Optimizing Precision: A Trajectory Tract Reference Approach to Minimize Complications in CT-Guided Transthoracic Core Biopsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Inclusion
2.2. CTTCB-LAGA Procedure
2.3. Data Collection
2.4. Statistics
3. Results
3.1. Demography
3.2. CTTCB-LAGA Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deppen, S.; Putnam, J.B., Jr.; Andrade, G.; Speroff, T.; Nesbitt, J.C.; Lambright, E.S.; Massion, P.P.; Walker, R.; Grogan, E.L. Accuracy of FDG-PET to Diagnose Lung Cancer in a Region of Endemic Granulomatous Disease. Ann. Thorac. Surg. 2011, 92, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Shao, X.; Shao, X.; Wang, J.; Jiang, Z.; Wang, Y. Lung Adenocarcinoma Manifesting as Ground-Glass Opacity Nodules 3 cm or Smaller: Evaluation with Combined High-Resolution CT and PET/CT Modality. AJR Am. J. Roentgenol. 2019, 213, W236–W245. [Google Scholar] [CrossRef] [PubMed]
- Couraud, S.; Zalcman, G.; Milleron, B.; Morin, F.; Souquet, P.J. Lung cancer in never smokers—A review. Eur. J. Cancer 2012, 48, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Chen, L.T.; Shan, Y.S.; Lin, S.F.; Hsiao, S.Y.; Tsai, C.R.; Yu, S.J.; Tsai, H.J. Comprehensive Analysis of the Incidence and Survival Patterns of Lung Cancer by Histologies, Including Rare Subtypes, in the Era of Molecular Medicine and Targeted Therapy: A Nation-Wide Cancer Registry-Based Study from Taiwan. Medicine 2015, 94, e969. [Google Scholar] [CrossRef] [PubMed]
- Baratella, E.; Cernic, S.; Minelli, P.; Furlan, G.; Crimì, F.; Rocco, S.; Ruaro, B.; Cova, M.A. Accuracy of CT-Guided Core-Needle Biopsy in Diagnosis of Thoracic Lesions Suspicious for Primitive Malignancy of the Lung: A Five-Year Retrospective Analysis. Tomography 2022, 8, 2828–2838. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.H.; Krishnamurthy, S.; Gupta, S.; Mills, G.B.; Wei, W.; Cortes, A.C.; Mills Shaw, K.R.; Luthra, R.; Wallace, M.J. Characteristics of percutaneous core biopsies adequate for next generation genomic sequencing. PLoS ONE 2017, 12, e0189651. [Google Scholar] [CrossRef] [PubMed]
- Hirose, T.; Mori, K.; Machida, S.; Tominaga, K.; Yokoi, K.; Adachi, M. Computed tomographic fluoroscopy-guided transthoracic needle biopsy for diagnosis of pulmonary nodules. Jpn. J. Clin. Oncol. 2000, 30, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Elshafee, A.S.; Karch, A.; Ringe, K.I.; Shin, H.O.; Raatschen, H.J.; Soliman, N.Y.; Wacker, F.; Vogel-Claussen, J. Complications of CT-guided lung biopsy with a non-coaxial semi-automated 18 gauge biopsy system: Frequency, severity and risk factors. PLoS ONE 2019, 14, e0213990. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, N.; Yasuhara, Y.; Nakajima, Y.; Adachi, S.; Arai, Y.; Kusumoto, M.; Eguchi, K.; Kuriyama, K.; Sakai, F.; Noguchi, M.; et al. CT-guided needle biopsy of lung lesions: A survey of severe complication based on 9783 biopsies in Japan. Eur. J. Radiol. 2006, 59, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Tsai, S.C.S.; Wu, T.C.; Lin, F.C.F. Puncture frequency predicts pneumothorax in preoperative computed tomography-guided lung nodule localization for video-assisted thoracoscopic surgery. Thorac. Cancer 2022, 13, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Tsai, S.C.; Shen, G.Q.; Guo, G.R.; Tsui, Z.G.; Hsieh, M.Y.; Yuan, C.; Lin, F.C. Simulation education utilizing phantom and angle reference guide in pulmonary nodule CT localization. Heliyon 2023, 9, e18329. