Comparison of Bone Mineral Density and Trabecular Bone Score in Patients with and without Vertebral Fractures and Differentiated Thyroid Cancer with Long-Term Serum Thyrotrophin-Suppressed Therapy
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Laboratory Determinations
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.S.; Specker, B.; Ho, M.; Sperling, M.; Ladenson, P.W.; Ross, D.S.; Ain, K.B.; Bigos, S.T.; Brierley, J.D.; Haugen, B.R.; et al. Thyrotropin suppression and disease progression in patients with DTC. Results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid 1998, 8, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Papaleontiou, M.; Hawley, S.T.; Haymart, M.R. Effect of thyrotropin suppression therapy on bone in thyroid cancer patients. Oncologist 2016, 21, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Formenti, A.M.; Frara, S.; Olivetti, R.; Banfi, G.; Memo, M.; Maroldi, R.; Giubbini, R.; Giustina, A. A High prevalence of radiological vertebral fractures in women on TSH suppressive therapy for thyroid carcinoma. J. Clin. Endocrinol. Metab. 2017, 103, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Siris, E.S.; Miller, P.D.; Barrett-Connor, E.; Faulkner, K.G.; Wehren, L.E.; Abbott, T.A.; Berger, M.L.; Santora, A.C.; Sherwood, L.M. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women; results from the national osteoporosis Risk Assessment. JAMA 2001, 286, 2815–2822. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Kim, K.M.; Kim, L.-K.; Kim, K.Y.; Oh, T.J.; Moon, J.H.; Choi, S.H.; Lim, S.; Kim, S.W.; Shin, C.S.; et al. Comparisons of TBS and lumbar spine BMD in the associations with vertebral fractures according to the T-scores: A cross-sectional observation. Bone 2017, 105, 269–275. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, E.V.; Oden, A.; Harvey, N.C.; Leslie, W.D.; Hans, D.; Johansson, H.; Barkmann, R.; Boutroy, S.; Brown, J.; Chapurlat, R.; et al. Meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J. Bone Miner. Res. 2016, 31, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Curiel, M.D.; de la Peña, J.L.C.; Perez, J.H.; Cano, R.P.; Rapado, A.; Martinez, I.R. Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Multicentre Research Project on Osteoporosis. Osteoporos. Int. 1997, 7, 59–64. [Google Scholar] [CrossRef]
- Kanis, J.A.; Melton, L.J.; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The Diagnosis of Osteoporosis. J. Bone Miner. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef]
- Silva, V.B.C.; Leslie, W.D.; Resch, H.; Lamy, O.; Lesnyak, O.; Binkley, N.; McCloskey, E.V.; Kanis, J.A.; Bilezikian, J.P. Trabecular bone score: A noninvasive analytical method based upon the DXA image. J. Bone Miner. Res 2014, 29, 518–530. [Google Scholar] [CrossRef]
