μmol/L (q1–q3: 23–48 μmol/L) in patients diagnosed during the 3rd trimester of pregnancy vs. 49 μmol/L (q1––q3: 30–65 μmol/L) in patients diagnosed before the 3rd trimester of pregnancy (p-value: ns) |
Sarhan et al. [25], 2008 | na | Normal renal function: serum creatinine level < 50 μmol/L (0.56 mg/dL) | Last follow-up: median 9.6 years (q1–q3: 6.4–10.8 years) | Median: 28.5 weeks (q1–q3: 23–33 weeks) in patients with normal renal function vs. 29 weeks (q1–q3: 25–33 weeks) in patients with impaired renal function (p-value: ns) |
Ruano et al. [26], 2016 | na | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | OR (95% CI): 0.92 (0.73–1.13); Pr (OR < 1) = 22.5% |
Ruano et al. [26], 2016 | 1st trimester | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | OR (95% CI): 0.91 (0.06–10.5); Pr (OR > 1) = 47.3% |
GA at delivery | ||||
Johnson et al. [16], 2018 | na | Worsening serum creatinine level ≥ 0.51 mg/dL | Newborn discharge, 1-year follow-up, 2-year follow-up | Univariate analysis: OR (95% CI): −0.1 (−0.2; −0.1); p-value: <0.0001 |
Multivariate analysis: OR (95% CI): −0.1 (−0.18, −0.03); p-value: 0.01) | ||||
Johnson et al. [16], 2018 | na | Need for RRT | Newborn discharge, 1-year follow-up, 2-year follow-up | Univariate analysis: OR (95% CI): −1.1 (−1.7; −0.4); p-value: <0.001 |
Multivariate analysis: OR (95% CI): −0.9 (−1.5; −0.29); p-value: 0.004) | ||||
Craparo et al. [24], 2007 | na | Renal insufficiency NOS | Last follow-up (median: 1.5 years; q1–q3: 1.0–1.8 years) | Median: 38 weeks (q1-q3: 37.5–38.5 weeks) in patients with normal renal function vs. 36.5 weeks (q1–q3: 36–38 weeks) in patients with impaired renal function (p-value: ns) |
Author, Year | Fetal Urinary Analytes/Profiles Investigated | GA at Sampling (Weeks) | Criteria Adopted for Renal Function Evaluation | Timing of Renal Function Evaluation | Results |
---|---|---|---|---|---|
Koch et al. [12], 2021 | Normal biochemical profile: sodium < 100 mmol/L, chloride < 90 mmol/L, calcium < 8 mg/dL, β2-microglobulin < 6 mg/L on the 1st ultrasound-guided bladder puncture; improving biochemical profile: decrease in at least one of the above parameters on the 2nd ultrasound-guided bladder puncture performed 24–48 h after the 1st one | nd | Normal renal function: eGFR > 90 mL/min/1.73 m2 | 5 years of age | Normal renal function: 3/3 (60.0%) with normal biochemical profile vs. 5/6 (83.3%) with improving biochemical profile (p-value: ns) |
Dreux et al. [13], 2018 | β2-microglobulin > 5.0 mg/L; phosphorus > 0.2 mmol/L; protein > 0.05 g/L; sodium > 60 mmol/L; calcium > 1.2 mmol/L; chloride > 60 mmol/L; glucose > 0.2 mmol/L; (β2-microglobulin × chloride)/10 > 18; (β2-microglobulin × sodium × calcium)/100 > 3 | Median: 32 weeks (range: 21–36 weeks) | Poor renal function: eGFR < 30 mL/min/1.73 m2 | Minimum 10 years of age | Univariate model AUC (95% CI): β2-microglobulin: 0.85 (0.67–0.90); phosphorus: 0.72 (0.58–0.82); protein: 0.73 (0.51–0.79); sodium: 0.72 (0.63–0.89); calcium: 0.69 (0.48–0.74); chloride: 0.72 (0.55–0.82); glucose: 0.73 (0.63–0.85) |
Multivariate model AUC (95% CI): (β2-microglobulin × chloride)/10: 0.89 (0.81–0.96); (β2-microglobulin × sodium × calcium)/100: 0.79 (0.75–0.95) | |||||
