Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Selection of the Patients and Data Collection
2.2. Immunohistochemical Study and Evaluation of Trop-2, CD47, and CD163 Expressions
2.3. Follow-Up, Response Assessment, and Ethical Considerations
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Trop-2, CD47, and CD163 Expressions
3.3. Survival Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-Negative Breast Cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.H.; Ellis, I.; Allison, K.; Brogi, E.; Fox, S.B.; Lakhani, S.; Lazar, A.J.; Morris, E.A.; Sahin, A.; Salgado, R.; et al. The 2019 World Health Organization Classification of Tumours of the Breast. Histopathology 2020, 77, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Won, K.; Spruck, C. Triple-negative Breast Cancer Therapy: Current and Future Perspectives (Review). Int. J. Oncol. 2020, 57, 1245–1261. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Barchiesi, G.; Roberto, M.; Verrico, M.; Vici, P.; Tomao, S.; Tomao, F. Emerging Role of PARP Inhibitors in Metastatic Triple Negative Breast Cancer. Current Scenario and Future Perspectives. Front. Oncol. 2021, 11, 769280. [Google Scholar] [CrossRef]
- Calabrese, G.; Crescenzi, C.; Morizio, E.; Palka, G.; Guerra, E.; Alberti, S. Assignment of TACSTD1 (Alias TROP1, M4S1) to Human Chromosome 2p21 and Refinement of Mapping of TACSTD2 (Alias TROP2, M1S1) to Human Chromosome 1p32 by in Situ Hybridization. Cytogenet. Genome Res. 2001, 92, 164–165. [Google Scholar] [CrossRef]
- Sakach, E.; Sacks, R.; Kalinsky, K. Trop-2 as a Therapeutic Target in Breast Cancer. Cancers 2022, 14, 5936. [Google Scholar] [CrossRef]
- Shvartsur, A.; Bonavida, B. Trop2 and Its Overexpression in Cancers: Regulation and Clinical/Therapeutic Implications. Genes Cancer 2014, 6, 84–105. [Google Scholar] [CrossRef]
- Foersch, S.; Schmitt, M.; Litmeyer, A.; Tschurtschenthaler, M.; Gress, T.; Bartsch, D.K.; Pfarr, N.; Steiger, K.; Denkert, C.; Jesinghaus, M. TROP2 in Colorectal Carcinoma: Associations with Histopathology, Molecular Phenotype, and Patient Prognosis. J. Pathol. Clin. Res. 2024, 10, e12394. [Google Scholar] [CrossRef]
- Li, M.; Jin, M.; Peng, H.; Wang, H.; Shen, Q.; Zhang, L. Current Status and Future Prospects of TROP-2 ADCs in Lung Cancer Treatment. Drug. Des. Devel. Ther. 2024, 18, 5005–5021. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhu, M.; Wang, Q.; Cui, J.; Huang, Y.; Huang, X.; Huang, J.; Gai, J.; Li, G.; Qiao, P.; et al. TROP2-Directed Nanobody-Drug Conjugate Elicited Potent Antitumor Effect in Pancreatic Cancer. J. Nanobiotechnol. 2023, 21, 410. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.; Jadid, H.; Denson, A.C.; Gray, J.E. Targeting Trop-2 in Solid Tumors: Future Prospects. Onco Targets Ther. 2019, 12, 1781–1790. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Hurvitz, S.A.; Tolaney, S.M.; Loirat, D.; Punie, K.; Oliveira, M.; Brufsky, A.; Sardesai, S.D.; Kalinsky, K.; Zelnak, A.B.; et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N. Engl. J. Med. 2021, 384, 1529–1541. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Balar, A.V.; Petrylak, D.P.; Kalebasty, A.R.; Loriot, Y.; Fléchon, A.; Jain, R.K.; Agarwal, N.; Bupathi, M.; Barthelemy, P.; et al. TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients with Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors. J. Clin. Oncol. 2021, 39, 2474–2485. [Google Scholar] [CrossRef]
