Concordance of Biochip-Based and LC-MS/MS Methods in Urine and Blood Samples in Screening for Amphetamine and Methamphetamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Instrumentation
2.3. Chemicals and Narcotics Standards
2.4. Toxicology Screening
2.5. LC-MS/MS Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luciana, M.; Bjork, J.M.; Nagel, B.J.; Barch, D.M.; Gonzalez, R.; Nixon, S.J.; Banich, M.T. Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 2018, 32, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Ignaszewski, M.J. The Epidemiology of Drug Abuse. J. Clin. Pharmacol. 2021, 61, S10–S17. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.A.; Mesquita, N.S.; Lopes, R.S.; Lucchese, R.; Felipe, R.L.d.; Vera, I.; Fernandes, I.L.; Castro, P.A.d.; Monteiro, L.H.B.; Silva, G.C. Prevalence and Factors Associated With Criminal Behavior Among Illicit Drug Users: A Cross-Sectional Study. Subst. Use Misuse 2017, 52, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Catalano, J. Pain Management and Substance Abuse: A National Dilemma. Soc. Work. Public Health 2009, 24, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Clemow, D.B.; Walker, D.J. The Potential for Misuse and Abuse of Medications in ADHD: A Review. Postgrad. Med. 2015, 126, 64–81. [Google Scholar] [CrossRef]
- Simola, N.; Carta, M. Amphetamine Usage, Misuse, and Addiction Processes. In Neuropathology of Drug Addictions and Substance Misuse; Academic Press: New York, NY, USA, 2016; pp. 14–24. [Google Scholar]
- UNODC. World Drug Report 2023. Available online: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html (accessed on 11 January 2025).
- UNODC. World Drug Report 2018. Available online: https://www.unodc.org/wdr2018 (accessed on 11 January 2025).
- UNODC. World Drug Report 2024. Available online: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2024.html (accessed on 11 January 2025).
- EUDA. European Drug Emergencies Network (Euro-DEN Plus): Data and Analysis. Available online: https://www.euda.europa.eu/publications/data-factsheet/european-drug-emergencies-network-euro-den-plus-data-and-analysis_en (accessed on 11 January 2025).
- Turkey Drug Report 2021 (Türkiye Uyuşturucu Raporu 2021). Turkish Ministry of Interior, General Directorate of Security, Department of Combating Narcotic Crimes (T.C. İçişleri Bakanlığı Emniyet Genel Müdürlüğü Narkotik Suçlarla Mücadele Daire Başkanlığı). Available online: https://www.narkotik.pol.tr/kurumlar/narkotik.pol.tr/TUBİM/2021-Turkiye-Uyusturucu-Raporu.pdf (accessed on 8 January 2025).
- TÜİK, İstatistiklerle Gençlik. 2023. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Genclik-2023-53677#:~:text=T%C3%BCrkiye%20n%C3%BCfusunun%20%15%2C1′,15%2C1′ini%20olu%C5%9Fturdu (accessed on 10 January 2025).
- EUDA. EU Drug Market: Amphetamine—Criminal networks. Available online: https://www.euda.europa.eu/publications/eu-drug-markets/amphetamine/criminal-networks_en (accessed on 10 January 2025).
- EUDA. European Drug Report 2024: Trends and Developments. Available online: https://www.euda.europa.eu/publications/european-drug-report/2024_en (accessed on 10 January 2025).
- Rodda, L.N.; Farley, M.; Towler, S.; Devincenzi, T.; Pearring, S. Multi-class analysis of 57 drugs quantitatively in blood and qualitatively in urine by LC–MS/MS to complement comprehensive DFC, DUID, and postmortem testing. J. Anal. Toxicol. 2024, 49, 1–13. [Google Scholar] [CrossRef]
- Polke, M.; Concheiro, M.; Cooper, G.; Bogdal, C.; Baumgartner, M.R.; Krämer, T.; Binz, T.M. Development and validation of a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method including 25 novel synthetic opioids in hair and subsequent analysis of a Swiss opioid consumer cohort. Drug Test. Anal. 2024, 16, 1384–1391. [Google Scholar] [CrossRef]
- Efeoglu Ozseker, P.; Yucel, S.P.; Daglioglu, N. Optimization of biochip assay for illegal substances on drug abusers’ whole blood: Randox Evidence vs LC-MS/MS. J. Immunoass. Immunochem. 2023, 44, 313–325. [Google Scholar] [CrossRef]
- McLaughlin, P.; Pounder, D.; Maskell, P.; Osselton, D. Real-time near-body drug screening during autopsy I: Use of the Randox biochip drugs of abuse DOA I and DOA II immunoassays. Forensic Toxicol. 2012, 31, 113–118. [Google Scholar] [CrossRef]
- Deville, M.; Bailly, R.; Gauthier, N.; Pitti, P.; Wachtelaer, A.; Charlier, C. Biochip array technology for new psychoactive substances detection in biological samples: Evaluation of the specificity of the Randox Evidence Investigator®. Ann. Clin. Biochem. Int. J. Lab. Med. 2022, 59, 357–362. [Google Scholar] [CrossRef]
- Castaneto, M.S.; Huang, C.; Capps, D.; Ke, P.; VanZile, M.; Calero, E. Evaluation of a Highly Efficient Multidrug Biochip Array Technology for a Simultaneous and High-Throughput Urine Drug Screening in Clinical and Toxicological Settings. Ther. Drug Monit. 2022, 44, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Akbaba, M.; Özdemir, O.; Baransel Isır, A. The Stability of Novel Synthetic Cannabinoids in Blood Samples in Different Storage Conditions. 2024. Available online: https://ssrn.com/abstract=4926807 (accessed on 25 August 2024).
