Pathological and Molecular Diagnosis of Uveal Melanoma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Pathological Diagnosis
3.1.1. Primary Tumor Composition
3.1.2. Primary Tumor Pathological Classifications
3.1.3. Clinical Validation Findings of the American Joint Committee on Cancer (AJCC) Classification and Identification of Further Clinical Data for Prognosis Estimation
Shields CL. et al., 2013 study (7731 patients) [15] | ||||
Metastasis rate vs. Tumor size (T1–4) | 3 years: 4% T1 7% T2 19% T3 32% T4 | 5 years: 8% T1 14% T2 31% T3 51% T4 | 10 years: 15% T1 25% T2 39% T3 63% T4 | 20 years: 25% T1 40% T2 62% T3 69% T4 |
Non-survival vs. Tumor size (T1–4) | 3 years: 2% T1 4% T2 12% T3 18% T4 | 5 years: 4% T1 8% T2 19% T3 30% T4 | 10 years: 8% T1 13% T2 27% T3 43% T4 | 20 years: 11% T1 24% T2 36% T3 51% T4 |
Shields CL. et al., 2015 study (7731 patients) [21] | ||||
Metastasis rate vs. TNM Staging | 3 years: 2% S1 9.5% S2 25.6% S3 100% S4 | 5 years: 5.1% S1 16.7% S2 43.5% S3 100% S4 | 10 years: 11.9% S1 28.7% S2 61.1% S3 100% S4 | 20 years: 20.3% S1 43.8% S2 72.6% S3 100% S4 |
Non-survival vs. TNM Staging | 3 years: 1.1% S1 5.3% S2 15.5% S3 100% S4 | 5 years: 2.8% S1 9.3% S2 27.2% S3 100% S4 | 10 years: 5.9% S1 15% S2 39% S3 100% S4 | 20 years: 8.3% S1 23.5% S2 53% S3 100% S4 |
Kujala E. et al., 2013 study (2152 tumors) [22] | ||||
Survival vs. TNM Staging (S) | At 5 years: 96%Stage I 89%StageIIA 81% Stage IIB 66% Stage IIIA 45% Stage IIIB 26% Stage IIIC | At 10 years: 88% Stage I 80% Stage IIA 67% Stage IIB 45% Stage IIIA 27% Stage IIIB 10% Stage IIIC | At 15 years: 81% Stage I 69% Stage IIA 58% Stage IIB 34% Stage IIIA 18% Stage IIIB 0% Stage IIIC | |
Xu Y. et al., 2020 study (1142 patients) [25] | ||||
Accumulative overall survival (OS) vs. TNM Staging | 88% for Stage I 67.4% for Stage II 46.3% for Stage III 13.7% for Stage IV | |||
Disease-specific survival (DSS) Vs. TNM Staging | 93.6% for Stage I 72.9% for Stage II 49.5% for Stage III 13.7% for Stage IV | |||
Kapoor AG. et al., 2020 study on an Asian Indian patient cohort [26] | ||||
Tumor size vs. 5-year distant metastases | 0% for T1 0% for T2 7% for T3 13% for T4 | Tumor size vs. 5-year survival | 96% for T1 92% for T2 81% for T3 70% for T4 |
3.1.4. Other Histopathological Findings with Prognostic Impact
3.2. Molecular Diagnosis
3.2.1. Molecular Diagnosis Is the Next Steppingstone in Obtaining More Prognostic and Therapeutical Accuracy for Uveal Melanoma
3.2.2. Genetic Profiles Are Intrinsically Linked to Uveal Melanoma Metastatic Patterns
3.2.3. Genetic Drivers for Oncogenesis, Micrometastasis, and Metastasis
3.2.4. Metastatic Behavior and Exhibition of Metastatic Pleomorphism to the Original Primary Tumor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rantala, E.S.; Hernberg, M.M.; Piperno-Neumann, S.; Grossniklaus, H.E.; Kivelä, T.T. Metastatic uveal melanoma: The final frontier. Prog. Retin. Eye Res. 2022, 90, 101041. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Dalvin, L.A.; Vichitvejpaisal, P.; Mazloumi, M.; Ganguly, A.; Shields, J.A. Prognostication of uveal melanoma is simple and highly predictive using The Cancer Genome Atlas (TCGA) classification: A review. Indian J. Ophthalmol. 2019, 67, 1959–1963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amin, M.B. (Ed.) AJCC Cancer Staging Manual, 8th ed.; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Mazloumi, M.; Vichitvejpaisal, P.; Dalvin, L.A.; Yaghy, A.; Ewens, K.G.; Ganguly, A.; Shields, C.L. Accuracy of The Cancer Genome Atlas Classification vs American Joint Committee on Cancer Classification for Prediction of Metastasis in Patients with Uveal Melanoma. JAMA Ophthalmol. 2020, 138, 260–267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vichitvejpaisal, P.; Dalvin, L.A.; Mazloumi, M.; Ewens, K.G.; Ganguly, A.; Shields, C.L. Genetic Analysis of Uveal Melanoma in 658 Patients Using the Cancer Genome Atlas Classification of Uveal Melanoma as A, B, C, and D. Ophthalmology 2019, 126, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Gallenga, C.E.; Franco, E.; Adamo, G.G.; Violanti, S.S.; Tassinari, P.; Tognon, M.; Perri, P. Genetic Basis and Molecular Mechanisms of Uveal Melanoma Metastasis: A Focus on Prognosis. Front. Oncol. 2022, 12, 828112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvajal, R.D.; Schwartz, G.K.; Tezel, T.; Marr, B.; Francis, J.H.; Nathan, P.D. Metastatic disease from uveal melanoma: Treatment options and future prospects. Br. J. Ophthalmol. 