Lipitz et al. [15], 1993 | Sodium (mmol/L); potassium (mmol/L); calcium (mmoI/L); urea (µmol/L); creatinine (µmol/L); osmolality (mOsm/L); β2-microglobulin (mg/L); N-Acetyl-l3-D-glucosaminidase (U/L); microalbumin (mg/L) ** | nd | Impaired renal function: eGFR greater than expected for their age and weight or serum creatinine level > 70 mmol/L after the 1st week of life or need for peritoneal dialysis | nd | Mean sodium level (±sd): 65.5 (±12) mmol/L with normal renal function vs. 81.3 (±23) mmol/L with impaired renal function (p-value: ns) |
Johnson et al. [17], 1994 | Favorable prognostic criteria: sodium < 100 mg/dL; calcium < 8 mg/dL; osmolality < 200 mOsm/L; β2-microglobulin < 4 mg/L; total protein < 20 mg/dL) | nd | Normal renal function: serum creatinine level ≤ 1.0 | 1 year of age | Normal renal function: 6/6 (100.0%) with favorable prognostic criteria vs. 0/2 (0.0%) with unfavorable prognostic criteria (p-value: <0.05) |
El-Ghoneimi et al. [18], 1999 | Sodium; chloride; calcium: phosphorus; glucose; ammonium; creatinine; urea; total protein; β2-microglobulin * | nd | Normal renal function: serum creatinine level < 50 µmol/L (0.56 mg/dL) | Last follow-up (median: 3 years; q1–q3: 2.0–6.0 years) | Mean microalbumin level (±sd): 25 (± 27) mg/L with normal renal function vs. 48 (± 33) mg/L with impaired renal function (p-value: ns) |
Won et al. [23], 2006 | Favorable prognostic criteria: sodium < 100 mmol/L; chloride < 90 mmol/L; osmolarity < 200 mOsm; β2-microglobulin (<4 mg/L | Median: 19.1 weeks (IQR: 17–21.6 weeks) | Normal renal function: serum creatinine level < 88 mmol/L | Last follow-up (median: 1.9 years; q1–q3: 0.5–3.2 years) | Mean N-Acetyl-l3-D-glucosaminidase level (±sd): 53 (± 1 U/L) with normal renal function vs. 190 (±86 U/L) with impaired renal function (p-value: ns) |
Craparo et al. [24], 2007 | Sodium > 100 mEq/L; β2-microglobulin > 13 mg/L | Median: 23 weeks (IQR: 20–28 weeks) | Renal insufficiency NOS | Last follow-up (median: 1.5 years; q1–q3: 1.0–1.8 years) | Mean osmolality (±sd): 146 (±23) mOsm/L with normal renal function vs. 181 (±23) mOsm/L with impaired renal function (p-value: ns) |
Sarhan et al. [25], 2008 | Sodium (mmol/L); β2-microglobulin (mg/L) | Median: 33 weeks (IQR: 31–33 weeks) | Normal renal function: serum creatinine level < 50 µmol/L (0.56 mg/dL) | Last follow-up: median 9.6 years (q1–q3: 6.4–10.8 years) | Mean urea level (±sd): 4.5 (±0.0) µmol/L with normal renal function vs. 5.6 (±2.0) µmol/L with impaired renal function (p-value: ns) |
Ruano et al. [26], 2016 | Favorable urinary biochemistry: sodium < 100 mEq/L; chloride < 90 mEq/L; osmolarity < 200 mOsm/L; β2-microglobulin < 6 mg/L | Range: 18–30 weeks | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | Mean creatinine level (±sd): 181 (±99) µmol/L with normal renal function vs. 180 (±74) µmol/L impaired renal function (p-value: ns) |
Mean calcium level (±sd): 0.8 (±0.1) mmol/L with normal renal function vs. 1.2 (±0.7) mmol/L with impaired renal function (p-value: ns) |
Parameter | Author | Threshold | Criteria Adopted to Define the Renal Function | Timing of Renal Function Evaluation | Results |
