Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Pathophysiological Tests
2.3. Assessment of Serum and Urine Glycosaminoglycan (GAG) Levels
2.4. ELISA for Serum Cytokine Levels
3. Results
3.1. Safety and Adverse Effects
3.2. Skeletal Pathophysiology
3.3. Urinary GAG Levels
3.4. Serum GAG Levels
3.5. Serum Cytokine Levels
4. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MPS | Mucopolysaccharidoses |
GAG | glycosaminoglycan |
ECM | extracellular matrix |
HS | heparan sulfate |
DS | dermatan sulfate |
ERT | enzyme replacement therapy |
HSCT | hematopoietic stem cell therapy |
FDA | Food and Drug Administration |
SRT | substrate reduction therapy |
PPS | pentosan polysulfate |
TLR4 | toll-like receptor 4 |
TNF-α | tumor necrosis factor-α |
IL-1β | interleukin-1β |
IL-8 | interleukin-8 |
MIP-1α | macrophage inflammatory protein-1α |
IL-6 | interleukin-6 |
WBC | white blood cell |
AST | aspartate aminotransferase |
ALT | alanine transaminase |
APTT | activated partial thromboplastin time |
6MWT | 6-minute walk test |
3MSCT | 3-minute stair climb test |
ROM | range of motion |
UCG | ultrasonic cardiography |
MRI | magnetic resonance imaging |
CT | computer tomography |
ABR | auditory brainstem response |
LC-MS/MS | liquid chromotraphy-tandem mass spectrometry |
KS | keratan sulfate |
ELISA | enzyme-linked immunosorbent assay |
MIF | macrophage migration inhibitory factor |
VEGF | vascular endothelial growth factor |
IL-10 | interleukin-10 |
IL-18 | interleukin-18 |
MCP-1 | macrophage migration inhibitory factor |
TNFR1 | tumor necrosis factor receptor 1 |
EEG | electroencephalography |
N/A | not applicable |
VC | vital capacity |
TD | tidal volume |
FEV1 | forced expiratory volume per second |
PEF | peak expiratory flow |
V.50 | maxixmal flow rate of expiration at 50% vital capacity |
Appendix A
Patient 1 | Patient 2 | Patient 3 | |
---|---|---|---|
Age | 22 years old | 34 years old | 37 years old |
Height | 135.6 cm | 118.2 cm | 169.0 cm |
Weight | 43.9 kg | 34.5 kg | 58.0 kg |
Sex | Male | Male | Male |
Iduronate-2-sulfatase Mutations | p.Cys1326Thr p.Arg443X | p.Gly922AlaG922A p.Asp308Asn | p.Thr511Cys p.Cys171Arg |
ERT Status | With ERT | With ERT | Without ERT |
Patient 1 | Patient 2 | Patient 3 | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
Pulmonary Function Test | Restrictive | Restrictive and obstructive | Normal | |||
Vital Capacity (VC) | 1.66 | 1.74 | 1.02 | 4.09 | 4.12 | |
Tidal Volume (TV) | 0.48 | 0.56 | 0.2 | 0.56 | 0.77 | |
Forced Expiratory Volume/Second (FEV1) | 1.27 | 1.34 | 0.63 | 3.38 | 3.35 | |
FEV1/VC | 79.37% | 78.33% | 67.74% | 83.40% | 82.10% | |
Peak Expiratory Flow (PEF) | 2.86 | 2.99 | 1.85 | Not available | Not available | |
Maximal Flow Rate of Expiration at 50% VC (V.50) | 1.54 | 1.43 | 0.66 | Not available | Not available | |
Electrocardiogram | Mild left ventricle hypertrophy | No change | PR prolongation, high amplitude of V5 and V6, T-wave flattening | No change | Normal | Normal |
Echocardiogram | Left Atrial to Aortic Root Ratio: 1.31, Ejection Fraction: 66.6% | Left Atrial to Aortic Root Ratio: 1.3, Ejection Fraction 64.5% | Ejection Fraction: 67% | Ejection Fraction: 63% | Not available | Not available |
tricuspid regurgitation, pulmonary regurgitation, mitral regurgitation | No change | left ventricular enlargement, tricuspid regurgitation, aortic regurgitation, mitral regurgitation | No change | aortic valvular hypertrophy, aortic regurgitation | No change | |
Hearing test | Right:55dB Left:53dB | No change | Right: 73dB Left: 75dB | No change | Not available | Not available |