2017, 101, 38–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kottschade, L.A.; McWilliams, R.R.; Markovic, S.N.; Block, M.S.; Villasboas Bisneto, J.; Pham, A.Q.; Esplin, B.L.; Dronca, R.S. The use of pembrolizumab for the treatment of metastatic uveal melanoma. Melanoma Res. 2016, 26, 300–303. [Google Scholar] [CrossRef] [PubMed]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83, Erratum in Microbiol. Mol. Biol. Rev. 2012, 76, 496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steeb, T.; Wessely, A.; Ruzicka, T.; Heppt, M.V.; Berking, C. How to MEK the best of uveal melanoma: A systematic review on the efficacy and safety of MEK inhibitors in metastatic or unresectable uveal melanoma. Eur. J. Cancer 2018, 103, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Griewank, K.G.; Murali, R. Pathology and genetics of uveal melanoma. Pathology 2013, 45, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Harbour, J.W. The genetics of uveal melanoma: An emerging framework for targeted therapy. Pigment Cell Melanoma Res. 2012, 25, 171–181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Char, D.H.; Crawford, J.B.; Kroll, S. Iris melanomas. Diagnostic problems. Ophthalmology 1996, 103, 251–255. [Google Scholar] [CrossRef] [PubMed]
- McLean, I.W.; Foster, W.D.; Zimmerman, L.E.; Gamel, J.W. Modifications of Callender’s classification of uveal melanoma at the Armed Forces Institute of Pathology. Am. J. Ophthalmol. 1983, 96, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Kaliki, S.; Furuta, M.; Fulco, E.; Alarcon, C.; Shields, J.A. American Joint Committee on Cancer classification of posterior uveal melanoma (tumor size category) predicts prognosis in 7731 patients. Ophthalmology 2013, 120, 2066–2071. [Google Scholar] [CrossRef] [PubMed]
- Mellen, P.L.; Morton, S.J.; Shields, C.L. American joint committee on cancer staging of uveal melanoma. Oman J. Ophthalmol. 2013, 6, 116–118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- AJCC Ophthalmic Oncology Task Force. International Validation of the American Joint Committee on Cancer’s 7th Edition Classification of Uveal Melanoma. JAMA Ophthalmol. 2015, 133, 376–383, Erratum in JAMA Ophthalmol. 2015, 133, 493. Erratum in JAMA Ophthalmol. 2015, 133, 1096. [Google Scholar] [CrossRef] [PubMed]
- Kivela, T.; Simpson, E.R.; Grossniklaus, H.E.; Jager, M.J.; Singh, A.D.; Caminal, J.M.; Pavlick, A.C.; Kujala, E.; Coupland, S.E.; Finger, P.T. Uveal Melanoma. In AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Edge, S., Greene, F., Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; Springer Publishing Company: New York, NY, USA, 2017; pp. 805–817. [Google Scholar]
- Olawaiye, A.B.; Baker, T.P.; Washington, M.K.; Mutch, D.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021, 71, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Stacey, A.W.; Dedania, V.S.; Materin, M.; Demirci, H. Improved Prognostic Precision in Uveal Melanoma through a Combined Score of Clinical Stage and Molecular Prognostication. Ocul. Oncol. Pathol. 2022, 8, 35–41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shields, C.L.; Kaliki, S.; Furuta, M.; Fulco, E.; Alarcon, C.; Shields, J.A. American Joint Committee on Cancer Classification of Uveal Melanoma (Anatomic Stage) Predicts Prognosis in 7,731 Patients: The 2013 Zimmerman Lecture. Ophthalmology 2015, 122, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Kujala, E.; Damato, B.; Coupland, S.E.; Desjardins, L.; Bechrakis, N.E.; Grange, J.D.; Kivelä, T. Staging of ciliary body and choroidal melanomas based on anatomic extent. J. Clin. Oncol. 2013, 31, 2825–2831. [Google Scholar] [CrossRef] [PubMed]
- Smidt-Nielsen, I.; Bagger, M.; Heegaard, S.; Andersen, K.K.; Kiilgaard, J.F. Posterior uveal melanoma incidence and survival by AJCC tumour size in a 70-year nationwide cohort. Acta Ophthalmol. 2021, 99, e1474–e1482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergman, L.; Seregard, S.; Nilsson, B.; Lundell, G.; Ringborg, U.; Ragnarsson-Olding, B. Uveal melanoma survival in Sweden from 1960 to 1998. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3282–3287. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lou, L.; Wang, Y.; Miao, Q.; Jin, K.; Chen, M.; Ye, J. Epidemiological Study of Uveal Melanoma from US Surveillance, Epidemiology, and End Results Program (2010-2015). J. Ophthalmol. 2020, 2020, 3614039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kapoor, A.G.; Kaliki, S.; Vempuluru, V.S.; Jajapuram, S.D.; Ali, M.H.; Mohamed, A. Posterior uveal melanoma in 321 Asian Indian patients: Analysis based on the 8th edition of American Joint Committee Cancer classification. Int. Ophthalmol. 2020, 40, 3087–3096. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Finger, P.T.; Yu, G.P.; Razzaq, L.; Jager, M.J.; de Keizer, R.J.; Sandkull, P.; Seregard, S.; Gologorsky, D.; Schefler, A.C.; et al. Clinical and pathologic characteristics of biopsy-proven iris melanoma: A multicenter international study. Arch. Ophthalmol. 2012, 130, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Di Nicola, M.; Bekerman, V.P.; Kaliki, S.; Alarcon, C.; Fulco, E.; Shields, J.A. Iris Melanoma Outcomes Based on the American Joint Committee on Cancer Classification (Eighth Edition) in 432 Patients. Ophthalmology 2018, 125, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Mlecnik, B.; Bindea, G.; Pagès, F.; Galon, J. Tumor immunosurveillance in human cancers. Cancer Metastasis Rev. 2011, 30, 5–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Broggi, G.; Russo, A.; Reibaldi, M.; Russo, D.; Varricchio, S.; Bonfiglio, V.; Spatola, C.; Barbagallo, C.; Foti, P.V.; Avitabile, T.; et al. Histopathology and Genetic Biomarkers of Choroidal Melanoma. Appl. Sci. 2020, 10, 8081. [Google Scholar] [CrossRef]
