Case Ascertainment of Measles during a Large Outbreak—Laboratory Compared to Epidemiological Confirmation
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minta, A.A.; Ferrari, M.; Antoni, S.; Portnoy, A.; Sbarra, A.; Lambert, B.; Hatcher, C.; Hsu, C.H.; Ho, L.L.; Steulet, C.; et al. Progress toward Measles Elimination—Worldwide, 2000–2022. MMWR Morb. Mortal Wkl. Rep. 2023, 72, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.J.; Baldanti, F.; Puchhammer, E.; Panning, M.; Perez, O.; Harvala, H. Pan American Society for Clinical Virology (PASCV) Clinical Practice and Public Policy Committee and the European Society for Clinical Virology (ESCV) Executive Committee. Measles is Back—Considerations for laboratory diagnosis. J. Clin. Virol. 2020, 128, 104430. [Google Scholar] [CrossRef] [PubMed]
- Hübschen, J.M.; Gouandjika-Vasilache, I.; Dina, J. Measles. Lancet 2022, 399, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Duprex, W.P.; Dutch, R.E. Paramyxoviruses: Pathogenesis, Vaccines, Antivirals, and Prototypes for Pandemic Preparedness. J. Infect Dis. 2023, 228 (Suppl. S6), S390–S397. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The basic reproduction number (R0) of measles: A systematic review. Lancet Infect Dis. 2017, 17, e420–e428. [Google Scholar] [CrossRef]
- Misin, A.; Antonello, R.M.; Di Bella, S.; Campisciano, G.; Zanotta, N.; Giacobbe, D.R.; Comar, M.; Luzzati, R. Measles: An Overview of a Re-Emerging Disease in Children and Immunocompromised Patients. Microorganisms 2020, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Winter, A.K.; Lambert, B.; Klein, D.; Klepac, P.; Papadopoulos, T.; Truelove, S.; Burgess, C.; Santos, H.; Knapp, J.K.; Reef, S.E.; et al. Feasibility of measles and rubella vaccination programmes for disease elimination: A modelling study. Lancet Glob. Health 2022, 10, e1412–e1422. [Google Scholar] [CrossRef]
- Gastañaduy, P.A.; Goodson, J.L.; Panagiotakopoulos, L.; Rota, P.A.; Orenstein, W.A.; Patel, M. Measles in the 21st Century: Progress Toward Achieving and Sustaining Elimination. J. Infect. Dis. 2021, 224 (Suppl. S2), S420–S428. [Google Scholar] [CrossRef] [PubMed]
- Moss, W.J.; Shendale, S.; Lindstrand, A.; O’Brien, K.L.; Turner, N.; Goodman, T.; Kretsinger, K.; SAGE Working Group on Measles and Rubella Vaccines. Measles and Rubella Eradication Feasibility Assessment Workshop Participants. Feasibility assessment of measles and rubella eradication. Vaccine 2021, 39, 3544–3559. [Google Scholar] [CrossRef]
- Measles and Rubella Surveillance Data. Available online: https://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/ (accessed on 31 January 2024).
- Strebel, P.M.; Orenstein, W.A. Measles. N. Engl. J. Med. 2019, 381, 349–357. [Google Scholar] [CrossRef]
- Nicolay, N.; Mirinaviciute, G.; Mollet, T.; Celentano, L.P.; Bacci, S. Epidemiology of measles during the COVID-19 pandemic, a description of the surveillance data, 29 EU/EEA countries and the United Kingdom, January to May 2020. Eur. Surveill. 2020, 25, 2001390. [Google Scholar] [CrossRef] [PubMed]
- Measles Outbreak Guide. Available online: https://www.who.int/publications/i/item/9789240052079 (accessed on 31 January 2024).
- US Centers for Disease Control and Prevention. National Notifiable Diseases Surveillance System (NNDSS). Measles/Rubeola 2013 Case Definition. Source: Office of Public Health Data, Surveillance, and Technology. Available online: https://ndc.services.cdc.gov/case-definitions/measles-2013/ (accessed on 31 January 2024).