- Cendrowicz, E.; Sas, Z.; Bremer, E.; Rygiel, T.P. The Role of Macrophages in Cancer Development and Therapy. Cancers 2021, 13, 1946. [Google Scholar] [CrossRef]
- Kzhyshkowska, J.; Shen, J.; Larionova, I. Targeting of TAMs: Can We Be More Clever than Cancer Cells? Cell. Mol. Immunol. 2024, 21, 1376–1409. [Google Scholar] [CrossRef]
- Dawoud, M.M.; Abd El Samie Aiad, H.; Kasem, N.S.; El Khouly, E.A.-B.; Al-Sharaky, D.R. Is Overexpression of CD163 and CD47 in Tumour Cells of Breast Carcinoma Implicated in the Recruitment of Tumour-Associated Macrophages (TAMs) in Tumour Microenvironment? Immunohistochemical Prognostic Study. J. Immunoass. Immunochem. 2024, 45, 342–361. [Google Scholar] [CrossRef]
- Huang, J.; Liu, F.; Li, C.; Liang, X.; Li, C.; Liu, Y.; Yi, Z.; Zhang, L.; Fu, S.; Zeng, Y. Role of CD47 in Tumor Immunity: A Potential Target for Combination Therapy. Sci. Rep. 2022, 12, 9803. [Google Scholar] [CrossRef]
- Chen, Y.; Klingen, T.A.; Aas, H.; Wik, E.; Akslen, L.A. CD47 and CD68 Expression in Breast Cancer Is Associated with Tumor-infiltrating Lymphocytes, Blood Vessel Invasion, Detection Mode, and Prognosis. J. Pathol. Clin. Res. 2023, 9, 151–164. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Kong, X.; Li, E.; Liu, Y.; Du, X.; Kang, Z.; Tang, Y.; Kuang, Y.; Yang, Z.; et al. CD47 Promotes Tumor Invasion and Metastasis in Non-Small Cell Lung Cancer. Sci. Rep. 2016, 6, 29719. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.; Lee, E.J.; Nam, G.-H.; Hong, Y.; Cho, E.; Yang, Y.; Kim, I.-S. Exosome-SIRPα, a CD47 Blockade Increases Cancer Cell Phagocytosis. Biomaterials 2017, 121, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ding, Y.; Wan, T.; Deng, T.; Huang, H.; Liu, J. Significance of CD47 and Its Association with Tumor Immune Microenvironment Heterogeneity in Ovarian Cancer. Front. Immunol. 2021, 12, 768115. [Google Scholar] [CrossRef] [PubMed]
- Plevriti, A.; Lamprou, M.; Mourkogianni, E.; Skoulas, N.; Giannakopoulou, M.; Sajib, M.S.; Wang, Z.; Mattheolabakis, G.; Chatzigeorgiou, A.; Marazioti, A.; et al. The Role of Soluble CD163 (SCD163) in Human Physiology and Pathophysiology. Cells 2024, 13, 1679. [Google Scholar] [CrossRef]
- Garvin, S.; Oda, H.; Arnesson, L.-G.; Lindström, A.; Shabo, I. Tumor Cell Expression of CD163 Is Associated to Postoperative Radiotherapy and Poor Prognosis in Patients with Breast Cancer Treated with Breast-Conserving Surgery. J. Cancer Res. Clin. Oncol. 2018, 144, 1253–1263. [Google Scholar] [CrossRef]
- Matsubara, E.; Komohara, Y.; Shinchi, Y.; Mito, R.; Fujiwara, Y.; Ikeda, K.; Shima, T.; Shimoda, M.; Kanai, Y.; Sakagami, T.; et al. CD163-positive Cancer Cells Are a Predictor of a Worse Clinical Course in Lung Adenocarcinoma. Pathol. Int. 2021, 71, 666–673. [Google Scholar] [CrossRef]
- Imam, R.; Chang, Q.; Black, M.; Yu, C.; Cao, W. CD47 Expression and CD163+ Macrophages Correlated with Prognosis of Pancreatic Neuroendocrine Tumor. BMC Cancer 2021, 21, 320. [Google Scholar] [CrossRef]