- Onken, M.D.; Worley, L.A.; Ehlers, J.P.; Harbour, J.W. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004, 64, 7205–7209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bronkhorst, I.H.; Jager, M.J. Inflammation in uveal melanoma. Eye 2013, 27, 217–223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Folberg, R.; Pe’er, J.; Gruman, L.M.; Woolson, R.F.; Jeng, G.; Montague, P.R.; Moninger, T.O.; Yi, H.; Moore, K.C. The morphologic characteristics of tumor blood vessels as a marker of tumor progression in primary human uveal melanoma: A matched case-control study. Hum. Pathol. 1992, 23, 1298–1305. [Google Scholar] [CrossRef] [PubMed]
- Folberg, R. Discussion of paper by Foss et al. Br. J. Ophthalmol. 1997, 81, 247–248. [Google Scholar] [CrossRef]
- Frizziero, L.; Midena, E.; Trainiti, S.; Londei, D.; Bonaldi, L.; Bini, S.; Parrozzani, R. Uveal Melanoma Biopsy: A Review. Cancers 2019, 11, 1075. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Damato, B.; Duke, C.; Coupland, S.E.; Hiscott, P.; Smith, P.A.; Campbell, I.; Douglas, A.; Howard, P. Cytogenetics of uveal melanoma: A 7-year clinical experience. Ophthalmology 2007, 114, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Damato, B.; Coupland, S.E. Translating uveal melanoma cytogenetics into clinical care. Arch. Ophthalmol. 2009, 127, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Prescher, G.; Bornfeld, N.; Horsthemke, B.; Becher, R. Chromosomal aberrations defining uveal melanoma of poor prognosis. Lancet 1992, 339, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Prescher, G.; Bornfeld, N.; Hirche, H.; Horsthemke, B.; Jöckel, K.H.; Becher, R. Prognostic implications of monosomy 3 in uveal melanoma. Lancet 1996, 347, 1222–1225. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Ganguly, A.; Bianciotto, C.G.; Turaka, K.; Tavallali, A.; Shields, J.A. Prognosis of uveal melanoma in 500 cases using genetic testing of fine-needle aspiration biopsy specimens. Ophthalmology 2011, 118, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Ewens, K.G.; Kanetsky, P.A.; Richards-Yutz, J.; Al-Dahmash, S.; De Luca, M.C.; Bianciotto, C.G.; Shields, C.L.; Ganguly, A. Genomic profile of 320 uveal melanoma cases: Chromosome 8p-loss and metastatic outcome. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5721–5729. [Google Scholar] [CrossRef] [PubMed]
- Ewens, K.G.; Kanetsky, P.A.; Richards-Yutz, J.; Purrazzella, J.; Shields, C.L.; Ganguly, T.; Ganguly, A. Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5160–5167. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Say, E.A.T.; Hasanreisoglu, M.; Saktanasate, J.; Lawson, B.M.; Landy, J.E.; Badami, A.U.; Sivalingam, M.D.; Mashayekhi, A.; Shields, J.A.; et al. Cytogenetic Abnormalities in Uveal Melanoma Based on Tumor Features and Size in 1059 Patients: The 2016 W. Richard Green Lecture. Ophthalmology 2017, 124, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.L.; Say, E.A.T.; Hasanreisoglu, M.; Saktanasate, J.; Lawson, B.M.; Landy, J.E.; Badami, A.U.; Sivalingam, M.D.; Hauschild, A.J.; House, R.J.; et al. Personalized Prognosis of Uveal Melanoma Based on Cytogenetic Profile in 1059 Patients over an 8-Year Period: The 2017 Harry S. Gradle Lecture. Ophthalmology 2017, 124, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Dogrusöz, M.; Bagger, M.; van Duinen, S.G.; Kroes, W.G.; Ruivenkamp, C.A.; Böhringer, S.; Andersen, K.K.; Luyten, G.P.; Kiilgaard, J.F.; Jager, M.J. The Prognostic Value of AJCC Staging in Uveal Melanoma Is Enhanced by Adding Chromosome 3 and 8q Status. Investig. Ophthalmol. Vis. Sci. 2017, 58, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Shih, J.; Yau, C.; Gibb, E.A.; Oba, J.; Mungall, K.L.; Hess, J.M.; Uzunangelov, V.; Walter, V.; Danilova, L.; et al. Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 2017, 32, 204–220.e15, Erratum in Cancer Cell. 2018, 33, 151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jager, M.J.; Brouwer, N.J.; Esmaeli, B. The Cancer Genome Atlas Project: An Integrated Molecular View of Uveal Melanoma. Ophthalmology 2018, 125, 1139–1142. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, Z.M.; Augsburger, J.J. Independent Prognostic Significance of Gene Expression Profile Class and Largest Basal Diameter of Posterior Uveal Melanomas. Am. J. Ophthalmol. 2016, 162, 20–27.e1. [Google Scholar] [CrossRef] [PubMed]