---|---|---|---|---|---|
Bladder findings | |||||
Bladder longitudinal diameter | Duin et al. [10], 2019 | na (mm) | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | OR (95% CI): 0.998 (0.971–1.025); p-value: 0.865 |
Bladder wall thickness | Duin et al. [10], 2019 | na (mm) | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | OR (95% CI): 1.037 (0.937–1.147); p-value: 0.477 |
Bladder wall thickened | Duin et al. [10], 2019 | y/n | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | OR (95% CI): 0.431 (0.111–1.665); p-value: 0.221 |
Bladder volume | Fontanella et al. [11], 2019 | na (cm3) | Severely impaired renal function: eGFR < 30 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after birth | Univariate analysis: OR (95% CI): 1.0 (0.97–1.04); p-value: 0.89 |
Multivariate analysis: OR (95% CI): 1.0 (0.96–1.04), p-value: 0.99 | |||||
Keyhole sign | Duin et al. [10], 2019 | y/n | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | OR (95% CI): 2.645 (0.800–8.333); p-value: 0.111 |
Moscardi et al. [14], 2018 | na (cm) | ESRD: eGFR < 15 mL/min/1.73 m2 | 1 year of age | Mean 3.66 (±2.82) cm in patients with ESRD vs. 3.77 (±3.18) cm in non-ESRD patients (p-value: ns) | |
Inability to empty the bladder (at least partially) | Johnson et al. [16], 2018 | y/n | Worsening serum creatinine level ≥ 0.51 mg/dL | Newborn discharge, 1-year follow-up, and 2-year follow-up | OR (95% CI): −0.6 (−1.1, −0.11); p-value: 0.017 |
Johnson et al. [16], 2018 | y/n | Need for RRT | Newborn discharge, 1-year follow-up, and 2-year follow-up | OR (95% CI): −1.4 (−2.8, 0.1); p-value: 0.059 | |
Ureteral findings | |||||
Ureteral dilatation | Fontanella et al. [11], 2019 | na (mm) | Severely impaired renal function: eGFR < 30 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after birth | Univariate analysis: OR (95% CI): 1.17 (0.98–1.39); p-value: 0.81 |
Ruano et al. [26], 2016 | y/n | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | Multivariate analysis: OR (95% CI): 1.12 (0.92–1.37); p-value: 0.27 | |
OR (95% CI): 0.17 (0.01–3.93); Pr (OR > 1): 84.9% | |||||
Renal findings | |||||
Hyperechogenicity of the renal cortex | Duin et al. [10], 2019 | y/n | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | Univariable logistic regression: OR (95% CI): 2.647 (1.041–6.734); p-value: 0.041 |
El-Ghoneimi et al. [18], 1999 | y/n | Normal renal function: serum creatinine level < 50 µmol/L (0.56 mg/dL) | Last follow-up (median: 3 years; q1–q3: 2.0–6.0 years) | Normal renal function: 1/3 (33.3%) in patients with hyperechoic kidneys vs. 3/3 (100.0%) in patients without hyperechoic kidneys (p-value: ns) Normal renal function: 3/3 (100.0%) with in patients with hyperechoic kidneys vs. 2/6 (33.3%) in patients without hyperechoic kidneys (p-value: < 0.05) | |
Faure et al. [19], 2017 | y/n | Nadir serum creatinine level | 1st year after birth | Multivariable logistic regression: OR (95% CI): 2.433 (0.934–6.338); p-value: 0.069 | |
Won et al. [23], 2006 | y/n | Normal renal function: serum creatinine level < 88 mmol/L | Last follow-up (median: 1.9 years; q1–q3: 0.5–3.2 years) | Normal renal function: 2/6 (33.3%) in patients with hyperechoic kidneys vs. 2/9 (22.2%) in patients without hyperechoic kidneys (p-value: ns) | |