Visual test | Retinitis pigmentosa | No change | Retinitis pigmentosa, Visual field defect | No change | Retinitis pigmentosa, Manual vision | Retinitis pigmentosa, Manual vision |
Brain MRI | Bilateral diffuse white matter high signal | No change | Bilateral diffuse white matter high signal | No change | Bilateral diffuse white matter high signal | No change |
Perivascular dilation in subcortical white matter | No change | Perivascular dilation in subcortical white matter | No change | Perivascular dilation in subcortical white matter | No change | |
Enlargement of bilateral ventricles | No change | Diffuse patchy high signal in bilateral thalamus, basal nucleus, midbrain, and pons | No change | |||
Abdominal CT | No hepatosplenomegaly | No change | No hepatosplenomegaly | No change | No hepatosplenomegaly | No change |
Patient 1 | Patient 2 | Patient 3 | |
---|---|---|---|
Di-4S | Di-4S | Di-4S | |
Range during Treatment | −55% to 95% | 112% to 538% | −99% to 64% |
Overall Change with Treatment b | −70% | 109% | 44% |
Changes after Treatment c | Increase to 165% Decrease to −31% | Decrease to −8% Increase to 954% | Increase to 112% Decrease to −23% |
Patient 1 | Patient 2 | Patient 3 | ||||
---|---|---|---|---|---|---|
DiHS-0S | DiHS-NS | DiHS-0S | DiHS-NS | DiHS-0S | DiHS-NS | |
Range during Treatment | −32% to 38% | −38% to 35% | 44% to 185% | 12% to 240% | −100% to 130% | −99% to 102% |
Overall Change with Treatment b | −5% | −45% | 97% | 151% | 17% | 17% |
Changes after Treatment c | Increase to 39% Decrease to −16% | Increase to 30% Decrease to −41% | Decrease to −15% Increase to 225% | Decrease to −18% Increase to 493% | Increase to 94% Decrease to −3% | Increase to 87% Decrease to −29% |
Patient 1 | Patient 2 | Patient 3 | ||||
---|---|---|---|---|---|---|
Di-KS | Mono-KS | Di-KS | Mono-KS | Di-KS | Mono-KS | |
Range during Treatment | −70% to 147% | −77% to −37% | 25% to 289% | 18% to 398% | −94% to 164% | −84% to 37% |
Overall Change with Treatment b | 82% | −71% | 75% | 153% | −24% | −36% |
Changes after Treatment c | Increase to 175% Decrease to 42% | Increase to 3% Decrease to −61% | Decrease to 42% Increase to 230% | Decrease to 36% Increase to 257% | Increase to 99% Decrease to 18% | Increase to 30% Decrease to 27% |
Patient 1 | Patient 2 | Patient 3 | |
---|---|---|---|
Di-4S | Di-4S | Di-4S | |
Range during Treatment | −56% to 54% | −78% to 28% | −45% to 130% |
Overall Change with Treatment b | 96% | −45% | −47% |
Changes after Treatment c | Decrease to −23% Increase to 37% Decrease to −16% | Increase to −18% Decrease to −44% Increase −29% | Increase to 13% Decrease to 3% Increase to 39% |
Patient 1 | Patient 2 | Patient 3 | ||||
---|---|---|---|---|---|---|
DiHS-0S | DiHS-NS | DiHS-0S | DiHS-NS | DiHS-0S | DiHS-NS | |
Range during Treatment | −53% to 18% | −52% to 76% | −38% to−5% | −44% to 19% | −42% to 127% | −54% to 78% |
Overall Change with Treatment b | −16% | −152% | 13% | −21% | 22% | 32% |
Changes after Treatment c | Decrease to –24% Increase to 13% | Decrease to 61% Increase to 96% | Decrease to –18% Increase to 33% | Increase to –9% Decrease to –47% Increase to –32% | Increase to 61% Decrease to 21% Increase to 67% | Decrease to 10% Increase to 71% |
Patient 1 | Patient 2 | Patient 3 | ||||
---|---|---|---|---|---|---|
Di-KS | Mono-KS | Di-KS | Mono-KS | Di-KS | Mono-KS | |
Range during Treatment | −73% to 215% | −45% to 20% | −43%to 2% | −19% to 9% | −43% to 167% | −60% to 94% |
Overall Change with Treatment b | −36% | 23% | −3% | 18% | 48% | –51% |
Changes after Treatment c | Increase to −24% Decrease to −61% | Increase to 30% Decrease to −16% | Decrease to −28% Increase to −22% | Decrease to −16% Increase to −7% | Increase to 68% Decrease to −19% Increase to −3% | Increase to 3% Decrease to −21% Increase to 42% |