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.C.; Tsai, S.C.; Tu, H.T.; Lai, Y.L.; Wu, T.C. Computed tomography-guided localization with laser angle guide for thoracic procedures. J. Thorac. Dis. 2018, 10, 3824–3828. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Murchison, J.; Patel, D. CT-guided lung biopsy: Factors influencing diagnostic yield and complication rate. Clin. Radiol. 2003, 58, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Diep, R.; MacDonald, M.; Cooper, R.; Grzegorczyk, A.; Rakocevic, R.; Chang, C.F.; Uy, A.; Cowgill, N.; Nieva, J.J. Biopsy Method and Needle Size on Success of Next-Generation Sequencing in NSCLC: A Brief Report. JTO Clin. Res. Rep. 2023, 4, 100497. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.M.; Lü, Y.L.; Yao, Y.W.; Liu, H.B.; Wang, Q.; Xiao, X.W.; Cao, E.H.; Shi, Y.; Zhou, X.J.; Song, Y. Diagnostic efficiency and complication rate of CT-guided lung biopsy: A single center experience of the procedures conducted over a 10-year period. Chin. Med. J. 2011, 124, 3227–3231. [Google Scholar] [CrossRef] [PubMed]
- Poulou, L.S.; Tsagouli, P.; Ziakas, P.D.; Politi, D.; Trigidou, R.; Thanos, L. Computed tomography-guided needle aspiration and biopsy of pulmonary lesions: A single-center experience in 1000 patients. Acta Radiol. 2013, 54, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Loh, S.E.; Wu, D.D.; Venkatesh, S.K.; Ong, C.K.; Liu, E.; Seto, K.Y.; Gopinathan, A.; Tan, L.K. CT-guided thoracic biopsy: Evaluating diagnostic yield and complications. Ann. Acad. Med. Singap. 2013, 42, 285–290. [Google Scholar] [CrossRef]
- Guimarães, M.D.; Andrade, M.Q.; Fonte, A.C.; Benevides, G.; Chojniak, R.; Gross, J.L. Predictive complication factors for CT-guided fine needle aspiration biopsy of pulmonary lesions. Clinics 2010, 65, 847–850. [Google Scholar] [CrossRef]
- Echevarria-Uraga, J.J.; Del Cura-Allende, G.; Armendariz-Tellitu, K.; Berastegi-Santamaria, C.; Egurrola-Izquierdo, M.; Anton-Ladislao, A. Complications and diagnostic accuracy of CT-guided 18G tru-cut versus end-cut percutaneous core needle biopsy of solitary solid lung nodules. Diagn. Interv. Radiol. 2022, 28, 58–64. [Google Scholar] [CrossRef]
- Saji, H.; Nakamura, H.; Tsuchida, T.; Tsuboi, M.; Kawate, N.; Konaka, C.; Kato, H. The incidence and the risk of pneumothorax and chest tube placement after percutaneous CT-guided lung biopsy: The angle of the needle trajectory is a novel predictor. Chest 2002, 121, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Charig, M.J.; Phillips, A.J. CT-guided cutting needle biopsy of lung lesions—Safety and efficacy of an out-patient service. Clin. Radiol. 2000, 55, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, D.; Koslow, M.; Haskiya, H.; Shitrit, D. A novel technique for CT-guided transthoracic biopsy of lung lesions: Improved biopsy accuracy and safety. Eur. Radiol. 2015, 25, 3354–3360. [Google Scholar] [CrossRef] [PubMed]
- Heyer, C.M.; Reichelt, S.; Peters, S.A.; Walther, J.W.; Müller, K.M.; Nicolas, V. Computed tomography-navigated transthoracic core biopsy of pulmonary lesions: Which factors affect diagnostic yield and complication rates? Acad. Radiol. 2008, 15, 1017–1026. [Google Scholar] [CrossRef]