Sarhan et al. [25], 2008 | y/n | Normal renal function: serum creatinine level < 50 μmol/L (0.56 mg/dL) | Last follow-up: median 9.6 years (q1–q3: 6.4–10.8 years) | OR (95% CI): 4.35 (0.53–44.12); Pr (OR > 1): 91.5% | |
Ruano et al. [26], 2016 | y/n | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | Median nadir serum creatinine level: 49 μmol/L (q1–q3: 30–169 μmol/L in patients with hyperechoic kidneys vs. 25 μmol/L (q1–q3: 24–48 μmol/L) in patients without hyperechoic kidneys (p-value: ns) | |
Renal cortical cysts | Johnson et al. [16], 2018 | y/n | Worsening serum creatinine level ≥ 0.51 mg/dL | Newborn discharge, 1-year follow-up, and 2-year follow-up | OR (95% CI): 0.55 (0.1–1.1), p-value: 0.045 |
y/n | Need for RRT | Newborn discharge, 1-year follow-up, and 2-year follow-up | OR (95% CI): 1.9 (0.1–3.8), p-value: 0.041 | ||
El-Ghoneimi et al. [18], 1999 | y/n | Normal renal function: serum creatinine level < 50 µmol/L (0.56 mg/dL) | Last follow-up (median: 3 years; q1–q3: 2.0–6.0 years) | Normal renal function: 0/1 (0.0%) patients with renal cortical cysts vs. 5/8 (62.5%) patients without renal cortical cysts (p-value: ns) | |
Won et al. [23], 2006 | y/n | Normal renal function: serum creatinine level < 88 mmol/L | Last follow-up (median: 1.9 years; q1–q3: 0.5–3.2 years) | Normal renal function: 0/1 (0.0%) patients with renal cortical cysts vs. 4/5 (80.0%) patients without renal cortical cysts (p-value: ns) | |
Sarhan et al. [25], 2008 | y/n | Normal renal function: serum creatinine level < 50 μmol/L (0.56 mg/dL) | Last follow-up: median 9.6 years (q1–q3: 6.4–10.8 years) | 0/4 (0.0%) patients with normal renal function vs. 5/11 (45.5%) patients with impaired renal function (p-value: ns) | |
Ruano et al. [26], 2016 | y/n | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | OR (95% CI): 7.50 (0.22–405.19); Pr (OR > 1): 86.6% | |
Renal dysplasia | Anumba et al. [8], 2005 | Echogenic e/o cystic kidneys (y/n) | Impaired renal function: eGFR < 85 mL/min/1.73 m2 | 18 months of age | Impaired renal function: 6/6 (100.0%) patients with echogenic e/o cystic kidneys vs. 3/9 (33.3%) with normal kidneys (p-value: <0.05) |
Anumba et al. [8], 2005 | Echogenic e/o cystic kidneys (y/n) | ESRD: eGFR < 10 mL/min/1.73 m2 | 18 months of age | ESRD: 1/6 (16.7%) patients with echogenic e/o cystic kidneys vs. 1/9 (11.1%) with normal kidneys (p-value: ns) | |
Fontanella et al. [11], 2019 | Abnormal renal cortical appearance NOS (y/n) | Severely impaired renal function: eGFR < 30 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after birth | Univariate analysis: OR (95% CI): 3.3 (0.54–20.23); p-value: 0.19 | |
Moscardi et al. [14] | Unilateral cystic kidney and/or echogenic renal parenchyma in the 2nd trimester of pregnancy (y/n) | ESRD: eGFR < 15 mL/min/1.73 m2 | 1 year of age | Multivariate analysis: OR (95% CI): 2.96 (0.21–42.66); p-value: 0.43 | |
Moscardi et al. [14] | Cystic kidney and/or echogenic renal parenchyma in the 3rd trimester of pregnancy (y/n) | ESRD: eGFR < 15 mL/min/1.73 m2 | 1 year of age | 5/8 (50.0%) patients with ESRD vs. 1/7 (14.3%) patients with non-ESRD (p-value: ns) | |