- Genant, H.K.; Wu, C.Y.; van Kuijk, C.; Nevitt, M.C. Vertebral fracture assessment using a semiquantitative technique. J. Bone Miner. Res. 1993, 8, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Zhu, L.; He, L.; Lv, M.; Zhang, H.; Wang, H.; Zhang, F.; Lai, Y.; Li, Y.; et al. Effects of TSH suppressive therapy on bone mineral density (BMD) and bone turnover markers (BMT) in patients with differentiated thyroid cancer in Northeast China: A prospective controlled cohort study. Endocrine 2023, 79, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake, Disparity between the Reported Consumption and the Level Needed for Adequacy and Food Sources of Calcium, Phosphorus, Magnesium and Vitamin D in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 168. [Google Scholar] [CrossRef]
- Hu, M.J.; Zhang, Q.; Liang, L.; Wang, S.Y.; Zhen, X.C.; Zhou, M.M.; Yang, Y.W.; Zhong, Q.; Huan, F. Association between vitamin D deficiency and risk of thyroid cancer: A case-control study and meta-analysis. J. Endocrinol. Investig. 2018, 41, 1199–1210. [Google Scholar] [CrossRef]
- Hawkins, F.; Guadalixs De Mingo, M.L.; Allo, G.; Martin Ariscado, C.; Lopez, B.; Martinez Diaz, G. Association of low serum 25OHD levels with abnormal bone microarchitecture in well-differentiated thyroid cancer. Med. Sci. 2020, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.Y.; Weetman, A.P.; Eastell, R. Longitudinal changes of bone mineral density and bone turnover in postmenopausal women on thyroxine. Clin. Endocrinol. 1997, 46, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xi, H.; Yan, R. Effects of thyrotropin suppression on lumbar bone mineral density in postmenopausal women with differentiated thyroid carcinoma. OncoTargets Ther. 2018, 11, 5587–6692. [Google Scholar] [CrossRef]
- Ku, E.J.; Yoo, W.S.; Lee, E.K.; Ahn, H.Y.; Woo, S.H.; Hong, J.H.; Chung, H.K.; Park, J.-W. Effect of TSH suppression therapy on bone mineral density in differentiated thyroid cancer: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2021, 106, 3655–3667. [Google Scholar] [CrossRef]
- De Mingo Dominguez, M.L.; Guadalix Iglesias, S.; Martin-Arriscado Arroba, C.; López Alvarez, B.; Martínez Diaz-Guerra, G.; Martinez-Pueyo, J.I.; Ferrero Herrero, E.; Hawkins, F. Low trabecular bone score in postmenopausal women with differentiated thyroid carcinoma after long-term TSH suppressive therapy. Endocrine 2018, 62, 166–173. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, K.M.; Oh, T.J.; Choi, S.H.; Lim, S.; Park, Y.J.; Park, D.J.; Jang, H.C. The effect of TSH suppression on vertebral trabecular bone scores in patients with differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 2017, 102, 78–85. [Google Scholar] [CrossRef]
- Sousa, B.C.A.; Silva, B.C.; de Oliveria Guidotti, T.; Pires, M.C.; Soares, M.M.S.; Kakehasi, A.M. Trabecular bone score in women with differentiated thyroid cancer on long-term TSH suppressive therapy. J. Endocrinol. Investig. 2023, 44, 2295–2305. [Google Scholar] [CrossRef]