- Kothary, N.; Lock, L.; Sze, D.Y.; Hofmann, L.V. Computed tomography-guided percutaneous needle biopsy of pulmonary nodules: Impact of nodule size on diagnostic accuracy. Clin. Lung Cancer 2009, 10, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Asai, N.; Kawamura, Y.; Yamazaki, I.; Sogawa, K.; Ohkuni, Y.; O’uchi, T.; Kubo, A.; Yamaguchi, E.; Kaneko, N. Is emphysema a risk factor for pneumothorax in CT-guided lung biopsy? Springerplus 2013, 2, 196. [Google Scholar] [CrossRef] [PubMed]
- Muehlstaedt, M.; Bruening, R.; Diebold, J.; Mueller, A.; Helmberger, T.; Reiser, M. CT/fluoroscopy-guided transthoracic needle biopsy: Sensitivity and complication rate in 98 procedures. J. Comput. Assist. Tomogr. 2002, 26, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.D.; Nunes, R.A.; Saito, E.H.; Higa, C.; Cardona, Z.J.; Santos, D.B. Results and complications of CT-guided transthoracic fine-needle aspiration biopsy of pulmonary lesions. J. Bras. Pneumol. 2011, 37, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Bungay, H.K.; Berger, J.; Traill, Z.C.; Gleeson, F.V. Pneumothorax post CT-guided lung biopsy: A comparison between detection on chest radiographs and CT. Br. J. Radiol. 1999, 72, 1160–1163. [Google Scholar] [CrossRef]
- Tongbai, T.; McDermott, S.; Kiranantawat, N.; Muse, V.V.; Wu, C.C.C.; Shepard, J.A.O.; Gilman, M.D. Non-Diagnostic CT-Guided Percutaneous Needle Biopsy of the Lung: Predictive Factors and Final Diagnoses. Korean J. Radiol. 2019, 20, 1515–1526. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.C.; Liao, H.Q.; Wu, W.B.; Zhang, Y.D.; Ren, F.C.; Wang, Q.; Xie, M.G. Effect of puncture sites on pneumothorax after lung CT-guided biopsy. Medicine 2020, 99, e19656. [Google Scholar] [CrossRef] [PubMed]
- Yamagami, T.; Terayama, K.; Yoshimatsu, R.; Matsumoto, T.; Miura, H.; Nishimura, T. Role of manual aspiration in treating pneumothorax after computed tomography-guided lung biopsy. Acta Radiol. 2009, 50, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, T.; Hiraki, T.; Matsui, Y.; Tomita, K.; Uka, M.; Tanaka, T.; Munetomo, K.; Gobara, H.; Kanazawa, S. CT-guided biopsy of lung nodules with pleural contact: Comparison of two puncture routes. Diagn. Interv. Imaging 2021, 102, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Gohari, A.; Haramati, L.B. Complications of CT scan-guided lung biopsy: Lesion size and depth matter. Chest 2004, 126, 666–668. [Google Scholar] [CrossRef] [PubMed]
- Haramati, L.B.; Austin, J.H. Complications after CT-guided needle biopsy through aerated versus nonaerated lung. Radiology 1991, 181, 778. [Google Scholar] [CrossRef]
- Winokur, R.S.; Pua, B.B.; Sullivan, B.W.; Madoff, D.C. Percutaneous lung biopsy: Technique, efficacy, and complications. Semin. Interv. Radiol. 2013, 30, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.Q.; Luo, F.; Gu, M.; Lu, X.J.; Xu, Y.; Wu, R.N.; Xiong, J.; Ran, X. Biopsy-tract haemocoagulase injection reduces major complications after CT-guided percutaneous transthoracic lung biopsy. Clin. Radiol. 2022, 77, e673–e679. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, S.; Zhong, F.; Liao, M. Risk factors for air embolism following computed tomography-guided percutaneous transthoracic needle biopsy: A systematic review and meta-analysis. Diagn. Interv. Radiol. 2023, 29, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Yoshizako, T.; Nakamura, M.; Ando, S.; Maruyama, M.; Maruyama, M.; Takinami, Y.; Tamaki, Y.; Nakamura, T.; Kitagaki, H. Nonfatal air embolism complicating percutaneous CT-guided lung biopsy and VATS marking: Four cases from a single institution. Clin. Imaging 2018, 48, 127–130. [Google Scholar] [CrossRef]