Ruano et al. [26], 2016 | Enlarged hyperechogenic kidney with no corticomedullary differentiation and small cysts in the cortex (y/n) | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | OR (95% CI): 0.98 (0.00–135.33), Pr (OR > 1): 50.3% | |
Abnormal kidney ADC value | Faure et al. [19], 2017 | ADC value > 1.8 mm2s−1 (y/n) | Nadir serum creatinine level | 1st year after birth | Median nadir serum creatinine level: 57 μmol/L (q1-q3: 39.5–117 μmol/L) in patients with abnormal ADC value vs. 24.5 μmol/L (q1-q3: 23.5–36.5μmol/L) in patients with normal ADC value (p-value: < 0.05) |
Renal parenchyma area | Moscardi et al. [14], 2018 | na (cm2) | ESRD: eGFR < 15 mL/min/1.73 m2 | 1 year of age | AUC (95% CI): 0.793 (0.639–0.949) |
Renal anteroposterior diameter | Duin et al. [10], 2019 | na (mm) | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | OR (95% CI): 0.990 (0.936–1.047); p-value: 0.719 |
Hydronephrosis | Duin et al. [10], 2019 | Renal pelvis DAP (mm) | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | OR (95% CI): 0.698 (0.197–2.482); p-value: 0.579 |
El-Ghoneimi et al. [18], 1999 | Hydronephrosis NOS (y/n) | Normal renal function: serum creatinine level < 50 µmol/L (0.56 mg/dL) | Last follow-up (median: 3 years; q1–q3: 2.0–6.0 years) | Normal renal function: 5/8 (62.5%) patients with hydronephrosis vs. 0/1 (0.0%) patients without hydronephrosis (p-value: ns) | |
Hutton et al. [22], 1997 | Megacystis alone or associated with mild upper tract dilatation (DAP: 5–9 mm) vs. megacystis associated with moderate/severe upper tract dilatation (DAP: >10 mm) | Impaired renal function: serum creatinine level 2 standard deviations higher than normal for age or need of RRT | Last follow-up (median: 5.7 years; range: 4.4–10 years) | Impaired renal function: 2/8 (25.0%) patients with megacystis alone or associated with mild upper tract dilatation (DAP: 5–9 mm) vs. 4/5 (80.0%) patients with megacystis associated with moderate/severe upper tract dilatation (DAP: >10 mm) (p-value: ns) | |
Sarhan et al. [25], 2008 | At least monolateral hydronephrosis NOS (y/n) | Normal renal function: serum creatinine level < 50 μmol/L (0.56 mg/dL) | Last follow-up: median 9.6 years (q1–q3: 6.4–10.8 years) | Normal renal function: 4/13 (30.8%) patients with hydronephrosis vs. 0/2 (0.0%) patients without hydronephrosis (p-value: ns) | |
Ruano et al. [26], 2016 | Grade ≥ 2 according to Grignon’s classification * (y/n) | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | OR (95% CI): 2.05 (0.09–72.69); Pr (OR > 1) = 67.3% | |
Amniotic fluid findings | |||||
Oligohydramnios | Duin et al. [10], 2019 | SDP < 3 cm (y/n) | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | Univariable logistic regression: OR (95% CI): 2.074 (0.705–6.099); p-value: 0.185 |
Moscardi et al. [14], 2018 | AFI < 5 cm or < 5th percentile for the corresponding GA at delivery (y/n) | ESRD: eGFR < 15 mL/min/1.73 m2 | 1 year of age | Oligohydramnios: 7/8 (87.5%) patients with ESRD vs. 4/7 (57.1%) non-ESRD patients (p-value: ns) | |