- Hawkins, F.; Guadalix, S.; De Mingo, M.L.; Martin Arriscado, C.; Lopez, B.; Allo, G.; Martinez Diaz, G. Trabecular bone deterioration in differentiated thyroid cancer: Impact of long-term TSH suppressive therapy. Cancer Med. 2020, 9, 5746–5755. [Google Scholar] [CrossRef] [PubMed]
- Sugitani, I.; Fujimoto, Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: A prospective controlled study. Surgery 2011, 150, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Heijckmann, A.C.; Huijberts, M.S.; Geusens, P.; de Vries, J.; Menheere, P.P.; Wolffenbuttel, B.H. Hip bone mineral density, bone turnover and risk of fractures in patients on long-term suppressive L-thyroxine therapy for differentiated thyroid carcinoma. Eur. J. Endocrinol. 2005, 153, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.K.; Vokes, T. Physical activity as measured by accelerometer in NHANES 2005-2006 is associated with better bone density and trabecular bone score in older adults. Arch. Osteoporos. 2019, 14, 29. [Google Scholar] [CrossRef]
- Kim, J.; Han, K.; Jung, J.-H.; Ha, J.; Jeong, C.; Heu, J.-Y.; Lee, S.-W.; Lee, J.; Lim, Y.; Kim, M.K.; et al. Physical activity and reduced risk of fracture in thyroid cáncer after thyroidectomy—A nationwide cohort study. Front. Endocrinol. 2023, 14, 1173781. [Google Scholar] [CrossRef]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral density (BMD) in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef]
- Park, H.; Park, J.; Yoo, H.; Kim, S.; Koh, J.H.; Jee, J.H.; Min, Y.K.; Chung, J.H.; Kim, T.H.; Kang, M.; et al. Bone density testing interval and transition to osteoporosis in differentiated thyroid carcinoma patients on TSG suppression therapy. Clin. Endocrinol. 2022, 97, 130–136. [Google Scholar] [CrossRef]
- Messina, C.; Buonomenna, C.; Menon, G.; Magnani, S.; Albano, D.; Gitto, S.; Ulivieri, F.B.; Sconfienza, L.M. Fat Mass does not increase the precision error of trabecular bone score measurements. J. Clin. Densitom. Assess. Manag. Musculoskelet. Health 2023, 22, 359–366. [Google Scholar] [CrossRef]
Studied Parameters | Baseline Study (n = 145) | End of Study (n = 145) | p Value |
---|---|---|---|
Clinical and hormonal data | |||
Age (years) | 51.48 ± 1.9 | 63.96 ± 10.65 | <0.001 |
Weight (kg) | 67.3 ± 11.8 | 70.28 ± 13.3 | 0.054 |
BMI (kg/m2) | 27.27 ± 0.6 | 28.45 ± 5.3 | <0.001 |
Menopause (years) | 61 (57.9%) | 131 (90.3%) | <0.001 |
Smoking yes/no | 25 (17.2%) | 17 (11.7%) | 0.18 |
Alcohol ingestion | 1 (0.69%) | 0 | 0.32 |
LT4 (μg/kg) | 2.29 ± 0.6 | 1.70 ± 0.4 | 0.0417 |
Serum TSH (µU/mL) | 0.23 ± 0.4 | 0.89 ± 0.1 | <0.001 |
Serum Free T4 (ng/dL) | 1.64 ± 0.4 | 1.60 ± 0.3 | 0.9464 |
Duration years (range) | - | 12.23 ± 5.9 | |
Radioactive iodine doses mCi (range) | - | 209.17 ± 119.86 | |
Bone markers | |||
Serum PTH (pg/mL) | 31.03 ± 12.1 | 45.65 ± 16.2 | <0.001 |
Serum osteocalcin (ng/mL) | 6.93 ± 3.5 (4.53–9.86) | 19.56 (15.68–23.46) | <0.001 |