- Şaştim, M.U.; Akbaba, M. Analysis of new psychoactive substances (5F-EMB PICA, MDMB-4-en PINACA, isotonitazene, 3-fluoroamphetamine, 2-methylamphetamine, flualprazolam) in narcotic cases at the Silk Road crossing point in Turkey. Aust. J. Forensic Sci. 2024, 1–12. [Google Scholar] [CrossRef]
- Teske, J.; Weller, J.P.; Fieguth, A.; Rothämel, T.; Schulz, Y.; Tröger, H.D. Sensitive and rapid quantification of the cannabinoid receptor agonist naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in human serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2010, 878, 2659–2663. [Google Scholar] [CrossRef]
- Kristoffersen, L.; Øiestad, E.L.; Opdal, M.S.; Krogh, M.; Lundanes, E.; Christophersen, A.S. Simultaneous determination of 6 beta-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhythmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry. Method development and robustness testing by experimental design. J. Chromatogr. B 2007, 850, 147–160. [Google Scholar] [CrossRef]
- Villain, M.; Chèze, M.; Tracqui, A.; Ludes, B.; Kintz, P. Testing for zopiclone in hair application to drug-facilitated crimes. Forensic Sci. Int. 2004, 145, 117–121. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- El Habiby, M.; El Rassas, H.H.; Morsy, M.; Mohsen, N.; Ezzat, F. Gender Differences in Clinical and Sociodemographic Patterns of Substance Use Disorder. Addict. Disord. Their Treat. 2020, 19, 174–184. [Google Scholar] [CrossRef]
- Noseda, R.; Franchi, M.; Pagnamenta, A.; Müller, L.; Dines, A.M.; Giraudon, I.; Heyerdahl, F.; Eyer, F.; Hovda, K.E.; Liechti, M.E.; et al. Determinants of Admission to Critical Care Following Acute Recreational Drug Toxicity: A Euro-DEN Plus Study. J. Clin. Med. 2023, 12, 5970. [Google Scholar] [CrossRef]
- Bontekoe, E.; Brailovsky, Y.; Hoppensteadt, D.; Bontekoe, J.; Siddiqui, F.; Newman, J.; Iqbal, O.; Reed, T.; Fareed, J.; Darki, A. Upregulation of Inflammatory Cytokines in Pulmonary Embolism Using Biochip-Array Profiling. Clin. Appl. Thromb./Hemost. 2021, 27, 10760296211013107. [Google Scholar] [CrossRef]
- Schulz, K.; Pöhlmann, C.; Dietrich, R.; Märtlbauer, E.; Elßner, T. Electrochemical Biochip Assays Based on Anti-idiotypic Antibodies for Rapid and Automated On-Site Detection of Low Molecular Weight Toxins. Front. Chem. 2019, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.; O’Loan, N.; Bell, B.; Mahoney, J.; McGarrity, M.; McConnell, R.I.; Fitzgerald, S.P. Development of an Evidence biochip array kit for the multiplex screening of more than 20 anthelmintic drugs. Anal. Bioanal. Chem. 2012, 403, 3051–3056. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.-C.; Duverneuil, C.; Zouaoui, K.; Abe, E.; Charlier, P.; de la Grandmaison, G.L.; Grassin-Delyle, S. Evaluation of the first immunoassay for the semi-quantitative measurement of meprobamate in human whole blood or plasma using biochip array technology. Clin. Chim. Acta 2012, 413, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Forman, R.F.; Nagy, P.D. Substance Abuse: Clinical Issues in Intensive Outpatient Treatment; SAMHSA/CSAT Treatment Improvement Protocols: Rockville, MD, USA, 2006. [Google Scholar]