- World Health Organization. Measles Outbreak Toolkit. Updated September 2022. Available online: https://www.who.int/emergencies/outbreak-toolkit/disease-outbreak-toolboxes/measles-outbreak-toolbox (accessed on 31 January 2024).
- Hübschen, J.M.; Bork, S.M.; Brown, K.E.; Mankertz, A.; Santibanez, S.; Ben Mamou, M.; Mulders, M.N.; Muller, C.P. Challenges of measles and rubella laboratory diagnostic in the era of elimination. Clin. Microbiol. Infect. 2017, 23, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Stein-Zamir, C.; Abramson, N.; Shoob, H. Notes from the Field: Large Measles Outbreak in Orthodox Jewish Communities—Jerusalem District, Israel, 2018–2019. MMWR Morb. Mortal Wkl. Rep. 2020, 69, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Stein-Zamir, C.; Abramson, N.; Edelstein, N.; Shoob, H.; Zentner, G.; Zimmerman, D.R. Community-Oriented Epidemic Preparedness and Response to the Jerusalem 2018–2019 Measles Epidemic. Am. J. Public Health. 2019, 109, 1714–1716. [Google Scholar] [CrossRef]
- Ben-Chetrit, E.; Oster, Y.; Jarjou’i, A.; Megged, O.; Lachish, T.; Cohen, M.J.; Stein-Zamir, C.; Ivgi, H.; Rivkin, M.; Milgrom, Y.; et al. Measles-related hospitalizations and associated complications in Jerusalem, 2018–2019. Clin. Microbiol. Infect. 2020, 26, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Anis, E.; Haas, E.J.; Indenbaum, V.; Singer, S.R.; Warshavsky, B.; Rishpon, S.; Green, M.S.; Mendelson, E.; Grotto, I.; Kaliner, E.; et al. A prolonged, nationwide measles outbreak despite very high vaccination coverage in Israel, 2018–2019. J. Infect. 2021, 83, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Stein-Zamir, C.; Levine, H. The measles outbreak in Israel in 2018–2019: Lessons for COVID-19 pandemic. Hum. Vaccin. Immunother. 2021, 17, 2085–2089. [Google Scholar] [CrossRef] [PubMed]
- Stein-Zamir, C.; Shoob, H.; Abramson, D. Measles clinical presentation, hospitalization and vaccination status among children in a community-wide outbreak. Vaccine 2023, 41, 2764–2768. [Google Scholar] [CrossRef]
- Mulders, M. WHO Manual for the Laboratory-based Surveillance of Measles, Rubella, and Congenital Rubella Syndrome. Third edition, June 2018. Available online: https://www.technet-21.org/en/topics/programme-management/manual-for-the-laboratory-based-surveillance-of-measles-rubella-and-congenital-rubella-syndrome/manual-for-the-laboratory-based-surveillance-of-measles-rubella-and-congenital-rubella-syndrome (accessed on 31 January 2024).