Lipitz et al. [15], 1993 | Amniotic fluid volume NOS | Impaired renal function: eGFR greater than expected for age and weight or serum creatinine level > 70 mmol/L after the 1st week of life or need for peritoneal dialysis | nd | Impaired renal function: 1/2 (50%%) patients with normal amniotic fluid volume, 3/4 (75.9%) patients with mild–moderate oligohydramnios, and 3/3 (100.0%) patients with severe oligohydramnios (p-value: ns) | |
Faure et al. [19], 2017 | Oligohydramnios NOS (y/n) | Nadir serum creatinine level | 1st year after birth | Median nadir serum creatinine level: 117 μmol/L (q1–q3: 65–169 μmol/L) in patients with oligohydramnios NOS vs. 27.5 μmol/L (q1–q3: 24–48 μmol/L) in patients without oligohydramnios (p-value: < 0.05) | |
Jeong et al. [20], 2018 | SDP < 2 cm at diagnosis (mild oligohydramnios: SFD: 1–2 cm; severe oligohydramnios: SDP < 1 cm) | Normal renal function: serum creatinine level of < 50 μmol/L | 28 days after birth | Normal renal function: no severe oligohydramnios (p-value < 0.05) | |
Nassr et al. [27], 2019 | AFI < 5th percentile adjusted for GA, in the 3rd trimester (y/n) | Need for RRT | 2 years of age | Multivariable logistic regression: OR (95% CI): 2.451 (0.863-6.962); p-value: 0.092 | |
Need for RRT: 3/8 (37.5%) patients with oligohydramnios vs. 1/6 (16.7%) patients with normal AF volume (p-value: ns) | |||||
Anhydramnios | Duin et al. [10], 2019 | y/n | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | Univariable logistic regression: OR (95% CI): 12.116 (1.284–117.074); p-value: 0.029 |
OR (95% CI): 3.01 (0.38–33.28); Pr (OR > 1): 85.1% | |||||
Ruano et al. [26], 2016 | y/n | Normal renal function: serum creatinine level < 0.5 mg/dL | 6 months of age | OR (95% CI): 3.01 (0.38–33.28); Pr (OR > 1): 85.1% | |
Polyhydramnion | Duin et al. [10], 2019 | SDP > 8 cm (y/n) | Compromised renal function: eGFR < 60 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after diagnosis | Univariable logistic regression: OR (95% CI): 0.990 (0.936–1.047); p-value: 0.795 |
Multivariable logistic regression: OR (95% CI): 2.256 (0.215–23.672); p-value: 0.497 | |||||
Oligohydramnios or anhydramnios | Anumba et al. [8], 2005 | SDP ≤ 2 cm (y/n) | Impaired renal function: eGFR < 85 mL/min/1.73 m2 | 18 months of age | Impaired renal function: 5/7 (71.4%) patients with oligohydramnios or anhydramnios vs. 4/8 (50.0%) without oligohydramnios or anhydramnios (p-value: ns) |
Anumba et al. [8], 2005 | SDP ≤ 2 cm (y/n) | ESRD: eGFR < 10 mL/min/1.73 m2 | 18 months of age | ESRD: 2/7 (28.6 patients with oligohydramnios or anhydramnios vs. 0/8 (0.0%) patients without oligohydramnios or anhydramnios (p-value: ns) | |
Johnson et al. [16], 2018 | Oligohydramnios or anhydramnios NOS (y/s) | Worsening serum creatinine level ≥ 0.51 mg/dL | 2 years follow-up | Univariate analysis: OR (95% CI): 0.8 (0.4–1.2); p-value: < 0.0001 | |
Johnson et al. [16], 2018 | Oligohydramnios or anhydramnios NOS (y/s) | Need for RRT | 2 years follow-up | Multivariate analysis: OR (95% CI): 0.5 (0.07–0.96); p-value: 0.023 | |
Univariate analysis: OR (95% CI): 2.5 (0.9–4.2); p-value: 0.003 | |||||
Multivariate analysis: OR (95% CI): OR (95% CI) 1.7 (−0.3, 3.7); p-value: 0.09) | |||||