β-CTX (ng/mL) | - | 0.30 (0.19–0.47) | |
BAP (U/L) | 10.90 ± 7.42 | 22.50 ± 4.9 | <0.001 |
Serum 25OHD (ng/mL) | 26.43 ± 10.1 | 22.65 ± 12.37 | 0.013 |
Densitometric parameters | |||
L-BMD (g/m2) | 0.91 ± 0.16 | 0.89 ± 0.13 | 0.16 |
FN-BMD (g/cm2) | 0.74 ± 0.14 | 0.70 ± 0.11 | 0.047 |
TH BMD (g/cm2) | 0.91 ± 0.16 | 0.86 ± 0.13 | 0.42 |
UD-R BMD (g/cm2) | 0.42 ± 0.06 | 0.40 ± 0.06 | 0.35 |
1/3 RD-BMD (g/cm2) | 0.62 ± 0.05 | 0.63 ± 0.08 | 0.97 |
TBS | 1.35 ± 0.14 | 1.26 ± 0.13 | 0.002 |
Normal | 53.79% | 26.21% | |
Partial degraded | 30.35% | 48.97% | |
Degraded | 15.86% | 24.83% |
DXA T-Scores | TBS Scores | Total | ||
---|---|---|---|---|
≥1.350 (Normal) | 1.200–1.350 (Partially Degraded) | ≤1.200 (Totally Degraded) | ||
T score ≥ 1 SD (normal) | 43 (2.6) | 13 (8.9) | 6 (4.1) | 62 (42.7) |
T score < −1.0 and >−2.5 SD (osteopenia) | 29 (20) | 20 (13.7) | 10 (6.8) | 59 (40.6) |
T score- ≤ 2.5 SD (osteoporosis) | 6 (4.1) | 12 (8.3) | 6 (4.1) | 24 (16.5) |
Total | 78 (53.7) | 45 (31) | 22 (15.1) | 145 (100) |
DXA T-Scores | TBS Scores | Total | ||
---|---|---|---|---|
≥1.350 (Normal) | 1.200–1.350 (Partially Degraded) | ≤1.200 (Totally Degraded) | ||
T score ≥ 1 SD (normal) | 25 (17.2) | 16 (11.0) | 9 (6.2) 10 | 50 (34.4%) |
T score < −1.0 and >−2.5 SD (osteopenia) | 13 (8.9) | 38 (26.2) | 17 (11.7) | 68 (46.8) |
T score- ≤ 2.5) SD osteoporosis | 0 (0) | 17 (11.7) | 10 (6.9) 0 | 27 (18.6) |
Total | 38 (26.2) | 71 (48.9) | 36 (24.8) | 145 (100) |
Methods | BMD < −2.5 SD Osteoporosis | BMD −1–−2.5 SD Osteopenia | BMD >−1 SD Normal | ||||||
---|---|---|---|---|---|---|---|---|---|
Initial Study | End Study | Difference | Initial Study | End Study | Difference | Initial Study | End Study | Difference | |
TBS (<1.2) totally degraded | 6 | 10 | −4 | 10 | 16 | −6 | 6 | 10 | −4 |
TBS (1.2–1.35) partially degraded | 12 | 17 | −5 | 20 | 39 | −19 | 13 | 16 | −3 |
TBS (>1.35) normal | 6 | 0 | 6 | 29 | 13 | 16 | 43 | 24 | 19 |
Without Vertebral Fractures | With Vertebral Fractures | p | |
---|---|---|---|
Clinical and hormonal data | |||
n | 115 | 30 | - |
Age (years) | 52.0 ± 11.5 | 50.3 ± 13.5 | 0.50 |
BMI | 26.6 (24.5–30.3) | 25.8 (22.8–28.7) | 0.32 |
Menarche (years) | 12.95 | 12.96 | 0.97 |
Histology | 0.40 | ||
Papillary | 89 (85%) | 29 (96.6%) | |
Follicular | 13 (11%) | 1 (3.3%) | |
Others * | 4 (3.4%) | 0 (0%) | |
TNM initial stage | 0.42 | ||
I | 81 (71.8%) | 18 (64.2%) | |
II | 15 (13.2%) | 4 (14.2%) | |
III | 13 (11.5%) | 6 (21.4%) | |
IV | 4 (3.54) | 0 (0%) | |
Osteoporosis | 13/102 | 4/26 | 0.76 |
Exercise (walking minutes) | 55.00 (30–60.00) | 30.00 (30–45.00) | 0.043 |
Milk ingestions (mg/day) | 500 (477.50–750) | 500 (250–750) | 0.29 |
Smoking yes/no | 19/96 | 6/24 | 0.65 |
Alcohol ingestion yes/no | 1/114 | 0/30 | 0.61 |
Radioactive iodine doses: mCi (range) | 150.00 (126–250.000) | 150.00 (100–150.00) | 0.042 |
Serum Biochemical parameters | |||