- Hummel, K.B.; Lowe, L.; Bellini, W.J.; Rota, P.A. Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J. Virol. Methods 2006, 132, 166–173. [Google Scholar] [CrossRef]
- Bassal, R.; Indenbaum, V.; Pando, R.; Levin, T.; Shinar, E.; Amichay, D.; Barak, M.; Ben-Dor, A.; Haim, A.B.; Mendelson, E.; et al. Seropositivity of measles antibodies in the Israeli population prior to the nationwide 2018–2019 outbreak. Hum. Vaccin. Immunother. 2021, 17, 1353–1357. [Google Scholar] [CrossRef]
- Brown, K.E.; Rota, P.A.; Goodson, J.L.; Williams, D.; Abernathy, E.; Takeda, M.; Mulders, M.N. Genetic Characterization of Measles and Rubella Viruses Detected Through Global Measles and Rubella Elimination Surveillance, 2016–2018. MMWR Morb. Mortal. Wkl. Rep. 2019, 68, 587–591. [Google Scholar] [CrossRef]
- Bucris, E.; Indenbaum, V.; Azar, R.; Erster, O.; Haas, E.; Mendelson, E.; Zuckerman, N.S. Direct sequencing of measles virus complete genomes in the midst of a large-scale outbreak. PLoS ONE 2021, 16, e0255663. [Google Scholar] [CrossRef]
- World Health Organization. Update: Circulation of active genotypes of measles virus and recommendations for use of sequence analysis to monitor viral transmission. Wkly. Epidemiol. Rec. 2022, 97, 485–492. [Google Scholar]
- Stein-Zamir, C.; Israeli, A.; Grotto, I. Immunization registry as a digital assessment tool during outbreaks. Clin. Microbiol. Infect. 2021, 27, 166–168. [Google Scholar] [CrossRef]
- Stein-Zamir, C.; Zentner, G.; Tallen-Gozani, E.; Grotto, I. The Israel National Immunization Registry. Isr. Med. Assoc. J. 2010, 12, 296–300. [Google Scholar]
- Gastañaduy, P.A.; Banerjee, E.; DeBolt, C.; Bravo-Alcántara, P.; Samad, S.A.; Pastor, D.; Rota, P.A.; Patel, M.; Crowcroft, N.S.; Durrheim, D.N. Public health responses during measles outbreaks in elimination settings: Strategies and challenge. Hum. Vaccin. Immunother. 2018, 14, 2222–2238. [Google Scholar] [CrossRef]
- Hutchins, S.S.; Papania, M.J.; Amler, R.; Maes, E.F.; Grabowsky, M.; Bromberg, K.; Glasglow, V.; Speed, T.; Bellini, W.J.; Orenstein, W.A. Evaluation of the measles clinical case definition. J. Infect. Dis. 2004, 189 (Suppl. S1), S153–S159. [Google Scholar]
- World Health Organization. Available online: https://www.who.int/teams/immunization-vaccines-and-biologicals/immunization-analysis-and-insights/surveillance/monitoring/provisional-monthly-measles-and-rubella-data (accessed on 31 January 2024).
- World Health Organization. Home/News/A 30-Fold Rise of Measles Cases in 2023 in the WHO European Region Warrants Urgent Action. 14 December 2023. Available online: https://www.who.int/europe/news/item/14-12-2023-a-30-fold-rise-of-measles-cases-in-2023-in-the-who-european-region-warrants-urgent-action (accessed on 31 January 2024).
- Shmueli, M.; Lendner, I.; Ben-Shimol, S. Effect of the COVID-19 pandemic on the pediatric infectious disease landscape. Eur. J. Pediatr. 2024, 183, 1001–1009. [Google Scholar] [CrossRef]