- Gill, V.T.; Sabazade, S.; Herrspiegel, C.; Ewens, K.G.; Opalko, A.; Dan, N.; Christersdottir, T.; Berg Rendahl, A.; Shields, C.L.; Seregard, S.; et al. A prognostic classification system for uveal melanoma based on a combination of patient age and sex, the American Joint Committee on Cancer and the Cancer Genome Atlas models. Acta Ophthalmol. 2023, 101, 34–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lei, X.; Zhang, Y.; Mao, L.; Jiang, P.; Huang, Y.; Gu, J.; Tai, N. Prognostic value of receptor tyrosine kinases in malignant melanoma patients: A systematic review and meta-analysis of immunohistochemistry. Front. Oncol. 2022, 12, 819051. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, S.L.; Damato, B.E.; Scholes, A.G.; Nunn, J.; Field, J.K.; Heighway, J. Decreased endothelin receptor B expression in large primary uveal melanomas is associated with early clinical metastasis and short survival. Br. J. Cancer 2002, 87, 1308–1313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, P.; Zhang, X.; Xiang, T.; Ling, Z.; Lin, C.; Diao, H. Secreted phosphoprotein 1 as a potential prognostic and immunotherapy biomarker in multiple human cancers. Bioengineered 2022, 13, 3221–3239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tu, Y.; Chen, C.; Fan, G. Association between the expression of secreted phosphoprotein—Related genes and prognosis of human cancer. BMC Cancer 2019, 19, 1230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deng, G.; Zeng, F.; Su, J.; Zhao, S.; Hu, R.; Zhu, W.; Hu, S.; Chen, X.; Yin, M. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Theranostics 2020, 10, 11428–11443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vivet-Noguer, R.; Tarin, M.; Roman-Roman, S.; Alsafadi, S. Emerging Therapeutic Opportunities Based on Current Knowledge of Uveal Melanoma Biology. Cancers 2019, 11, 1019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fodor, K.; Sipos, É.; Dobos, N.; Nagy, J.; Steiber, Z.; Méhes, G.; Dull, K.; Székvölgyi, L.; Schally, A.V.; Halmos, G. Correlation between the Expression of Angiogenic Factors and Stem Cell Markers in Human Uveal Melanoma. Life 2020, 10, 310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- White, J.R.; Thompson, D.T.; Koch, K.E.; Kiriazov, B.S.; Beck, A.C.; van der Heide, D.M.; Grimm, B.G.; Kulak, M.V.; Weigel, R.J. AP-2α-Mediated Activation of E2F and EZH2 Drives Melanoma Metastasis. Cancer Res. 2021, 81, 4455–4470. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahlander, J.; Bosco, G. The RB/E2F pathway and regulation of RNA processing. Biochem. Biophys. Res. Commun. 2009, 384, 280–283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamada, T.; Ui-Tei, K.; Imaki, J.; Miyata, Y. Molecular cloning of SCDGF-B, a novel growth factor homologous to SCDGF/PDGF-C/fallotein. Biochem. Biophys. Res. Commun. 2001, 280, 733–737, Erratum in Biochem. Biophys. Res. Commun. 2001, 282, 1275. [Google Scholar] [CrossRef] [PubMed]
- Onken, M.D.; Worley, L.A.; Harbour, J.W. Association between gene expression profile, proliferation and metastasis in uveal melanoma. Curr. Eye Res. 2010, 35, 857–863. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dogrusöz, M.; Jager, M.J. Genetic prognostication in uveal melanoma. Acta Ophthalmol. 2018, 96, 331–347. [Google Scholar] [CrossRef] [PubMed]
- van den Bosch, T.; van Beek, J.G.; Vaarwater, J.; Verdijk, R.M.; Naus, N.C.; Paridaens, D.; de Klein, A.; Kiliç, E. Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2668–2674. [Google Scholar] [CrossRef] [PubMed]
- Onken, M.D.; Worley, L.A.; Harbour, J.W. A metastasis modifier locus on human chromosome 8p in uveal melanoma identified by integrative genomic analysis. Clin. Cancer Res. 2008, 14, 3737–3745. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Di Crescenzo, R.M.; Broggi, G.; Merolla, F.; Martino, F.; Varricchio, S.; Ilardi, G.; Borzillo, A.; Carandente, R.; Pignatiello, S.; et al. Expression of P16INK4a in Uveal Melanoma: New Perspectives. Front. Oncol. 2020, 10, 562074. [Google Scholar] [CrossRef] [PubMed]
- Silva-Rodríguez, P.; Fernández-Díaz, D.; Bande, M.; Pardo, M.; Loidi, L.; Blanco-Teijeiro, M.J. GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma. Cancers 2022, 14, 3066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lietman, C.D.; McKean, M. Targeting GNAQ/11 through PKC inhibition in uveal melanoma. Cancer Gene Ther. 2022, 29, 1809–1813. [Google Scholar] [CrossRef] [PubMed]