- Koltai, T.; Fliegel, L. The Relationship between Trop-2, Chemotherapeutic Drugs, and Chemoresistance. Int. J. Mol. Sci. 2023, 25, 87. [Google Scholar] [CrossRef]
- van Elsas, M.J.; Labrie, C.; Etzerodt, A.; Charoentong, P.; van Stigt Thans, J.J.C.; Van Hall, T.; van der Burg, S.H. Invasive Margin Tissue-Resident Macrophages of High CD163 Expression Impede Responses to T Cell-Based Immunotherapy. J. Immunother. Cancer 2023, 11, e006433. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, H.; Liu, J.; Ha, W.; Xia, X.; Li, J.; Chao, T.; Xiong, H. Progress and Innovative Combination Therapies in Trop-2-Targeted ADCs. Pharmaceuticals 2024, 17, 652. [Google Scholar] [CrossRef]
- Mori, Y.; Akita, K.; Ojima, K.; Iwamoto, S.; Yamashita, T.; Morii, E.; Nakada, H. Trophoblast Cell Surface Antigen 2 (Trop-2) Phosphorylation by Protein Kinase C α/δ (PKCα/δ) Enhances Cell Motility. J. Biol. Chem. 2019, 294, 11513–11524. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Fan, X.; Liu, H.; Liang, T. Advances in Trop-2 Targeted Antibody-Drug Conjugates for Breast Cancer: Mechanisms, Clinical Applications, and Future Directions. Front. Immunol. 2024, 15, 1495675. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Tolaney, S.M.; Punie, K.; Loirat, D.; Oliveira, M.; Kalinsky, K.; Zelnak, A.; Aftimos, P.; Dalenc, F.; Sardesai, S.; et al. Biomarker Analyses in the Phase III ASCENT Study of Sacituzumab Govitecan versus Chemotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Ann. Oncol. 2021, 32, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Bardia, A.; Marmé, F.; Cortes, J.; Schmid, P.; Loirat, D.; Trédan, O.; Ciruelos, E.; Dalenc, F.; Pardo, P.G.; et al. Sacituzumab Govitecan in Hormone Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Metastatic Breast Cancer. J. Clin. Oncol. 2022, 40, 3365–3376. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Tanaka, K.; Paz-Ares, L.; Cornelissen, R.; Girard, N.; Pons-Tostivint, E.; Vicente Baz, D.; Sugawara, S.; Cobo, M.; Pérol, M.; et al. Datopotamab Deruxtecan Versus Docetaxel for Previously Treated Advanced or Metastatic Non–Small Cell Lung Cancer: The Randomized, Open-Label Phase III TROPION-Lung01 Study. J. Clin. Oncol. 2024, 43, 3. [Google Scholar] [CrossRef]
Variables | Trop-2 Expression | CD47 Expression | CD163 Expression | ||||||
---|---|---|---|---|---|---|---|---|---|
Negative/Low | High | p | Negative/Low | High | p | Negative/Low | High | p | |
n, (%) | n, (%) | n, (%) | n, (%) | n, (%) | n, (%) | ||||
Age | |||||||||
<50 | 20 (48.8) | 27 (52.9) | 24 (47.1) | 23 (56.1) | 24 (48.0) | 23 (54.8) | |||
≥50 | 21 (51.2) | 24 (47.1) | 0.426 | 27 (52.9) | 18 (43.9) | 0.257 | 26 (52) | 19 (47.1) | 0.331 |
Localization | |||||||||
Right | 18 (43.9) | 28 (54.9) | 23 (45.1) | 23 (56.1) | 22 (44.0) | 24 (57.1) | |||
Left | 23 (56.1) | 23 (45.1) | 0.201 | 28 (54.9) | 18 (43.9) | 0.201 | 28 (56.0) | 18 (42.9) | 0.148 |
Menopausal status | |||||||||
Premenopausal | 16 (39) | 21 (41.2) | 20 (39.2) | 17 (41.5) | 17 (34.0) | 20 (47.6) | |||
Postmenopausal | 25 (61) | 30 (58.8) | 0.502 | 31 (60.8) | 24 (58.5) | 0.498 | 33 (66.0) | 22 (52.4) | 0.133 |
ECOG PS | |||||||||
