Lightweight Deep Learning Framework for Accurate Detection of Sports-Related Bone Fractures
Abstract
:1. Introduction
- We integrate the Canny edge detector within our model architecture to enhance its ability to identify subtle structural discontinuities indicative of bone fractures. This addition significantly improves the model performance in detecting minor and complex fractures.
- Building upon the DenseNet121 architecture, we propose modifications to the initial convolutional block and the final layers, optimizing the model for better feature learning. These changes ensure improved sensitivity and specificity, critical for accurately diagnosing fractures.
- Our proposed model achieves a state-of-the-art accuracy of 90.3%, recall of 0.89, and precision of 0.875. These results surpass existing models, such as ResNet-50, VGG-16, and EfficientNet-B0, demonstrating the effectiveness of our approach.
- With a lightweight architecture requiring only 14.78 million parameters and 0.54 GFLOPs, the model is computationally efficient, making it highly suitable for real-time clinical use in resource-constrained environments.
- A custom-curated dataset focused on fractures prevalent among athletes was utilized, supported by preprocessing techniques like contrast enhancement and data augmentation, ensuring the robustness and generalizability of the model.
- The proposed framework addresses the critical need for rapid and precise diagnosis in clinical settings, potentially reducing recovery times and minimizing invasive interventions for athletes, thereby improving patient outcomes.
2. Related Works
3. The Methodology
3.1. DenseNet121
3.2. The Proposed Model
The Edge Detector
4. The Experiment and Results
4.1. Dataset and Medical Image Preprocessing
4.2. The Used Metrics
4.3. Comparative Analysis of Edge Detection Techniques
4.4. Comparison with Other Models
5. Discussion
5.1. Ethical and Regulatory Considerations
5.2. Error Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belair, J.A.; Jung, J.; Desai, V.; Morrison, W.B.; DeLuca, P.F.; Zoga, A.C. Bone bruise vs. non-displaced fracture on MRI: A novel grading system for predicting return-to-play. Skelet. Radiol. 2024, 53, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.L.; McLeod, T.C.V. What Is Currently the Most Commonly Accepted Definition of a Sport-Related Concussion, and How Does This Definition Impact Clinical Management? In Quick Questions in Sport-Related Concussion; Routledge: London, UK, 2024; pp. 3–6. [Google Scholar]
- Klug, P.; Adams, J.; Lents, G.; Long, R.; Herda, A.; Vopat, B.; Vopat, L. Auditing the Representation of Female Athletes in Sports Medicine Research: Fifth-Metatarsal Fractures. Foot Ankle Orthop. 2024, 9, 24730114241241318. [Google Scholar] [CrossRef] [PubMed]
- Xiongce, L.; Tao, Y.; Zhu, J.; Jin, Y.; Wang, L. A bibliometric analysis from 2013 to 2023 reveals research hotspots and trends in the connection between sport and regenerative medicine. Medicine 2024, 103, e38846. [Google Scholar] [CrossRef]
- Pareek, A.; Karlsson, J.; Martin, R.K. Machine learning/artificial intelligence in sports medicine: State of the art and future directions. J. ISAKOS 2024, 9, 635–644. [Google Scholar] [CrossRef]
- Abdusalomov, A.; Mirzakhalilov, S.; Dilnoza, Z.; Zohirov, K.; Nasimov, R.; Umirzakova, S.; Cho, Y.I. Lightweight Super-Resolution Techniques in Medical Imaging: Bridging Quality and Computational Efficiency. Bioengineering 2024, 11, 1179. [Google Scholar] [CrossRef]