- Onken, M.D.; Worley, L.A.; Long, M.D.; Duan, S.; Council, M.L.; Bowcock, A.M.; Harbour, J.W. Oncogenic mutations in GNAQ occur early in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5230–5234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Besaratinia, A.; Pfeifer, G.P. Uveal melanoma and GNA11 mutations: A new piece added to the puzzle. Pigment Cell Melanoma Res. 2011, 24, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Shoushtari, A.N.; Carvajal, R.D. GNAQ and GNA11 mutations in uveal melanoma. Melanoma Res. 2014, 24, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Van Raamsdonk, C.D.; Bezrookove, V.; Green, G.; Bauer, J.; Gaugler, L.; O’Brien, J.M.; Simpson, E.M.; Barsh, G.S.; Bastian, B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 2009, 457, 599–602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khan, S.; Patel, S.P.; Shoushtari, A.N.; Ambrosini, G.; Cremers, S.; Lee, S.; Franks, L.; Singh-Kandah, S.; Hernandez, S.; Sender, N.; et al. Intermittent MEK inhibition for the treatment of metastatic uveal melanoma. Front. Oncol. 2022, 12, 975643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moore, A.R.; Ceraudo, E.; Sher, J.J.; Guan, Y.; Shoushtari, A.N.; Chang, M.T.; Zhang, J.Q.; Walczak, E.G.; Kazmi, M.A.; Taylor, B.S.; et al. Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nat. Genet. 2016, 48, 675–680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbosa, R.; Acevedo, L.A.; Marmorstein, R. The MEK/ERK Network as a Therapeutic Target in Human Cancer. Mol. Cancer Res. 2021, 19, 361–374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ortega, M.A.; Fraile-Martínez, O.; García-Honduvilla, N.; Coca, S.; Álvarez-Mon, M.; Buján, J.; Teus, M.A. Update on uveal melanoma: Translational research from biology to clinical practice (Review). Int. J. Oncol. 2020, 57, 1262–1279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O’Hayre, M.; Degese, M.S.; Gutkind, J.S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol. 2014, 27, 126–135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, H.; Lei, C.; Long, K.; Yang, X.; Zhu, Z.; Zhang, L.; Liu, J. Mutant GNAQ promotes cell viability and migration of uveal melanoma cells through the activation of Notch signaling. Oncol. Rep. 2015, 34, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Bakalian, S.; Marshall, J.C.; Logan, P.; Faingold, D.; Maloney, S.; Di Cesare, S.; Martins, C.; Fernandes, B.F.; Burnier, M.N., Jr. Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin. Cancer Res. 2008, 14, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Koning, L.; Coupland, S.E.; Jochemsen, A.G.; Marais, R.; Stern, M.H.; Valente, A.; Barnhill, R.; Cassoux, N.; Evans, A.; et al. So Close, yet so Far: Discrepancies between Uveal and Other Melanomas. A Position Paper from UM Cure 2020. Cancers 2019, 11, 1032. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Decatur, C.L.; Ong, E.; Garg, N.; Anbunathan, H.; Bowcock, A.M.; Field, M.G.; Harbour, J.W. Driver Mutations in Uveal Melanoma: Associations With Gene Expression Profile and Patient Outcomes. JAMA Ophthalmol. 2016, 134, 728–733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drabarek, W.; van Riet, J.; Nguyen, J.Q.N.; Smit, K.N.; van Poppelen, N.M.; Jansen, R.; Medico-Salsench, E.; Vaarwater, J.; Magielsen, F.J.; Brands, T.; et al. Identification of Early-Onset Metastasis in SF3B1 Mutated Uveal Melanoma. Cancers 2022, 14, 846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussain, M.R.; Baig, M.; Mohamoud, H.S.; Ulhaq, Z.; Hoessli, D.C.; Khogeer, G.S.; Al-Sayed, R.R.; Al-Aama, J.Y. BRAF gene: From human cancers to developmental syndromes. Saudi J. Biol. Sci. 2015, 22, 359–373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandes, B.F.; Odashiro, A.N.; Saraiva, V.S.; Logan, P.; Antecka, E.; Burnier, M.N., Jr. Immunohistochemical expression of melan-A and tyrosinase in uveal melanoma. J. Carcinog. 2007, 6, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freton, A.; Chin, K.J.; Raut, R.; Tena, L.B.; Kivelä, T.; Finger, P.T. Initial PET/CT staging for choroidal melanoma: AJCC correlation and second nonocular primaries in 333 patients. Eur. J. Ophthalmol. 2012, 22, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Garg, G.; Finger, P.T.; Kivelä, T.T.; Simpson, E.R.; Gallie, B.L.; Saakyan, S.; Amiryan, A.G.; Valskiy, V.; Chin, K.J.; Semenova, E.; et al. Patients presenting with metastases: Stage IV uveal melanoma, an international study. Br. J. Ophthalmol. 2022, 106, 510–517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kujala, E.; Mäkitie, T.; Kivelä, T. Very long-term prognosis of patients with malignant uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4651–4659. [Google Scholar] [CrossRef] [PubMed]
- Dithmar, S.; Diaz, C.E.; Grossniklaus, H.E. Intraocular melanoma spread to regional lymph nodes: Report of two cases. Retina 2000, 20, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989, 8, 98–101. [Google Scholar] [PubMed]