El-Ghoneimi et al. [18], 1999 | Oligohydramnios or anhydramnios NOS (y/n) | Normal renal function: serum creatinine level < 50 µmol/L (0.56 mg/dL) | Last follow-up (median: 3 years; q1–q3: 2.0–6.0 years) | Normal renal function: 2/3 (66.7%) with oligo- or anhydramnios vs. 3/6 (50.0%) patients without oligohydramnios or anhydramnios (p-value: ns) | |
Sarhan et al. [25], 2008 | Oligohydramnios or anhydramnios NOS (y/s) | Normal renal function: serum creatinine level < 50 μmol/L (0.56 mg/dL) | Last follow-up: median 9.6 years (q1–q3: 6.4–10.8 years) | Normal renal function: 3/9 (33.3%) patients with oligohydramnios or anhydramnios vs. 1/6 (16.7%) with patients without oligohydramnios or anhydramnios (p-value: ns) | |
AFI | Moscardi et al. [14], 2018 | na | ESRD: eGFR < 15 mL/min/1.73 m2 | 1 year of age | 3.17 (±2.22) at delivery in patients with ESRD vs. 11.93 (±11.33) at delivery in patients with non-ESRD: (p-value: ns) |
Zaccara et al. [21], 2005 | AFI < 25th percentile vs. AFI between the 50th and 75th percentile | Serum creatinine level | 1st year of age | Mean serum creatinine level: 1.3 (±0.2) mg/dL in patients with AFI < 25th percentile vs. 0.6 (±0.1) mg/dl in patients with AFI between the 50th and 75th percentile (p-value < 0.05) | |
Amniotic fluid volume | Dreux et al. [14], 2018 | na (mL) | Poor renal function: eGFR < 30 mL/min/1.73 m2 | Minimum 10 years of age | AUC (95% CI): 0.32 (0.23–41) |
Staging systems | |||||
LUTO stage | Fontanella et al. [11], 2019 | Severe LUTO stage: bladder volume ≥ 5.4 cm3 and/or oligo- or anhydramnios before 20 weeks; moderate LUTO stage: bladder volume < 5.4 cm3 and/or normal AF volume at 20 weeks; mild LUTO stage: normal AF volume at 26 weeks | Severely impaired renal function: eGFR < 30 mL/min/1.73 m2 based on the nadir serum creatinine level | 1st year after birth | Impaired renal function: 4/9 (44.4%) patients with severe LUTO stage; 5/16 (31.3%) patients with moderate LUTO stage; 4/36 (11.1%) patients with mild LUTO stage (p-value: < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierucci, U.M.; Paraboschi, I.; Mantica, G.; Costanzo, S.; Riccio, A.; Selvaggio, G.G.O.; Pelizzo, G. Antenatal Determinants of Postnatal Renal Function in Fetal Megacystis: A Systematic Review. Diagnostics 2024, 14, 756. https://doi.org/10.3390/diagnostics14070756
Pierucci UM, Paraboschi I, Mantica G, Costanzo S, Riccio A, Selvaggio GGO, Pelizzo G. Antenatal Determinants of Postnatal Renal Function in Fetal Megacystis: A Systematic Review. Diagnostics. 2024; 14(7):756. https://doi.org/10.3390/diagnostics14070756
Chicago/Turabian StylePierucci, Ugo Maria, Irene Paraboschi, Guglielmo Mantica, Sara Costanzo, Angela Riccio, Giorgio Giuseppe Orlando Selvaggio, and Gloria Pelizzo. 2024. "Antenatal Determinants of Postnatal Renal Function in Fetal Megacystis: A Systematic Review" Diagnostics 14, no. 7: 756. https://doi.org/10.3390/diagnostics14070756
APA StylePierucci, U. M., Paraboschi, I., Mantica, G., Costanzo, S., Riccio, A., Selvaggio, G. G. O., & Pelizzo, G. (2024). Antenatal Determinants of Postnatal Renal Function in Fetal Megacystis: A Systematic Review. Diagnostics, 14(7), 756. https://doi.org/10.3390/diagnostics14070756