0–1 | 37 (90.2) | 45 (88.2) | 45 (88.2) | 37 (90.2) | 42 (84.0) | 40 (95.2) | |||
≥2 | 4 (9.8) | 6 (11.8) | 0.516 | 6 (11.8) | 4 (9.8) | 0.516 | 8 (16.0) | 2 (4.8) | 0.080 |
Comorbidity | |||||||||
No | 24 (58.5) | 35 (68.6) | 30 (58.8) | 29 (70.7) | 27 (54.0) | 32 (76.2) | |||
Yes | 17 (41.5) | 16 (31.4) | 0.216 | 21 (41.2) | 12 (29.3) | 0.167 | 23 (46.0) | 10 (23.8) | 0.022 |
Histological grade | |||||||||
1 | 2 (4.9) | 1 (2) | 2 (3.9) | 1 (2.4) | 2 (4.0) | 1 (2.4) | |||
2 | 14 (34.1) | 16 (31.4) | 17 (33.3) | 13 (31.7) | 13 (26.0) | 17 (40.5) | |||
3 | 25 (61) | 34 (66.7) | 0.459 | 32 (62.7) | 27 (65.9) | 0.693 | 35 (70.0) | 24 (57.1) | 0.332 |
Lymphovascular invasion | |||||||||
Absent | 22 (53.7) | 29 (56.9) | 30 (58.8) | 21 (51.2) | 26 (52.0) | 25 (59.5) | |||
Present | 19 (46.3) | 22 (43.1) | 0.461 | 21 (41.2) | 20 (48.8) | 0.302 | 24 (48.0) | 17 (40.5) | 0.304 |
Tumor focality | |||||||||
Unifocal | 39 (95.1) | 43 (84.3) | 45 (88.2) | 37 (90.2) | 43 (86.0) | 39 (92.9) | |||
Multifocal | 2 (4.9) | 8 (15.7) | 0.091 | 6 (11.8) | 4 (9.8) | 0.516 | 7 (14.0) | 3 (7.1) | 0.239 |
pT stage | |||||||||
1–2 | 34 (82.9) | 40 (78.4) | 38 (74.5) | 36 (87.8) | 36 (72.0) | 38 (90.5) | |||
3–4 | 7 (17.1) | 11 (21.6) | 0.394 | 13 (25.5) | 5 (12.2) | 0.090 | 14 (28.0) | 4 (9.5) | 0.023 |
Nodal involvement | |||||||||
Absent | 18 (43.9) | 25 (49) | 24 (47.1) | 19 (46.3) | 23 (46.0) | 20 (47.6) | |||
Present | 23 (56.1) | 26 (51) | 0.391 | 27 (52.9) | 22 (53.7) | 0.556 | 27 (54.0) | 22 (52.4) | 0.522 |
Distant metastasis | |||||||||
No | 35 (85.4) | 37 (72.5) | 39 (76.5) | 33 (80.5) | 38 (76.0) | 34 (81.0) | 0.376 | ||
Yes | 6 (14.6) | 14 (27.5) | 0.109 | 12 (23.5) | 8 (19.5) | 0.419 | 12 (24.0) | 8 (19.0) | |
Clinical stage | |||||||||
1–2 | 30 (73.2) | 19 (37.3) | 28 (54.9) | 21 (51.2) | 29 (47.1) | 20 (47.6) | |||
3–4 | 11 (26.8) | 32 (62.7) | <0.001 | 23 (45.1) | 20 (48.8) | 0.044 | 21 (42.0) | 22 (52.4) | 0.021 |
Germline BRCA mutation | |||||||||
No | 8 (19.5) | 10 (19.6) | 9 (17.6) | 9 (22.0) | 7 (14.0) | 11 (26.2) | |||
Yes | 21 (51.2) | 24 (47.1) | 0.789 | 25 (49) | 20 (48.8) | 0.573 | 25 (50.0) | 20 (47.6) | 0.138 |
Unknown | 12 (29.3) | 17 (33.3) | 17 (33.3) | 12 (29.2) | 18 (36.0) | 11 (26.2) | |||
Ki67 | |||||||||
<20 | 3 (7.3) | 7 (13.7) | 3 (5.9) | 7 (17.1) | 2 (4.0) | 8 (19.0) | |||
20–50 | 6 (14.6) | 10 (19.6) | 0.211 | 10 (19.6) | 6 (14.6) | 0.221 | 11 (22.0) | 5 (11.9) | 0.159 |
>50 | 32 (78) | 34 (66.7) | 38 (74.5) | 28 (68.3) | 37 (74.0) | 29 (69.0) |
Trop-2 Expression | ||||
---|---|---|---|---|
Negative/Low | High | p | r | |
CD47 expression | n, (%) | n, (%) | ||
Negative/Low | 28 (68.3) | 23 (45.1) | 0.022 | 0.232 |
High | 13 (31.7) | 28 (54.9) | ||
CD163 expression | ||||
Negative/Low | 27 (65.9) | 23 (45.1) | 0.037 | 0.207 |
High | 14 (34.1) | 28 (54.9) | ||
CD47 Expression | ||||
Negative/Low | High | p | r | |
CD163 expression | n, (%) | n, (%) | ||
Negative/Low | 36 (70.6) | 14 (34.1) | <0.001 | 0.364 |
High | 15 (29.4) | 27 (65.9) |
Univariate Analysis | |||||||
---|---|---|---|---|---|---|---|
Overall Survival | Progression-Free Survival | ||||||
HR | 95.0% CI | p | HR | 95.0% CI | p | ||
Age | 0.470 | 0.21–1.06 | 0.068 | Age | 0.450 | 0.20–1.01 | 0.054 |