- van den Bosch, T.; Koopmans, A.E.; Vaarwater, J.; van den Berg, M.; de Klein, A.; Verdijk, R.M. Chemokine receptor CCR7 expression predicts poor outcome in uveal melanoma and relates to liver metastasis whereas expression of CXCR4 is not of clinical relevance. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7354–7361. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tan, S.; Qiao, J.; Xu, Y.; Gui, Z.; Meng, Y.; Dong, B.; Peng, G.; Ibhagui, O.Y.; Qian, W.; et al. Non-invasive detection and complementary diagnosis of liver metastases via chemokine receptor 4 imaging. Cancer Gene Ther. 2022, 29, 1827–1839. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Alizadeh, H.; Niederkorn, J.Y. Differential expression of chemokine receptors on uveal melanoma cells and their metastases. Investig. Ophthalmol. Vis. Sci. 2008, 49, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Croce, M.; Reggiani, F.; Schinzari, G.; Ambrosio, M.; Gangemi, R.; Tortora, G.; Pfeffer, U.; Amaro, A. Uveal Melanoma Metastasis. Cancers 2021, 13, 5684. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gardner, F.P.; Serie, D.J.; Salomao, D.R.; Wu, K.J.; Markovic, S.N.; Pulido, J.S.; Joseph, R.W. c-MET expression in primary and liver metastases in uveal melanoma. Melanoma Res. 2014, 24, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Capper, D.; Stichel, D.; Sahm, F.; Jones, D.T.W.; Schrimpf, D.; Sill, M.; Schmid, S.; Hovestadt, V.; Reuss, D.E.; Koelsche, C.; et al. Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: The Heidelberg experience. Acta Neuropathol. 2018, 136, 181–210. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roh, M.R.; Gupta, S.; Park, K.H.; Chung, K.Y.; Lauss, M.; Flaherty, K.T.; Jönsson, G.; Rha, S.Y.; Tsao, H. Promoter Methylation of PTEN Is a Significant Prognostic Factor in Melanoma Survival. J. Investig. Dermatol. 2016, 136, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Jurmeister, P.; Wrede, N.; Hoffmann, I.; Vollbrecht, C.; Heim, D.; Hummel, M.; Wolkenstein, P.; Koch, I.; Heynol, V.; Schmitt, W.D.; et al. Mucosal melanomas of different anatomic sites share a common global DNA methylation profile with cutaneous melanoma but show location-dependent patterns of genetic and epigenetic alterations. J. Pathol. 2022, 256, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Smit, K.N.; Boers, R.; Vaarwater, J.; Boers, J.; Brands, T.; Mensink, H.; Verdijk, R.M.; van IJcken, W.F.J.; Gribnau, J.; de Klein, A.; et al. Genome-wide aberrant methylation in primary metastatic UM and their matched metastases. Sci. Rep. 2022, 12, 42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smit, K.N.; Jager, M.J.; de Klein, A.; Kiliҫ, E. Uveal melanoma: Towards a molecular understanding. Prog. Retin. Eye Res. 2020, 75, 100800. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.D.; Turell, M.E.; Topham, A.K. Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology 2011, 118, 1881–1885. [Google Scholar] [CrossRef] [PubMed]
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diener-West, M.; Earle, J.D.; Fine, S.L.; Hawkins, B.S.; Moy, C.S.; Reynolds, S.M.; Schachat, A.P.; Straatsma, B.R.; Collaborative Ocular Melanoma Study Group. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: Initial mortality findings. COMS Report No. 18. Arch. Ophthalmol. 2001, 119, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Damato, B. Predicting Choroidal Melanoma Regression after Brachytherapy. Ophthalmology 2018, 125, 755–756. [Google Scholar] [CrossRef] [PubMed]
- Marinkovic, M.; Pors, L.J.; van den Berg, V.; Peters, F.P.; Schalenbourg, A.; Zografos, L.; Pica, A.; Hrbacek, J.; Van Duinen, S.G.; Vu, T.H.K.; et al. Clinical Outcomes after International Referral of Uveal Melanoma Patients for Proton Therapy. Cancers 2021, 13, 6241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Basile, M.S.; Mazzon, E.; Fagone, P.; Longo, A.; Russo, A.; Fallico, M.; Bonfiglio, V.; Nicoletti, F.; Avitabile, T.; Reibaldi, M. Immunobiology of Uveal Melanoma: State of the Art and Therapeutic Targets. Front. Oncol. 2019, 9, 1145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, X.; Degese, M.S.; Iglesias-Bartolome, R.; Vaque, J.P.; Molinolo, A.A.; Rodrigues, M.; Zaidi, M.R.; Ksander, B.R.; Merlino, G.; Sodhi, A.; et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014, 25, 831–845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Li, Q.; Dang, K.; Ma, S.; Cotton, J.L.; Yang, S.; Zhu, L.J.; Deng, A.C.; Ip, Y.T.; Johnson, R.L.; et al. YAP/TAZ Activation Drives Uveal Melanoma Initiation and Progression. Cell Rep. 2019, 29, 3200–3211.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johansson, P.; Aoude, L.G.; Wadt, K.; Glasson, W.J.; Warrier, S.K.; Hewitt, A.W.; Kiilgaard, J.F.; Heegaard, S.; Isaacs, T.; Franchina, M.; et al. Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 2016, 7, 4624–4631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Weeghel, C.; Wierenga, A.P.A.; Versluis, M.; van Hall, T.; van der Velden, P.A.; Kroes, W.G.M.; Pfeffer, U.; Luyten, G.P.M.; Jager, M.J. Do GNAQ and GNA11 Differentially Affect Inflammation and HLA Expression in Uveal Melanoma? Cancers 2019, 11, 1127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodriguez-Vidal, C.; Fernandez-Diaz, D.; Fernandez-Marta, B.; Lago-Baameiro, N.; Pardo, M.; Silva, P.; Paniagua, L.; Blanco-Teijeiro, M.J.; Piñeiro, A.; Bande, M. Treatment of Metastatic Uveal Melanoma: Systematic Review. Cancers 2020, 12, 2557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvajal, R.D.; Sacco, J.J.; Jager, M.J.; Eschelman, D.J.; Olofsson Bagge, R.; Harbour, J.W.; Chieng, N.D.; Patel, S.P.; Joshua, A.M.; Piperno-Neumann, S. Advances in the clinical management of uveal melanoma. Nat. Rev. Clin. Oncol. 2023, 20, 99–115. [Google Scholar] [CrossRef] [PubMed]