- Ren, Q.; Zhou, Y.; Yan, M.; Zheng, C.; Zhou, G.; Xia, X. Imaging-guided percutaneous transthoracic needle biopsy of nodules in the lung base: Fluoroscopy CT versus cone-beam CT. Clin. Radiol. 2022, 77, e394–e399. [Google Scholar] [CrossRef] [PubMed]
- Amiras, D.; Hurkxkens, T.J.; Figueroa, D.; Pratt, P.J.; Pitrola, B.; Watura, C.; Rostampour, S.; Shimshon, G.J.; Hamady, M. Augmented reality simulator for CT-guided interventions. Eur. Radiol. 2021, 31, 8897–8902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zukić, D.; Byrd, D.W.; Enquobahrie, A.; Alessio, A.M.; Cleary, K.; Banovac, F.; Kinahan, P.E. PET/CT-guided biopsy with respiratory motion correction. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- McDermott, S.; Fintelmann, F.J.; Bierhals, A.J.; Silin, D.D.; Price, M.C.; Ott, H.C.; Shepard, J.O.; Mayo, J.R.; Sharma, A. Image-guided Preoperative Localization of Pulmonary Nodules for Video-assisted and Robotically Assisted Surgery. Radiographics 2019, 39, 1264–1279. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Category | n | % |
---|---|---|---|
Gender | Male | 189 | 58.7 |
Age | Year, mean, SD | 62.0 | 13.6 |
Procedure Success | Success | 298 | 94.3 |
Fail | 18 | 5.7 | |
Number of Punctures | 1 | 173 | 90.1 |
2 | 14 | 7.3 | |
≧3 | 5 | 2.6 | |
Biopsy Location | RUL | 92 | 28.5 |
RML | 19 | 5.9 | |
RLL | 58 | 18.0 | |
LUL | 60 | 18.6 | |
LLL | 51 | 15.8 | |
Others | 21 | 6.3 | |
Patient Position | Supine | 131 | 40.7 |
Prone | 162 | 50.3 | |
Decubitus | 3 | 0.9 | |
Number of Biopsy | 1 | 11 | 3.4 |
Pieces | 2 | 99 | 30.7 |
3 | 128 | 39.8 | |
4 | 22 | 6.8 | |
5 | 8 | 2.5 | |
6 | 1 | 0.3 | |
7 | 1 | 0.3 | |
Pathology | Primary | 207 | 66.1 |
Metastatic | 16 | 5.1 | |
Benign | 44 | 14 | |
Questionable | 46 | 14.6 | |
Mean | SD | ||
Pulmonary | FEV1% | 79.7 | 18.2 |
Function | FVC% | 83.9 | 18.0 |
FEV1/FVC% | 75.9 | 6.0 | |
Median | Range | ||
Angle | Actual, ° | 18 | 2, 50 |
Deviation, ° | 2 | 0, 4 | |
Depth | Skin, mm | 50 | 10, 120 |
Pleural, mm | 17.5 | 4, 50 |
Complication | Treatment | n | % |
---|---|---|---|
Pneumothorax | 36 | 11.1 | |
Drain | 1 | 0.3 | |
Lung hemorrhage | 29 | 9.0 | |
Treatment | 3 | 1.0 | |
Hemoptysis | 10 | 3.0 | |
Mild | 8 | 2.4 | |
Treatment | 2 | 0.6 | |
Cough | 11 | 3.4 | |
Pain | 10 | 3.0 |
Biopsy n = 322 | Category | Unit | Success | Pneumothorax | Hemorrhage | |||
---|---|---|---|---|---|---|---|---|
Gender | male/female | % | 95.1/93.1 | 0.950 | 10.2/13.2 | 0.158 | 11.9/8.1 | 0.464 |
Age | year, yes/no | years, mean (SD) | 66.0 (19.5)/64.0 (12.7) | 65.9 (12.0)/64.7 (13.3) | 0.131 | 69.2 (12.9)/64.2 (13.1) | 0.775 | |
Number of biopsies | 1–5 11/96/126/2/8 | % | 82/95/95/100/7 | 0.470 | 18.2/8.3/15.1/9.5/0 | 0.143 | 54.4/7.2/9.4/4.8/12.5 | 0.004 * |
Depth from skin | mm, yes/no | mm, median (IQR) | ?50.0 (22.0)/40.0 (10.0) | 0.098 | 60.0 (27.5)/50.0 (22.0) | 0.018 * | 50.0 (30.0)/50.0 (22.2) | 0.238 |
multivariate | OR (95%CI) | 1.024 (0.996,1.052) | 0.092 | 1.034 (1.006,1.063) | 0.018 * | |||