Localization | 1.140 | 0.52–2.50 | 0.737 | Localization | 1.130 | 0.52–2.48 | 0.754 |
Menopausal status | 1.660 | 0.72–3.81 | 0.235 | Menopausal status | 1.700 | 0.74–3.92 | 0.211 |
ECOG PS | 2.220 | 0.83–5.91 | 0.111 | ECOG PS | 2.210 | 0.83–5.90 | 0.112 |
Comorbidity | 1.530 | 0.71–3.32 | 0.276 | Comorbidity | 1.460 | 0.68–3.16 | 0.337 |
Histological grade | 1.130 | 0.56–2.26 | 0.736 | Histological grade | 1.120 | 0.56–2.23 | 0.758 |
Lymphovascular invasion | 2.540 | 1.14–5.62 | 0.022 | Lymphovascular invasion | 2.550 | 1.16–5.64 | 0.021 |
Tumor focality | 2.490 | 0.94–6.61 | 0.048 | Tumor focality | 2.860 | 1.07–7.62 | 0.036 |
Germline BRCA mutation | 1.820 | 1.0–3.31 | 0.048 | Germline BRCA mutation | 1.930 | 1.06–3.52 | 0.031 |
pT stage | 2.430 | 1.05–5.61 | 0.038 | pT stage | 2.480 | 1.07–5.75 | 0.035 |
Nodal involvement | 1.950 | 0.87–4.40 | 0.105 | Nodal involvement | 1.940 | 0.86–4.35 | 0.109 |
Distant metastasis | 4.470 | 1.96–10.2 | <0.001 | Distant metastasis | 4.500 | 2.14–11.65 | <0.001 |
Clinical stage | 2.010 | 1.32–3.07 | 0.001 | Clinical stage | 2.080 | 1.35–3.19 | 0.001 |
Ki67 | 0.830 | 0.49–1.39 | 0.480 | Ki67 | 0.830 | 0.49–1.38 | 0.465 |
CD47 | 0.670 | 0.30–1.51 | 0.335 | CD47 | 0.810 | 0.37–1.77 | 0.596 |
CD163 | 0.800 | 0.37–1.74 | 0.573 | CD163 | 1.210 | 0.74–1.98 | 0.439 |
Trop-2 | 7.980 | 2.70–23.52 | 0.001 | Trop-2 | 8.540 | 2.87–25.37 | 0.001 |
Multivariate Analysis | |||||||
---|---|---|---|---|---|---|---|
Overall Survival | Progression-Free Survival | ||||||
HR | 95.0% CI | p | HR | 95.0% CI | p | ||
Lymphovascular invasion | 2.880 | 1.24–6.73 | 0.014 | Lymphovascular invasion | 2.230 | 0.94–5.29 | 0.070 |
pT stage | 2.280 | 0.90–5.78 | 0.083 | pT stage | 1.890 | 0.73–4.90 | 0.191 |
Distant metastasis | 2.250 | 0.83–6.14 | 0.113 | Distant metastasis | 3.420 | 1.11–10.57 | 0.033 |
Clinical stage | 1.120 | 0.66–1.89 | 0.680 | Clinical stage | 1.120 | 0.63–1.96 | 0.705 |
Germline BRCA mutation | 1.820 | 1.0–3.31 | 0.048 | Germline BRCA mutation | 1.930 | 1.06–3.52 | 0.031 |
Tumor focality | 1.120 | 0.32–4.20 | 0.527 | Tumor focality | 1.750 | 0.59–5.17 | 0.310 |
Trop-2 expression levels | 8.320 | 2.69–25.68 | <0.001 | Trop-2 expression levels | 9.940 | 3.13–31.53 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüceer, R.O.; Aydın, S.; Gelir, I.; Koc, T.; Tuncer, E.; Ucar, M. Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer. Diagnostics 2025, 15, 232. https://doi.org/10.3390/diagnostics15020232
Yüceer RO, Aydın S, Gelir I, Koc T, Tuncer E, Ucar M. Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer. Diagnostics. 2025; 15(2):232. https://doi.org/10.3390/diagnostics15020232
Chicago/Turabian StyleYüceer, Ramazan Oguz, Sedanur Aydın, Iclal Gelir, Tulay Koc, Ersin Tuncer, and Mahmut Ucar. 2025. "Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer" Diagnostics 15, no. 2: 232. https://doi.org/10.3390/diagnostics15020232
APA StyleYüceer, R. O., Aydın, S., Gelir, I., Koc, T., Tuncer, E., & Ucar, M. (2025). Exploring the Prognostic Role of Trop-2, CD47, and CD163 Expression Levels on Survival Outcomes in Patients with Triple-Negative Breast Cancer. Diagnostics, 15(2), 232. https://doi.org/10.3390/diagnostics15020232