References
- Wraith, J.E. The mucopolysaccharidoses: A clinical review and guide to management. Arch. Dis. Child. 1995, 72, 263–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Applegarth, D.A.; Toone, J.R.; Lowry, R.B. Incidence of inborn errors of metabolism in British Columbia, 1969-1996. Pediatrics. 2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baehner, F.; Schmiedeskamp, C.; Krummenauer, F.; Miebach, E.; Bajbouj, M.; Whybra, C.; Kohschutter, A.; Kampann, C. Cumulative incidence rates of the mucopolysaccharidoses in Germany. J. Inherit. Metab. Dis. 2005, 28, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Hopwood, J.J.; Clague, A.E.; Carey, W.F. Prevalence of lysosomal storage disorders. JAMA 1999, 281, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J. Incidence of the mucopolysaccharidoses in Northern Ireland. Hum. Genet. 1997, 101, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.; Crowhurst, J.; Carey, B.; Greed, L. Incidence of the mucopolysaccharidoses in Western Australia. Am. J. Med. Genet. A. 2003, 123A, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Poorthuis, B.J.; Wevers, R.A.; Kleijer, W.J.; Groener, J.E.; de Jong, J.G.; van Weely, S.; Niezen-Koning, K.E.; van Diggelen, O.P. The frequency of lysosomal storage diseases in The Netherlands. Hum. Genet. 1999, 105, 151–156. [Google Scholar] [CrossRef]
- Lin, H.Y.; Lin, S.P.; Chuang, C.K.; Niu, D.M.; Chen, M.R.; Tsai, F.J.; Chao, M.C.; Chiu, P.C.; Lin, S.J.; Tsai, L.P.; et al. Incidence of the mucopolysaccharidoses in Taiwan. Am. J. Med. Genet. 2009, 149A, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.L.; Vieira, T.A.; Giugliani, R.; Schwartz, I.V. Expression of the disease on female carriers of X-linked lysosomal disorders: A brief review. OrphanetJ. Rare. Dis. 2010, 28, 14. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, E.F.; Muenzer, J. The mucopolysaccharidoses. In The Metabolic and Molecular Bases of Inherited Disease, 8th ed.; Scriver, C.R., Baudet, A.L., Sly, W.S., Valle, D., Childs, B., Kinzler, K.W., Vogelstein, B., Eds.; McGrawHill: New York, NY, USA, 2001; pp. 3421–3452. [Google Scholar]
- Martin, R.; Beck, M.; Eng, C.; Giugliani, R.; Harmatz, P.; Muñoz, V.; Muenzer, J. Recognition and diagnosis of mucopolysaccharidosis II (Hunter syndrome). Pediatrics 2008, 121, 377–386. [Google Scholar] [CrossRef]
- Coutinho, M.F.; Santos, J.I.; Alves, S. Less is more: Substrate reduction therapy for lysosomal storage disorders. Int. J. Mol. Sci. 2016, 17, 1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wraith, J.E.; Beck, M.; Lane, R.; van der Ploeg, A.; Shapiro, E.; Xue, Y.; Kakkis, E.D.; Guffon, N. Enzyme replacement therapy in patients who have mucopolysaccharidosis I and are younger than 5 years: Results of a multinational study of recombinant human α-L-iduronidase (laronidase). Pediatrics. 2007, 120, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Wraith, J.E.; Clarke, L.A.; Beck, M.; Kolodny, E.H.; Pastores, G.M.; Muenzer, J.; Rapoport, D.M.; Berger, K.I.; Swiedler, S.J.; Kakkis, E.D.; et al. Enzyme replacement therapy for mucopolysaccharidosis I: A randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase). J. Pediatr. 2004, 144, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Corzo, D.; Leslie, N.D.; Gruskin, D.; Van der Ploeg, A.; Clancy, J.P.; Parini, R.; Morin, G.; Beck, M.; Bauer, M.S.; et al. Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr. Res. 2009, 66, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Deegan, P.B. Fabry disease, enzyme replacement therapy and the significance of antibody responses. J. Inherit. Metab. Dis. 2012, 35, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Pastores, G.M.; Rosenbloom, B.; Weinreb, N.; Goker-Alpan, O.; Grabowski, G.; Cohn, G.M.; Zahrieh, D. A multicenter open-label treatment protocol (HGT-GCB-058) of velaglucerase alfa enzyme replacement therapy in patients with Gaucher disease type 1: Safety and tolerability. Genet. Med. 2014, 16, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noh, H.; Lee, J.I. Current and potential therapeutic strategies for mucopolysaccharidoses. J. Clin. Pharm. 2014, 39, 215–224. [Google Scholar] [CrossRef]
- Guffon, N.; Souillet, G.; Maire, I.; Straczek, J.; Guibaud, P. Follow-up of nine patients with Hurler syndrome after bone marrow transplantation. J. Pediatr. 1998, 133, 119–125. [Google Scholar] [CrossRef]
- Krivit, W.; Pierpont, M.E.; Ayaz, K.; Tsai, M.; Ramsay, N.K.; Kersey, J.H.; Weisdorf, S.; Sibley, R.; Snover, D.; Mcgovern, M.M.; et al. Bone-marrow transplantation in the Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI). N. Engl. J. Med. 1984, 311, 1606–1611. [Google Scholar] [CrossRef]
- Prasad, V.K.; Kurtzberg, J. Transplant outcomes in mucopolysaccharidoses seminars in hematology. Semin. Hematol. 2010, 47, 59–69. [Google Scholar] [CrossRef]
- Souillet, G.; Guffon, N.; Maire, I.; Pujol, M.; Taylor, P.; Sevin, F.; Bleyzac, N.; Mulier, C.; Durin, A.; Keballi, K.; et al. Outcome of 27 patients with Hurler’s syndrome transplanted from either related or unrelated haematopoietic stem cell sources. Bone Marrow Transpl. 2003, 13, 1105–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, A.L.; de Magalhaes, T.S.P.C.; Reis, A.B.R.; de Oliveira, M.L.; Scalco, F.B.; Cavalcanti, N.C.; Silva, D.S.E.; Torres, D.A.; Costa, A.A.P.; Bonfim, C.; et al. Early hematopoietic stem cell transplantation in a patient with severe mucopolysaccharidosis II: A 7 years follow-up. Mol. Genet. Metab. Rep. 2017, 12, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Boelens, J.J. Trends in haematopoietic cell transplantation for inborn errors of metabolism. J. Inherit. Metab. Dis. 2006, 29, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Chinen, Y.; Higa, T.; Tomatsu, S.; Suzuki, Y.; Orii, T.; Hyakuna, N. Long-term therapeutic efficacy of allogenic bone marrow transplantation in a patient with mucopolysaccharidosis IVA. Mol. Genet. Metab. Rep. 2014, 1, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Kubaski, F.; Yabe, H.; Suzuki, Y.; Seto, T.; Hamazaki, T.; Mason, R.W.; Xie, L.; Onsten, T.G.H.; Leistner-Segal, S.; Giugliani, R.; et al. Hematopoetic stem cell transplantation for patients with mucopolysaccharidosis II. Biol. Blood Marrow Transplant. 2017, 23, 1795–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, P.L.; Carter, S.L.; Kernan, N.A.; Sahdev, I.; Wall, D.; Pietryga, D.; Wagner, J.E.; Kurtzberg, J. Results of the cord blood transplantation study (COBLT): Outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol. Blood Marrow Transpl. 2006, 12, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Turbeville, S.; Nicely, H.; Rizzo, J.D.; Pedersen, T.L.; Orchard, P.J.; Horwitz, M.E.; Horwitz, M.E.; Veys, P.; Bonfim, C.; Al-Seraihy, A. Clinical outcomes following hematopoietic stem cell transplantation for the treatment of mucopolysaccharidosis VI. Mol. Genet. Metab. 2011, 102, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Luan, Z.; Jiang, H.; Fang, J.; Qin, M.; Lee, V.; Chen, J. Allogeneic hematopoietic stem cell transplantation in thirty-four pediatric cases of mucopolysaccharidosis- a ten year report from the China Children Transplant Group. Biol. Blood Marrow Transpl. 2016, 22, 2104–2108. [Google Scholar] [CrossRef]