- Maltezou, H.C.; Medic, S.; Cassimos, D.C.; Effraimidou, E.; Poland, G.A. Decreasing routine vaccination rates in children in the COVID-19 era. Vaccine 2022, 40, 2525–2527. [Google Scholar] [CrossRef]
- Locke, J.; Marinkovic, A.; Hamdy, K.; Balendra, V.; Sanyaolu, A. Routine pediatric vaccinations during the COVID-19 pandemic: A review of the global impact. World J. Virol. 2023, 12, 256–261. [Google Scholar] [CrossRef]
- Zucker, J.R.; Rosen, J.B.; Iwamoto, M.; Arciuolo, R.J.; Langdon-Embry, M.; Vora, N.M.; Rakeman, J.L.; Isaac, B.M.; Jean, A.; Asfaw, M.; et al. Consequences of Undervaccination—Measles Outbreak, New York City, 2018–2019. N. Engl. J. Med. 2020, 382, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Feemster, K.A.; Szipszky, C. Resurgence of measles in the United States: How did we get here? Curr. Opin. Pediatr. 2020, 32, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kauffmann, F.; Heffernan, C.; Meurice, F.; Ota, M.O.C.; Vetter, V.; Casabona, G. Measles, mumps, rubella prevention: How can we do better? Expert Rev. Vaccines 2021, 20, 811–826. [Google Scholar] [CrossRef] [PubMed]
- Ekezie, W.; Awwad, S.; Krauchenberg, A.; Karara, N.; Dembiński, Ł.; Grossman, Z.; Del Torso, S.; Dornbusch, H.J.; Neves, A.; Copley, S.; et al. Access to Vaccination among Disadvantaged, Isolated and Difficult-to-Reach Communities in the WHO European Region: A Systematic Review. Vaccines 2022, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Paret, M.; Trillo, R.; Lighter, J.; Youngster, I.; Ratner, A.J.; Pellett Madan, R. Poor Uptake of MMR Vaccine 1-year Post-Measles Outbreak: New York City and Israel. J. Pediatr. Infect Dis. Soc. 2022, 11, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.; Indenbaum, V.; Nuss, N.; Savion, M.; Mor, Z.; Amitai, Z.; Yoabob, I.; Sheffer, R. A Measles Outbreak in the Tel Aviv District, Israel, 2018–2019. Clin. Infect Dis. 2021, 72, 1649–1656. [Google Scholar] [CrossRef]
- Science, M.; Savage, R.; Severini, A.; McLachlan, E.; Hughes, S.L.; Arnold, C.; Richardson, S.; Crowcroft, N.; Deeks, S.; Halperin, S.; et al. Measles Antibody Levels in Young Infants. Pediatrics 2019, 144, e20190630. [Google Scholar] [CrossRef]
Variable | All n = 2254 | Laboratory Confirmed Case n = 716 | Epidemiologically-Linked to Confirmed Case n = 1538 | Sig |
---|---|---|---|---|
Age median (years) | 5.2 | 9.2 | 4.6 | <0.001 |
Percentiles 25 | 1.4 | 1.2 | 1.5 | |
Percentiles75 | 14.8 | 28.5 | 10.3 | |
Age groups | ||||
under 1 year | 425 (18.9%) | 148 (20.7%) | 277 (18%) | NS |
1–4 | 684 (30.3%) | 148 (20.7%) | 536 (34.9%) | 0.0001 |
5–9 | 401 (17.7%) | 74 (10.3%) | 327 (21.3%) | 0.0001 |
10–14 | 192 (8.5%) | 44 (6.2%) | 148 (9.6%) | 0.006 |
15–24 | 238 (10.6%) | 95 (13.3%) | 143 (9.3%) | 0.004 |
25–44 | 229 (10.1%) | 152 (21.4%) | 77 (5%) | 0.0001 |
45+ | 85 (3.8%) | 55 (7.7%) | 30 (2%) | 0.0001 |
Gender | ||||
male | 1306 (57.9%) | 445 (62.2%) | 861 (56%) | 0.006 |
Female | 948 (42.1%) | 271 (37.8%) | 677 (44%) | |