Angle planned | yes/no | °, median (IQR) | 18.0 (24.5)/14.5 (3.75) | 0.281 | 23.0 (38.4)/18.0 (19.6) | 0.577 | 7.3 (7.6)/18.0 (20.7) | 0.319 |
Tumor size | yes/no | mm, median (IQR) | 25.0 (15.0)/15.0 (2.5) | 0.009 * | 20.0 (22.0)/25.0 (15.0) | 0.223 | 22.5 (26.2)/25.0 (14.5) | 0.093 |
multivariate | OR (95%CI) | 1.072 (1.010–1.138) | 0.022 * | |||||
Lobe | RU/RM/RL/LU/LL | % | 93/95/98/93/94 | 0.946 | 10.1/19.0/11.8/16.7/13.0 | 0.593 | 8.9/14.3/7.8/13.0/8.5 | 0.929 |
PT | yes/no | mean (SD) | 10.6 (5.6)/10.2 (0.4) | 0.840 | 10.2 (0.6)/10.6 (6.1) | 0.599 | 10.3 (0.8)/10.6 (6.0) | 0.723 |
aPTT | yes/no | mean (SD) | 27.9 (3.5)/28.7 (1.5) | 0.476 | 26.9 (5.9)/27.8 (3.5) | 0.090 | 28.6 (4.2)/27.6 (3.8) | 0.578 |
Platelet ×1000 | yes/no | mean (SD) | 260.0 (100.0)/234.7 (75.2) | 0.430 | 241 (72)/258 (101) | 0.247 | 233 (54)/259 (101) | 0.059 |
Patient position | Supine/Prone | % | 93.8/94.3 | 0.257 | 14.5/9.4 | 0.131 | 10.5/9.9 | 0.511 |
Author | Area | Year | N | Needle Size | Success % | Pneumothorax % | Intubation % | Hemorrhage% | Hemoptysis % |
---|---|---|---|---|---|---|---|---|---|
Tomiyama [8] | Japan | 2006 | 9783 | 35.0 | |||||
Yuan [12] | China | 2011 | 1014 | core | 94.8 | 12.9 | 1.5 | 4.0 | |
Poulou [13] | Greece | 2013 | 1000 | core 35% | 86.6 | 2.8 | 6.2 | 0.2 | |
Loh [14] | Singapore | 2013 | 399 | FNA | 91.9 | 34.8 | 3.0 | 3.2 | |
Guimarães [15] | Brazil | 2010 | 362 | 22G | 11.1 | 1.9 | |||
Echevarria-Uraga [16] | Spain | 2022 | 330 | 18G | 24.2 | 5.7 | 9.4 | ||
Lin * | Taiwan | 2023 | 322 | 16G | 94.3 | 11.1 | 0.3 | 9.0 | 3.0 |
Saji [17] | Japan | 2002 | 289 | 19G | 26.2 | 14.2 | |||
Anderson [18] | UK | 2003 | 195 | core/FNA | 81.5 | ||||
Charig [19] | UK | 2000 | 185 | 18G | 93.5 | 25.9 | 2.2 | 7.0 | |
Yaffe [20] | Israel | 2015 | 181 | FNA | 93.6 | 26.5 | 2.2 | 3.9 | 6.0 |
Heyer [21] | Germany | 2008 | 172 | 16G | 95.0 | 26.0 | 10 | ||
Kothary [22] | USA | 2009 | 139 | 20G | 67.6 | 34.5 | 5.0 | ||
Asai [23] | Japan | 2013 | 102 | 18G | 90.2 | 40.2 | 2.9 | ||
Muehlstaedt [24] | Japan | 2002 | 98 | 18G | 94.0 | 21.0 | 2.0 | ||
Lima [25] | Brazil | 2011 | 97 | 25G | 91.5 | 27.8 | 12.4 | ||
Bungay [26] | UK | 1999 | 88 | 22G | 42.0 | 0.0 | |||
Hirose [6] | Japan | 2000 | 50 | 18G | 94.0 | 42.0 | 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, S.C.-S.; Wu, T.-C.; Lin, F.C.-F. Optimizing Precision: A Trajectory Tract Reference Approach to Minimize Complications in CT-Guided Transthoracic Core Biopsy. Diagnostics 2024, 14, 796. https://doi.org/10.3390/diagnostics14080796
Tsai SC-S, Wu T-C, Lin FC-F. Optimizing Precision: A Trajectory Tract Reference Approach to Minimize Complications in CT-Guided Transthoracic Core Biopsy. Diagnostics. 2024; 14(8):796. https://doi.org/10.3390/diagnostics14080796
Chicago/Turabian StyleTsai, Stella Chin-Shaw, Tzu-Chin Wu, and Frank Cheau-Feng Lin. 2024. "Optimizing Precision: A Trajectory Tract Reference Approach to Minimize Complications in CT-Guided Transthoracic Core Biopsy" Diagnostics 14, no. 8: 796. https://doi.org/10.3390/diagnostics14080796
APA StyleTsai, S. C. -S., Wu, T. -C., & Lin, F. C. -F. (2024). Optimizing Precision: A Trajectory Tract Reference Approach to Minimize Complications in CT-Guided Transthoracic Core Biopsy. Diagnostics, 14(8), 796. https://doi.org/10.3390/diagnostics14080796