- Umirzakova, S.; Ahmad, S.; Khan, L.U.; Whangbo, T. Medical image super-resolution for smart healthcare applications: A comprehensive survey. Inf. Fusion 2024, 103, 102075. [Google Scholar] [CrossRef]
- Li, J.; Hu, W.; Wu, H.; Chen, Z.; Chen, J.; Lai, Q.; Wang, Y.; Li, Y. Detection of hidden pediatric elbow fractures in X-ray images based on deep learning. J. Radiat. Res. Appl. Sci. 2024, 17, 100893. [Google Scholar] [CrossRef]
- Devi, M.S.; Aruna, R.; Almufti, S.; Punitha, P.; Kumar, R.L. Bone feature quantization and systematized attention gate UNet-based deep learning framework for bone fracture classification. Intell. Data Anal. 2024, 1–29, preprint. [Google Scholar] [CrossRef]
- Abdusalomov, A.; Mirzakhalilov, S.; Umirzakova, S.; Shavkatovich Buriboev, A.; Meliboev, A.; Muminov, B.; Jeon, H.S. Accessible AI Diagnostics and Lightweight Brain Tumor Detection on Medical Edge Devices. Bioengineering 2025, 12, 62. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Khamael, A.D.; Salhi, A.; Alammar, Z.; Fadhel, M.A.; Albahri, A.S.; Alamoodi, A.H.; Albahri, O.S.; Hasan, A.F.; Bai, J.; et al. Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion. Artif. Intell. Med. 2024, 155, 102935. [Google Scholar] [CrossRef]
- Peng, T.; Zeng, X.; Li, Y.; Li, M.; Pu, B.; Zhi, B.; Wang, Y.; Qu, H. A study on whether deep learning models based on CT images for bone density classification and prediction can be used for opportunistic osteoporosis screening. Osteoporos. Int. 2024, 35, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cui, Z.; Sun, Y.; Jiang, C.; Chen, Z.; Yang, H.; Zhang, Y.; Wu, D.; Shen, D. Multi-scale segmentation network for rib fracture classification from CT images. In Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, 27 September 2021, Proceedings 12; Springer: Cham, Switzerland, 2021; pp. 546–554. [Google Scholar]
- Tieu, A.; Kroen, E.; Kadish, Y.; Liu, Z.; Patel, N.; Zhou, A.; Yilmaz, A.; Lee, S.; Deyer, T. The Role of Artificial Intelligence in the Identification and Evaluation of Bone Fractures. Bioengineering 2024, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Ju, R.Y.; Cai, W. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Sci. Rep. 2023, 13, 20077. [Google Scholar] [CrossRef]
- Kassem, M.A.; Naguib, S.M.; Hamza, H.M.; Fouda, M.M.; Saleh, M.K.; Hosny, K.M. Explainable Transfer Learning-Based Deep Learning Model for Pelvis Fracture Detection. Int. J. Intell. Syst. 2023, 2023, 3281998. [Google Scholar] [CrossRef]
- Karanam, S.R.; Srinivas, Y.; Chakravarty, S. A statistical model approach based on the Gaussian Mixture Model for the diagnosis and classification of bone fractures. Int. J. Healthc. Manag. 2023, 1–12. [Google Scholar] [CrossRef]
- Zou, J.; Arshad, M.R. Detection of whole body bone fractures based on improved yolov7. Biomed. Signal Process. Control. 2024, 91, 105995. [Google Scholar] [CrossRef]
- Medaramatla, S.C.; Samhitha, C.V.; Pande, S.D.; Vinta, S.R. Detection of Hand Bone Fractures in X-ray Images using Hybrid YOLO NAS. IEEE Access 2024, 12, 57661–57673. [Google Scholar] [CrossRef]
- Yıldız Potter, İ.; Yeritsyan, D.; Mahar, S.; Kheir, N.; Vaziri, A.; Putman, M.; Rodriguez, E.K.; Wu, J.; Nazarian, A.; Vaziri, A. Proximal femur fracture detection on plain radiography via feature pyramid networks. Sci. Rep. 2024, 14, 12046. [Google Scholar] [CrossRef]
- Saad, A.; Sheikh, U.U.; Moslim, M.S. Developing Convolutional Neural Network for Recognition of Bone Fractures in X-ray Images. Adv. Sci. Technol. Res. J. 2024, 18, 228–237. [Google Scholar] [CrossRef]