- Verstraete, A.G.; Mukhdomi, T. Clinical Drug Testing; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Moeller, K.E.; Lee, K.C.; Kissack, J.C. Urine drug screening: Practical guide for clinicians. Mayo Clin. Proc. 2008, 83, 66–76. [Google Scholar] [CrossRef]
Substance | LOD (ppb) | LLOQ (ppb) |
---|---|---|
Morphine-6-glucuronide | 1.30 | 3.90 |
Ecgonine methyl ester | 1.89 | 5.67 |
Cotinine | 0.55 | 1.65 |
Caffeine | 0.01 | 0.03 |
Norbuprenorphine-3-β-d-glucuronide | 0.01 | 0.03 |
Primidone | 0.01 | 0.03 |
Felbamate | 2.09 | 6.27 |
Morphine | 5.74 | 17.22 |
Benzoylecgonine | 0.06 | 0.18 |
7-aminoclonazepam | 0.92 | 2.76 |
10-hydroxycarbamazepine | 0.04 | 0.12 |
Hydromorphone | 0.01 | 0.03 |
7-aminoflunitrazepam | 0.01 | 0.03 |
Topiramate | 0.12 | 0.36 |
Buprenorphine-3-β-d-glucuronide | 0.01 | 0.03 |
Lamotrigine | 0.24 | 0.72 |
Codeine | 0.93 | 2.79 |
Carbamazepine | 0.12 | 0.36 |
Flumazenil | 0.02 | 0.06 |
6-MAM | 0.45 | 1.31 |
Bromazepam | 1.04 | 3.12 |
Naltrexone | 6.82 | 20.46 |
Carisoprodol | 0.11 | 0.33 |
Hydroxyalprazolam | 0.01 | 0.03 |
Oxazepam | 2.15 | 6.45 |
Ephedrine | 0.02 | 0.06 |
Methamphetamine | 3.68 | 11.04 |
Amphetamine | 0.86 | 2.58 |
MDMA | 0.06 | 0.18 |
THC-COOH | 2.46 | 7.38 |
Characteristics (n = 250) | |
---|---|
Age (years), Median (IQR) | 28.0 (24.0–34.0) |
Gender, n (%) | |
Male | 237 (94.8) |
Female | 13 (5.2) |
Substance | Positive in Urine Samples (n = 234), n (%) | Positive in Blood Samples (n = 16), n (%) | Positive in Urine or Blood Samples (n = 250), n (%) |
---|---|---|---|
Any substance | 213 (91.0) | 12 (75.0) | 225 (90.0) |
Methamphetamine | 176 (75.2) | 9 (56.3) | 185 (74.0) |
Amphetamine | 169 (72.2) | 6 (37.5) | 175 (70.0) |
Cannabinoids (THC) | 84 (35.9) | 4 (25.0) | 88 (35.2) |
Opiate | 26 (11.1) | 5 (31.3) | 31 (12.4) |
MDMA | 14 (6.0) | 3 (18.8) | 17 (6.8) |
Benzodiazepinesa | 4 (1.6) | 3 (18.8) | 7 (2.8) |
Benzoylecgonine | 3 (1.3) | 0 (0.0) | 3 (1.2) |
Buprenorphine | 2 (0.9) | 1 (6.3) | 3 (1.2) |
Tricyclic antidepressants | 2 (0.9) | 0 (0.0) | 2 (0.8) |
Barbiturates | 1 (0.4) | 1 (6.3) | 2 (0.8) |
Phencyclidine | 1 (0.4) | 0 (0.0) | 1 (0.4) |
Substance | Positive Rate, n (%) | Substance | Positive Rate, n (%) | ||||
---|---|---|---|---|---|---|---|
Urine Samples (n = 234) | Blood Samples (n = 250) | Urine and/or Blood Samples (n = 250) | Urine Samples (n = 234) | Blood Samples (n = 250) | Urine and/or Blood Samples (n = 250) | ||
Any substance | 224 (95.7) | 222 (88.8) | 239 (95.6) | Citalopram | 2 (0.9) | 2 (0.8) | 2 (0.8) |
Methamphetamine | 191 (81.6) | 193 (77.2) | 203 (81.2) | Lidocaine | 2 (0.9) | 2 (0.8) | 2 (0.8) |
Amphetamine | 190 (81.2) | 194 (77.6) | 202 (80.8) | Benzoylecgonine | 2 (0.9) | 2 (0.8) | 2 (0.8) |
THC-COOH | 99 (42.3) | 78 (31.2) | 104 (41.6) | Buprenorphine | 2 (0.9) | 0 (0.0) | 2 (0.8) |
Ephedrine | 40 (17.1) | 18 (7.2) | 40 (16.0) | Acetylcodeine | 1 (0.4) | 0 (0.0) | 1 (0.4) |