Khan S. et al.’s 2011 study on 131 patients with iris melanoma [27] | |||
Metastasis rate vs. Tumor size (T1–4) | 100% for T0 100% for T1 a–c 90.4% for T2 63.6% for T2a 50% for T3 and T3a 50% for T4 | ||
Survival vs. Histological grade | Baseline = Grade 1 and unknown grade (GX) Grades 2 and 3 incur 8 times less survival probability versus baseline | ||
Shields CL. et al.’s 2018 study on iris melanoma (432 patients) [28] | |||
Metastasis rate vs. Tumor size (T1–4) | 3 years: 0.5% T1 1.8% T2 | 5 years: 2.3% T1 9% T2 | 10 years: 4.9% T1 14% T2 |
T3 not evaluable (insufficient cases) | |||
12.2% T4 | 33.1% T4 | Not evaluable for T4 |
Prescher G. et al.’s 1992 Study on 34 tumors [38] |
-Reported the existence of two poor prognostic mutations in uveal melanoma: monosomy of chromosome 3 and multiplication (gain) of chromosome 8q material [35]. -Identified combined 8q gain and monosomy 3 as a poor prognosis subgroup. |
Prescher G. et al.’s 1996 Study on 54 excised tumors [39] |
-Monosomy-3 was strongly predictive of poor prognosis (p < 0.0001). -Only patients with monosomy-3 tumors developed metastases with a 57% metastatic rate and only a 50% relapse-free survival rate. |
Onken MD. et al.’s 2004 genetic study on 3075 uveal melanoma genes [31] |
-Landmark study identifying 62 genes of interest for uveal melanoma. -Stratifies uveal melanoma into two genetic classes with prognostic implications: -Class I favorable prognostic: no mutation; or only chromosome 6 gain; -Class II unfavorable prognostic: down-regulation of genes on chromosome 3 and up-regulation of chromosome 8 genes. |
Damato B. et al.’s 2007 retrospective study on 356 patients [36] |
-Correlated genetic abnormality with histological features: -Monosomy-3 (M3) associated with epithelioid cells, closed vascular loops, high mitotic rate; -8q gain associated with basal tumor diameter, closed vascular loops and high mitotic rate; -Found that M3 associated with 8q gain; -Found that M3 associated with high metastatic risk and death; -Recommended routine cytogenetic analysis for uveal melanoma patients. |
Damato B., Coupland SE.’s 2009 publication [37] |
-Supplements the original 2007 study with improved genetic testing methods by using multiplex ligation-dependent probe amplification (MLPA) for more granular results vs. earlier Fluorescence in Situ Hybridization (FISH). -Reports that partial deletions in chromosome 3 also carry prognostic risk. -Early use of neural networks to individualize metastatic risk analysis based on (1) genetic tumor typing; (2) clinical staging; (3) histological grading. |
Shields CL. Et al.’s 2011 study on 500 patients [40] |
-Complete Monosomy-3 was the most negative prognostic factor: -Complete M3 metastatic probability at 3 years was 0% for small tumors, 24.4% for medium-sized and 57.5% for larger melanomas; -Incidence of complete M3 increased with tumor size: 17% of small tumors, 27% of medium tumors and 41% of larger tumors. |
Ewens KG. et al.’s 2013 study comparing the genetic profiling of 320 uveal melanomas [41] |
-Analyzed impact on prognosis of chromosome 1, 3, 6 and 8 mutations. -Chromosome 3 loss (monosomy-3) most significantly associated with poor prognosis. -Chromosome 8: Initially 8q gain was 2nd associated with poor prognosis, however after adjusting for other variables (patient gender, tissue source, tumor basal diameter) 8q gain lost statistical significance; chromosome 8p loss remained statistically significant for poor prognosis, 2nd after chromosome 3 loss. -Thus, the study signals the negative effect of chromosome 8p loss on prognosis. -Chromosome 1p-loss not statistically significant after adjusting for other values. -No evidence of protective effect of chromosome 6p gain. |
Ewens KG. et al.’s 2014 study comparing the genetic profiling of 63 metastatic uveal melanomas and 53 metastasis-free control cases [42] |
Abbreviations used: Chromosome 3p-linked tumor suppressor protein—BAP1; Eukaryotic Translation Initiation Factor—EIF1AX. - 0× Lowest risk tumors (reference): disomy-3/BAP1-WT/EIF1AX mutations; - 10× risk: Disomy-3 mutation; - 13× risk: Monosomy-3 + EIF1AX-WT alleles. EIF1AX mutations decrease metastatic risk by 8× independent of presence of BAP-1 mutations or no BAP-1 mutations independent; - 40× risk (highest risk): BAP-1 mutations. 77% of tumors carrying BAP1 mutations metastasized. BAP 1 mutation was almost universally associated with monosomy-3: all BAP1-mutant tumors except one had monosomy-3. -Considering that disomy-3 is a protective mutation, the loss of one copy of chromosome 3 uncovers recessive BAP1 mutations, which are highly metastatic. |