- Chien, C.T.; Ju, R.Y.; Chou, K.Y.; Chiang, J.S. YOLOv9 for fracture detection in pediatric wrist trauma X-ray images. Electron. Lett. 2024, 60, e13248. [Google Scholar] [CrossRef]
- Liew, Y.M.; Ooi, J.H.; Azman, R.R.; Ganesan, D.; Zakaria, M.I.; Khairuddin, A.S.M.; Tan, L.K. Innovations in detecting skull fractures: A review of computer-aided techniques in CT imaging. Phys. Medica 2024, 124, 103400. [Google Scholar] [CrossRef] [PubMed]
- Kraus, M.; Anteby, R.; Konen, E.; Eshed, I.; Klang, E. Artificial intelligence for X-ray scaphoid fracture detection: A systematic review and diagnostic test accuracy meta-analysis. Eur. Radiol. 2024, 34, 4341–4351. [Google Scholar] [CrossRef] [PubMed]
- Panda, T.; Peddada, H.P.; Gupta, A.; Kanimozhi, G. Bone fracture detection through X-ray using Edge detection Algorithms. Indones. J. Electr. Eng. Inform. IJEEI 2022, 10, 508–521. [Google Scholar] [CrossRef]
- Bharodiya, A.K.; Gonsai, A.M. An improved edge detection algorithm for X-Ray images based on the statistical range. Heliyon 2019, 5, e02743. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
Edge Detection Technique | Accuracy (%) | Sensitivity to Noise | Computational Efficiency (ms) |
---|---|---|---|
Canny | 92 | High | 15 |
Sobel | 87 | Medium | 10 |
Prewitt | 86 | Medium | 10 |
Roberts | 85 | Low | 8 |
Scharr | 89 | High | 12 |
Model | Accuracy | Params [M] | FLOPs [G] | Recall | Precision |
---|---|---|---|---|---|
ResNet-50 | 0.872 | 21.5 | 4.85 | 0.86 | 0.811 |
VGG-16 | 0.821 | 128 | 13.5 | 0.83 | 0.81 |
DenseNet121 | 0.871 | 17.5 | 0.73 | 0.86 | 0.822 |
SqueezeNet | 0.84 | 24.7 | 0.82 | 0.82 | 0.81 |
EfficientNet-B0 | 0.883 | 15.2 | 0.65 | 0.87 | 0.853 |
The proposed model | 0.903 | 14.78 | 0.54 | 0.89 | 0.875 |
Model | Accuracy | Params (M) | FLOPs (G) | Recall | Precision |
---|---|---|---|---|---|
Lui et al. [13] | 87.2% | 21.5 | 4.85 | 0.86 | 0.811 |
Tieu et al. [14] | 82.1% | 128 | 13.5 | 0.83 | 0.81 |
Ju et al. [15] | 87.1% | 17.5 | 0.73 | 0.86 | 0.822 |
Kassem et al. [16] | 88.3% | 15.2 | 0.65 | 0.87 | 0.853 |
Karanam et al. [17] | 88.1% | 20.4 | 0.58 | 0.86 | 0.854 |
Zou et al. [18] | 85.9 | 19.89 | 0.69 | 0.84 | 0.85 |
Medaramatla et al. [19] | 83.7 | 21.4 | 0.89 | 0.83 | 0.84 |
Yıldız et al. [20] | 84.7 | 22.6 | 0.67 | 0.84 | 0.83 |
Saad et al. [21] | 88.9 | 25.87 | 0.58 | 0.87 | 0.89 |
Chien et al. [22] | 87.59 | 22.13 | 0.69 | 0.87 | 0.88 |
Proposed Model | 90.3% | 14.78 | 0.54 | 0.89 | 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdusalomov, A.; Mirzakhalilov, S.; Umirzakova, S.; Ismailov, O.; Sultanov, D.; Nasimov, R.; Cho, Y.-I. Lightweight Deep Learning Framework for Accurate Detection of Sports-Related Bone Fractures. Diagnostics 2025, 15, 271. https://doi.org/10.3390/diagnostics15030271
Abdusalomov A, Mirzakhalilov S, Umirzakova S, Ismailov O, Sultanov D, Nasimov R, Cho Y-I. Lightweight Deep Learning Framework for Accurate Detection of Sports-Related Bone Fractures. Diagnostics. 2025; 15(3):271. https://doi.org/10.3390/diagnostics15030271
Chicago/Turabian StyleAbdusalomov, Akmalbek, Sanjar Mirzakhalilov, Sabina Umirzakova, Otabek Ismailov, Djamshid Sultanov, Rashid Nasimov, and Young-Im Cho. 2025. "Lightweight Deep Learning Framework for Accurate Detection of Sports-Related Bone Fractures" Diagnostics 15, no. 3: 271. https://doi.org/10.3390/diagnostics15030271
APA StyleAbdusalomov, A., Mirzakhalilov, S., Umirzakova, S., Ismailov, O., Sultanov, D., Nasimov, R., & Cho, Y.-I. (2025). Lightweight Deep Learning Framework for Accurate Detection of Sports-Related Bone Fractures. Diagnostics, 15(3), 271. https://doi.org/10.3390/diagnostics15030271