Morphine | 21 (9.0) | 22 (8.8) | 22 (8.8) | Diazepam | 1 (0.4) | 1 (0.4) | 1 (0.4) |
MDMA | 19 (8.1) | 14 (5.6) | 20 (8.0) | Nordiazepam | 1 (0.4) | 1 (0.4) | 1 (0.4) |
6-MAM | 17 (7.3) | 3 (1.2) | 17 (6.8) | Methcathinone | 1 (0.4) | 1 (0.4) | 1 (0.4) |
MDA | 6 (2.6) | 6 (2.4) | 6 (2.4) | Trazadone | 1 (0.4) | 1 (0.4) | 1 (0.4) |
Quetiapine | 4 (1.7) | 5 (2.0) | 5 (2.0) | Venlafaxine | 1 (0.4) | 1 (0.4) | 1 (0.4) |
Alprazolam | 3 (1.3) | 4 (1.6) | 4 (1.6) | O-desmethylvenlafaxine | 1 (0.4) | 1 (0.4) | 1 (0.4) |
Heroin | 3 (1.3) | 1 (0.4) | 3 (1.2) | Hydroxyalprazolam | 0 (0.0) | 1 (0.4) | 1 (0.4) |
Ecgonine methyl ester | 1 (0.4) | 3 (1.2) | 3 (1.2) | Risperidone | 1 (0.4) | 1 (0.4) | 1 (0.4) |
Hydromorphone | 2 (0.9) | 2 (0.8) | 2 (0.8) | 9-Hydroxyrisperidone | 1 (0.4) | 1 (0.4) | 1 (0.4) |
Cocaine | 2 (0.9) | 2 (0.8) | 2 (0.8) | 5F-APINACA | 0 (0.0) | 1 (0.4) | 1 (0.4) |
LC-MS/MS, n (%) | Accuracy (%) | Cohen’s Kappa (κ) | p | |||||
---|---|---|---|---|---|---|---|---|
Negative | Positive | Total | ||||||
Methamphetamine | Biochip-based assay, n (%) | Negative | 37 (15.8) | 21 (9.0) | 58 (24.8) | 88.4 | 0.661 | <0.001 |
Positive | 6 (2.6) | 170 (72.6) | 176 (75.2) | |||||
Total | 43 (18.4) | 191 (81.6) | 234 (100.0) | |||||
Amphetamine | Biochip-based assay, n (%) | Negative | 39 (16.7) | 26 (11.1) | 65 (27.8) | 86.7 | 0.633 | <0.001 |
Positive | 5 (2.1) | 164 (70.1) | 169 (72.2) | |||||
Total | 44 (18.8) | 190 (81.2) | 234 (100.0) |
Blood Samples, n (%) | Accuracy (%) | Cohen’s Kappa (κ) | p | |||||
---|---|---|---|---|---|---|---|---|
Negative | Positive | Total | ||||||
Methamphetamine | Urine samples, n (%) | Negative | 42 (17.9) | 1 (0.4) | 43 (18.4) | 95.3 | 0.855 | <0.001 |
Positive | 10 (4.3) | 181 (77.4) | 191 (81.6) | |||||
Total | 52 (22.2) | 182 (77.8) | 234 (100.0) | |||||
Amphetamine | Urine samples, n (%) | Negative | 43 (18.4) | 1 (0.4) | 44 (18.8) | 96.2 | 0.881 | <0.001 |
Positive | 8 (3.4) | 182 (77.8) | 190 (81.2) | |||||
Total | 44 (18.8) | 190 (81.2) | 234 (100.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbaba, M.; Isir, A.B. Concordance of Biochip-Based and LC-MS/MS Methods in Urine and Blood Samples in Screening for Amphetamine and Methamphetamine. Diagnostics 2025, 15, 269. https://doi.org/10.3390/diagnostics15030269
Akbaba M, Isir AB. Concordance of Biochip-Based and LC-MS/MS Methods in Urine and Blood Samples in Screening for Amphetamine and Methamphetamine. Diagnostics. 2025; 15(3):269. https://doi.org/10.3390/diagnostics15030269
Chicago/Turabian StyleAkbaba, Murat, and Aysun Baransel Isir. 2025. "Concordance of Biochip-Based and LC-MS/MS Methods in Urine and Blood Samples in Screening for Amphetamine and Methamphetamine" Diagnostics 15, no. 3: 269. https://doi.org/10.3390/diagnostics15030269
APA StyleAkbaba, M., & Isir, A. B. (2025). Concordance of Biochip-Based and LC-MS/MS Methods in Urine and Blood Samples in Screening for Amphetamine and Methamphetamine. Diagnostics, 15(3), 269. https://doi.org/10.3390/diagnostics15030269