Place of residence | ||||
Jerusalem | 1419 (62.9%) | 436 (60.9%) | 983 (63.9%) | 0.001 |
other | 835 (37.1%) | 280 (39.1%) | 555 (36.1%) | |
Number of cases in the family median | 1 | 1 | 2 | <0.001 |
Percentiles 25 | 1 | 1 | 1 | |
Percentiles 75 | 3.25 | 2 | 5 | |
Cases in the household | ||||
1 case | 1172 (52%) | 519 (72.5%) | 653 (42.5%) | 0.001 |
2 cases or more | 1082 (48%) | 197 (27.6%) | 885 (57.5%) | |
Period of disease onset (month) | ||||
6/2018–10/2018 | 1037 (46%) | 248 (34.6%) | 789 (51.3%) | 0.0001 |
11/2018–5/2019 | 1217 (54%) | 468 (65.4%) | 749 (48.7%) | |
Place of daily stay | ||||
At home | 311 (13.8%) | 84 (11.7%) | 227 (14.8%) | NS |
In a setting | 1668 (74%) | 548 (76.5%) | 1120 (72.8%) | |
Unknown | 275 (12.2%) | 84 (11.7%) | 191 (12.4%) |
Variable | All n = 2254 | Laboratory Confirmed n = 716 | Epidemiologically-Linked n = 1538 | Sig |
---|---|---|---|---|
Clinical signs | ||||
fever (38.3 °C or above) | 2170 (96.3%) | 674 (94.1%) | 1496 (97.3%) | 0.0001 |
maculopapular rash | 2100 (93.2%) | 669 (93.4%) | 1431 (93%) | NS |
Coryza | 1809 (80.3%) | 555 (77.5%) | 1254 (81.5%) | 0.026 |
Cough | 1897 (84.2%) | 593 (82.8%) | 1304 (84.8%) | NS |
Conjunctivitis | 1728 (76.7%) | 527 (73.6%) | 1201 (78.1%) | 0.019 |
Pneumonia | 154 (6.8%) | 80 (11.2%) | 74 (4.8%) | 0.0001 |
Otitis | 142 (6.3%) | 65 (9.1%) | 77 (5%) | 0.0001 |
Place of treatment | ||||
Community clinic | 1849 (82%) | 461 (64.4%) | 1388 (90.2%) | 0.0001 |
Emergency department | 215 (9.5%) | 125 (17.4%) | 90 (5.9%) | 0.0001 |
Hospitalization | 190 (8.4%) | 130 (18.2%) | 60 (3.9%) | 0.0001 |
Vaccination | ||||
Unvaccinated (0 doses) | 1828 (81.1%) | 477 (66.7%) | 1351 (87.8%) | 0.0001 |
1 measles vaccine dose | 220 (9.8%) | 93 (13%) | 127 (8.3%) | 0.0001 |
2 measles vaccine doses. | 89 (3.9%) | 69 (9.6%) | 20 (1.3%) | 0.0001 |
Unknown | 117 (5.2%) | 77 (10.8%) | 40 (2.6%) | 0.0001 |
<1 Year n = 425 | 1–5 Year n = 787 | 6–17 Year n = 573 | 18+ Year n = 469 | |||||
---|---|---|---|---|---|---|---|---|
Adjusted OR (95% CI) | Sig | Adjusted OR (95% CI) | Sig | Adjusted OR (95% CI) | Sig | Adjusted OR (95% CI) | Sig | |
Age (month) | 0.9 (0.8–1.005) | NS | 0.99 (0.98–1.0) | NS | 1 (0.99–1.00) | NS | 1.002 (1.001–1.004) | 0.012 |
Gender | ||||||||
Male | 1 | 1 | 1 | 1 | ||||
Female | 0.95 (0.6–1.5) | NS | 0.7 (0.47–1.03) | NS | 0.48 (0.3–0.8) | 0.002 | 1.3 (0.9–2.1) | NS |
Place of residence | ||||||||
Jerusalem | 1 | 1 | 1 | 1 | ||||
Other | 1.1 (0.7–1.7) | NS | 1.8 (1.2–2.7) | 0.002 | 1.3 (0.8–2.1) | NS | 1.4 (0.92–2.3) | 0.06 |
Cases in the household | ||||||||
1 case | 1.7 (1.03–2.96) | 0.039 | 2.9 (1.9–4.4) | 0.001 | 2.8 (1.8–4.5) | 0.001 | 2.4 (1.5–3.9) | 0.001 |
2 cases or more | 1 | 1 | 1 | 1 | ||||
Period of disease onset (month) | ||||||||
06/2018–10/2018 | 1 | 1 | 1 | 1 | ||||
11/2018–05/2019 | 1.5 (0.97–2.3) | NS | 1.02 (0.69–1.5) | NS | 2.1 (1.3–3.3) | 0.001 | 1.5 (0.9–2.4) | NS |
Vaccination | ||||||||
0 doses | ---- | 1 | 1 | 1 | ||||