- Yabe, H.; Tanaka, A.; Chinen, Y.; Kato, S.; Sawamoto, K.; Yasuda, E.; Shintaku, H.; Suzuki, Y.; Orii, T.; Tomatsu, S. Hematopoietic stem cell transplantation for Morquio A syndrome. Mol. Genet. Metab. 2016, 117, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Kato, K.; Sukegawa, K.; Tomatsu, S.; Fukuda, S.; Emura, S.; Kojima, S.; Matsuyama, T.; Sly, W.S.; Kondo, N. Treatment of MPS VII (Sly disease) by allogeneic BMT in a female with homozygous A619V mutation. Blood Marrow Transpl. 1998, 21, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Tomatsu, S.; Alméciga-Díaz, C.J.; Montaño, A.M.; Yabe, H.; Tanaka, A.; Dung, V.C.; Giugliani, R.; Kubaski, F.; Mason, R.W.; Yasuda, E.; et al. Therapies for the bone in mucopolysaccharidoses. Mol. Genet. Metab. 2015, 114, 94–109. [Google Scholar] [CrossRef] [Green Version]
- Tanjuakio, J.; Suzuki, Y.; Patel, P.; Yasuda, E.; Kubaski, F.; Tanaka, A.; Yabe, H.; Mason, R.W.; Montaño, A.W.; Orii, K.E.; et al. Activities of daily living in patients with Hunter syndrome: Impact of enzyme replacement therapy and hematopoietic stem cell transplantation. Mol. Genet. Metab. 2015, 114, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldenhoven, M.; Wynn, R.F.; Orchard, P.J.; O’Meara, A.; Veys, P.; Fischer, A.; Valayannopoulos, V.; Neven, B.; Rovelli, A.; Prasad, V.K.; et al. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: An international multicenter study. Blood 2015, 125, 2164–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R.; Nivison-Smith, I.; Anazodo, A.; Tiedemann, K.; Shaw, P.J.; Teague, L.; Fraser, C.J.; Carter, T.L.; Tapp, H.; Alvaro, F.; et al. Outcomes of haematopoietic stem cell transplantation for inherited metabolic disorders: A report from the Australian and New Zealand Children’s Haematology Oncology Group and the Australasian Bone Marrow Transplant Recipient Registry. Pediatr. Transpl. 2013, 17, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Vellodi, A.; Young, E.; Cooper, A.; Lidchi, V.; Winchester, B.; Wraith, J.E. Long-term follow-up following bone marrow transplantation for Hunter disease. J. Inherit. Metab. Dis. 1999, 22, 638–648. [Google Scholar] [CrossRef]
- Stoop, F.J.; Kruyt, M.C.; van der Linden, M.H.; Sakkers, R.J.B.; van Hasselt, P.M.; Castelein, R.M.C. Prevalence and development of orthopaedic symptoms in the dutch hurler patient population after haematopoietic stem cell transplantation. Jimd Rep. 2013, 9, 17–29. [Google Scholar]
- Taylor, C.; Brady, P.; O’Meara, A.; Moore, D.; Dowling, F.; Fogarty, E. Mobility in Hurler syndrome. J. Pediatr. Orthop. 2008, 28, 163–168. [Google Scholar] [CrossRef]
- Langereis, E.L.; Borgo, A.; Crushell, E.; Harmatz, P.R.; van Hasselt, P.M.; Jones, S.A.; Kelly, P.M.; Lampe, C.; van der Lee, J.H.; Odent, T.; et al. Treatment of hip dysplasia in patients with mucopolysaccharidosis type I after hematopoietic stem cell transplantation: Results of an international consensus procedure. Orphanet. J. Rare Dis. 2013, 3, 155. [Google Scholar] [CrossRef] [Green Version]
- Masterson, E.L.; Murphy, P.G.; O’Meara, A.; Moore, D.P.; Dowling, F.E.; Fogarty, E.E. Hip dysplasia in Hurler’s syndrome: Orthopaedic management after bone marrow transplantation. J. Pediatr. Orthop. 1996, 16, 731–733. [Google Scholar] [CrossRef]