TSH (µU/mL) | 0.03 (0.03–0.15) | 0.10 (0.03–0.40) | 0.20 |
T4L (ng/mL) | 1.64 (0.42) | 1.63 (0.45) | 0.87 |
Tiroglobulin (ng/mL) | 0.20 (0.00–1.00) | 0.30 (0.00–1.20) | 0.67 |
Calcium (mg/dL) | 9.26 (0.57) | 9.24 (0.50) | 0.89 |
Phosphorus (mg/dL) | 3.40 (3.0–3.90) | 3.60 (3.3–4.0) | 0.15 |
Creatinine (mg/mL) | 0.71 (0.53–0.83) | 0.75 (0.66–0.86) | 0.50 |
PTH (pg/mL) | 32.4 (0.63–0.83) | 28.4 (24.5–40.6) | 0.45 |
25OHD (ng/mL) | 26.08 (17.0–33.4) | 28.2 (22.2–33.6) | 0.37 |
BAO (U/L) | 10.77 (7.42–13.70) | 11.30 (6.39–13.3) | 1.00 |
Osteocalcin (ng/mL) | 7.08 (4.66–9.89) | 6.20 (3.74–9.2) | 0.30 |
Densitometric parameters | |||
L-BMD | 0.91 ± 0.17 | 0.88 ± 0.12 | 0.27 |
FN-BMD | 0.75 ± 0.14 | 0.72 ± 0.12 | 0.56 |
TH-BMD | 0.85 ± 0.11 | 0.83 ± 0.12 | 0.63 |
UD-R-BMD | 0.44 ± 0.04 | 0.38 ± 0.06 | 0.12 |
1/3RD-BMD | 0.63 ± 0.5 | 0.65 ± 0.5 | 0.72 |
TBS | 1.35 ± 0.14 | 1.22 ± 0.14 | 0.001 |
Normal | 53.9% | 53.3% | |
Partial degraded | 29.8% | 33.3% | |
Totally Degraded | 16.5% | 13.3% |
TBS | ||||
---|---|---|---|---|
DXA | Partial Degraded | Totally Degraded | Normal | Total |
−2.5–−1 | 9 (30%) | 5 (16.7%) | 3 (10%) | 17 (56.7%) |
<−2.5 | 3 (10%) | 0 | 0 | 3 (10%) |
>−1 | 0 | 2 (6.6%) | 8 (26.7%) | 10 (33.3%) |
Total | 12 (40%) | 7 (23.3%) | 11 (36.7%) | 30 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawkins Carranza, F.; Arroba, C.M.-A.; López Alvarez, M.B.; Librizzi, S.; Martínez Díaz Guerra, G. Comparison of Bone Mineral Density and Trabecular Bone Score in Patients with and without Vertebral Fractures and Differentiated Thyroid Cancer with Long-Term Serum Thyrotrophin-Suppressed Therapy. Diagnostics 2024, 14, 868. https://doi.org/10.3390/diagnostics14090868
Hawkins Carranza F, Arroba CM-A, López Alvarez MB, Librizzi S, Martínez Díaz Guerra G. Comparison of Bone Mineral Density and Trabecular Bone Score in Patients with and without Vertebral Fractures and Differentiated Thyroid Cancer with Long-Term Serum Thyrotrophin-Suppressed Therapy. Diagnostics. 2024; 14(9):868. https://doi.org/10.3390/diagnostics14090868
Chicago/Turabian StyleHawkins Carranza, Federico, Cristina Martin-Arriscado Arroba, María Begoña López Alvarez, Soledad Librizzi, and Guillermo Martínez Díaz Guerra. 2024. "Comparison of Bone Mineral Density and Trabecular Bone Score in Patients with and without Vertebral Fractures and Differentiated Thyroid Cancer with Long-Term Serum Thyrotrophin-Suppressed Therapy" Diagnostics 14, no. 9: 868. https://doi.org/10.3390/diagnostics14090868
APA StyleHawkins Carranza, F., Arroba, C. M. -A., López Alvarez, M. B., Librizzi, S., & Martínez Díaz Guerra, G. (2024). Comparison of Bone Mineral Density and Trabecular Bone Score in Patients with and without Vertebral Fractures and Differentiated Thyroid Cancer with Long-Term Serum Thyrotrophin-Suppressed Therapy. Diagnostics, 14(9), 868. https://doi.org/10.3390/diagnostics14090868