1 measles vaccine dose | ---- | 1.3 (0.77–2.1) | NS | 3.3 (1.5–7.6) | 0.004 | 0.9 (0.5–1.6) | NS | |
2 measles vaccine doses | ---- | ---- | 5.3 (2–14.5) | 0.001 | 4.6 (2.2–9.7) | 0.001 | ||
Unknown | ---- | ---- | ---- | 1.25 (0.7–2.1) | NS | |||
Place of treatment | ||||||||
Community clinic | 1 | 1 | 1 | 1 | ||||
Emergency department | 3.2 (1.8–5.9) | 0.001 | 4.1 (2.1–7.89) | 0.001 | 2.2 (0.8–6.1) | NS | 2.8 (1.6–4.9) | 0.001 |
Hospitalization | 4.9 (2.6–8.98) | 0.001 | 5.7 (2.9–10.8) | 0.001 | 5.1 (1.3–19.3) | 0.018 | 6.3 (3.1–12.9) | 0.001 |
Variable | PCR n = 420 | Serology n = 189 | PCR + Serology n = 107 | Sig |
---|---|---|---|---|
Age median (years) | 9.2 | 5.9 | 18.1 | 0.04 |
Percentiles 25 | 1.2 | 0.99 | 1.5 | |
75 | 26.3 | 28.3 | 36.8 | |
Age groups | ||||
under 1 year | 80 (19%) | 48 (25.4%) | 20 (18.7%) | NS |
1–4 | 84 (20%) | 45 (23.8%) | 18 (16.8%) | NS |
5–9 | 54 (12.9%) | 12 (6.3%) | 7 (6.5%) | 0.01 |
10–14 | 31 (7.4%) | 6 (3.2%) | 7 (6.5%) | NS |
15–24 | 56 (13.3%) | 25 (13.2%) | 14 (13.1%) | NS |
25–44 | 89 (21.2%) | 40 (21.2%) | 25 (23.4%) | NS |
45+ | 26 (6.2%) | 13 (6.9%) | 16 (15%) | 0.05 |
Gender | ||||
Male | 264 (62.9%) | 115 (60.8%) | 66 (61.7%) | NS |
Female | 156 (37.1%) | 74 (39.2%) | 41 (38.3%) | |
Place of residence | ||||
Jerusalem | 247 (58.8%) | 116 (61.4%) | 72 (67.3%) | NS |
Other | 173 (41.2%) | 73 (38.6%) | 35 (32.7%) | |
Number of cases in the family | ||||
1 case | 297 (70.7%) | 140 (74.1%) | 82 (76.6%) | NS |
2 cases or more | 123 (29.3%) | 49 (25.9%) | 25 (23.4%) | |
Period of disease onset (month) | ||||
6/2018–10/2018 | 109 (26%) | 85 (45%) | 54 (50.5%) | 0.001 |
11/2018–5/2019 | 311 (74%) | 104 (55%) | 53 (49.5%) | |
Place of daily stay | ||||
At home | 48 (11.4%) | 26 (13.8%) | 10 (9.3%) | 0.054 |
In a setting | 329 (78.3%) | 131 (69.3%) | 88 (82.2%) | |
Unknown | 43 (10.2%) | 32 (16.9%) | 9 (8.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein-Zamir, C.; Abramson, N.; Sokolov, I.; Mor-Shimshi, L.; Shoob, H. Case Ascertainment of Measles during a Large Outbreak—Laboratory Compared to Epidemiological Confirmation. Diagnostics 2024, 14, 943. https://doi.org/10.3390/diagnostics14090943
Stein-Zamir C, Abramson N, Sokolov I, Mor-Shimshi L, Shoob H. Case Ascertainment of Measles during a Large Outbreak—Laboratory Compared to Epidemiological Confirmation. Diagnostics. 2024; 14(9):943. https://doi.org/10.3390/diagnostics14090943
Chicago/Turabian StyleStein-Zamir, Chen, Nitza Abramson, Irina Sokolov, Lia Mor-Shimshi, and Hanna Shoob. 2024. "Case Ascertainment of Measles during a Large Outbreak—Laboratory Compared to Epidemiological Confirmation" Diagnostics 14, no. 9: 943. https://doi.org/10.3390/diagnostics14090943
APA StyleStein-Zamir, C., Abramson, N., Sokolov, I., Mor-Shimshi, L., & Shoob, H. (2024). Case Ascertainment of Measles during a Large Outbreak—Laboratory Compared to Epidemiological Confirmation. Diagnostics, 14(9), 943. https://doi.org/10.3390/diagnostics14090943