Shields CL. et al.’s 2017 cytogenetic study on 1059 patients [43,44] |
-Increased tumor size leads to greater genetic pleomorphism [43]. -Individualized risk analysis based on 52 cytogenetic signatures [44]. -Greatest negative prognostic with: 8p loss, 8q gain and complete monosomy-3 [44]. |
Dogrusöz et al.’s 2017 study on 522 patients [45] |
-Patients with AJCC Stage I tumors only died if they had the most unfavorable genetic profile of combined monosomy-3 (M3) and 8q gain. The authors suggested that this genetic makeup might be necessary for small tumors to metastasize [45]. -Larger tumor size had an additive effect to the accumulation of genetic pleomorphism in the monosomy-3 and 8q gain group [45]. -The study concluded that combining AJCC TNM [18] staging with chromosome data for chromosome 3 and 8q status yielded additional prognostic information. |
Robertson AG. et al.’s 2017 genetic analysis identifying four molecular and clinical subsets in uveal melanoma [46] |
-Study linked with development of The Cancer Genome Atlas (TCGA) classification -Four molecular subsets identified by specific genetic signatures: -Disomy-3 samples separated by into good and intermediate prognosis groups by transcription profile analysis; -Monosomy-3 separated into two poor prognosis classes A and B by differences in transcription profiles leading to distinct pathway features of hypoxia, signaling and proliferation; -Monosomy-3 (poor prognosis) presented BAP1 alterations (85%); -Contrary to other cancers in uveal melanoma, the better prognostic cytogenetic types associated reduced immune-mediated inflammation (disomy-3 tumors did not present CD8 T cell immune response), while the poor-prognosis monosomy-3 variety exemplified highly increased local inflammation and high immune-response in 30% of cases with marked CD8 T cell infiltrate (CD8A expression). |
Jager MJ. et al., The 2018 Cancer Genome Atlas (TCGA) classification [47] |
-Classes tumor into four categories based upon chromosome 8 and 3 mutations. |
Vichitvejpaisal. P. et al.’s 2019 TCGA Classification validation study on 642 patients [5] |
-Genetic tumoral classes strongly correlated with 5-year metastatic risk from 4% for lowest Class A to 63% in Class D. |
Shields CL. et al.’s 2019 Comparative analysis of TCGA and AJCC Classifications [2] |
-TCGA classification accurately predicted uveal melanoma prognosis. -TCGA classification better predicted metastatic risk versus AJCC classification. |
Mazloumi M. et al.’s 2020 Comparative TCGA-AJCC study on 642 patients [4] |
-The genetic TCGA classification was a stronger predictor for metastasis than factors pertaining to tumoral size or extension such as largest tumor basal diameter or ciliary body involvement. -Genetic testing more accurately offers prognosis in uveal melanoma. -TCGA classification can identify high risk patients for adjuvant therapy. |
The Cancer Genome Atlas Class | ||||
---|---|---|---|---|
Genetic Results | A | B | C | D |
Chromosome 3 mutational profile | Disomy 3 | Disomy 3 | Monosomy 3 | Monosomy 3 |
Chromosome 8 mutational profile | Normal 8q | 8q Gain | 8q Gain | Multiple 8q Gains |
Prognosis and Metastatic Risk by TCGA Class [5,46,47] | ||||
---|---|---|---|---|
Study | A | B | C | D |
Robertson AG. 2017 study [46] | Good prognosis | Intermediate prognosis | Poor prognosis | Poor prognosis |
Vichitvejpaisal P. et al., 2019 study [5] | ||||
5-year distant metastasis risk | 4% at 5 years | 20% at 5 years | 33% at 5 years | 63% at 5 years |
5-year liver metastasis risk | Not specified | 5.9% at 5 years | 18.4% at 5 years | 42.9% at 5 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Păsărică, M.A.; Curcă, P.F.; Dragosloveanu, C.D.M.; Grigorescu, A.C.; Nisipașu, C.I. Pathological and Molecular Diagnosis of Uveal Melanoma. Diagnostics 2024, 14, 958. https://doi.org/10.3390/diagnostics14090958
Păsărică MA, Curcă PF, Dragosloveanu CDM, Grigorescu AC, Nisipașu CI. Pathological and Molecular Diagnosis of Uveal Melanoma. Diagnostics. 2024; 14(9):958. https://doi.org/10.3390/diagnostics14090958
Chicago/Turabian StylePăsărică, Mihai Adrian, Paul Filip Curcă, Christiana Diana Maria Dragosloveanu, Alexandru Călin Grigorescu, and Cosmin Ionuț Nisipașu. 2024. "Pathological and Molecular Diagnosis of Uveal Melanoma" Diagnostics 14, no. 9: 958. https://doi.org/10.3390/diagnostics14090958
APA StylePăsărică, M. A., Curcă, P. F., Dragosloveanu, C. D. M., Grigorescu, A. C., & Nisipașu, C. I. (2024). Pathological and Molecular Diagnosis of Uveal Melanoma. Diagnostics, 14(9), 958. https://doi.org/10.3390/diagnostics14090958