- Friso, A.; Tomanin, R.; Salvalaio, M.; Scarpa, M. Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br. J. Pharm. 2010, 159, 1082–1091. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, M.; Wilkinson, F.L.; Bennett, W.; Langford-Smith, K.J.; O’Leary, H.A.; Jakobkiewicz-Banecka, J.; Wynn, R.; Wraith, J.E.; Wergzyn, G.; Bigger, B.W. Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIB mice. Mol. Genet. Metab. 2009, 98, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.L. The therapeutic role of sulfated polysaccharides in the urinary bladder. Urol. Clin. North. Am. 1994, 21, 93–100. [Google Scholar] [PubMed]
- Sadhukhan, P.C.; Tchetgen, M.B.; Rackley, R.R.; Vasavada, S.P.; Liou, L.; Bandyopadhyay, S.K. Sodium pentosan polysulfate reduces urothelial responses to inflammatory stimuli via an indirect mechanism. J. Urol. 2002, 168, 289–292. [Google Scholar] [CrossRef]
- Chiang, G.; Patra, P.; Letourneau, R.; Jeudy, S.; Boucher, W.; Green, M.; Sant, G.R.; Theoharides, T.C. Pentosanpolysulfate inhibits mast cell histamine secretion and intracellular calcium ion levels: An alternative explanation of its beneficial effect in interstitial cystitis. J. Urol. 2002, 164, 2119–2125. [Google Scholar] [CrossRef]
- Kwan, C.; Bell, R.; Koenig, T.; Bischofberger, A.; Horadagoda, N.; Perkins, N.R.; Jeffcott, L.B.; Dart, A.J. Effects of intra-articular sodium pentosan polysulfate and glucosamine on the cytology, total protein concentration and viscosity of synovial fluid in horses. Aust. Vet. J. 2012, 90, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, M.; Yatabe, T.; Okada, A.; Chijiiwa, M.; Mochizuki, S.; Ghosh, P.; Okada, Y. Calcium pentosan polysulfate directly inhibits enzymatic activity of ADAMTS4 (aggrecanase-1) in osteoarthritic chondrocytes. Febs Lett. 2008, 582, 2945–2949. [Google Scholar] [CrossRef] [Green Version]
- Donida, B.; Marchetti, D.P.; Biancini, G.B.; Deon, M.; Manini, P.R.; da Rosa, H.T.; Moura, D.J.; Saffi, J.; Bender, F.; Burin, M.G.; et al. Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy. Bba- Mol. Basis Dis. 2015, 1852, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Simonaro, C.M.; Ge, Y.; Eliyahu, E.; He, X.; Jepsen, K.J.; Schuchman, E.H. Involvement of the toll-like receptor 4 pathway and use of TNF-α antagonists for treatment of the mucopolysaccharidoses. Proc. Natl. Acad. Sci. USA 2010, 107, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Simonaro, C.M.; D’Angelo, M.; Xingxuan, H.; Eliyahu, E.; Shtraizent, N.; Haskins, M.E.; Schuchman, E.H. Mechanism of glycosaminoglycan-mediated bone and joint disease: Implications for the mucopolysaccharidoses and other connective tissue diseases. Am. J. Pathol. 2008, 172, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Simonaro, C.M.; D’Angelo, M.; Haskins, M.E.; Schuchman, E.H. Joint and bone disease in mucopolysaccharidoses VI and VII: Identification of new therapeutic targets and biomarkers using animal models. Pediatr. Res. 2005, 57, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Frohbergh, M.; Ge, Y.; Meng, F.; Karabul, N.; Solyom, A.; Lai, A.; Iatridis, J.; Schuchman, E.H.; Simonaro, C.M. Dose responsive effects of subcutaneous pentosan polysulfate injection in mucopolysaccharidosis Type VI rats and comparison to oral treatment. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuchman, E.H.; Ge, Y.; Lai, A.; Borisov, Y.; Faillace, M.; Eliyahu, E.; He, X.; Iatridis, J.; Vlassara, H.; Striker, G. Pentosan polysulfate: A novel therapy for mucopolysaccharidoses. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonaro, C.M.; Tomatsu, S.; Sikora, T.; Kubaski, F.; Frohbergh, M.; Guevara, J.M.; Wang, R.Y.; Vera, M.; Kang, J.L.; Smith, L.J. Pentosan polysulfate: Oral versus subcutaneous injection in mucopolysaccharidosis Type I dogs. PLoS ONE 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crivaro, A.N.; Mucci, J.M.; Bondar, C.M.; Ormazabal, M.E.; Ceci, R.; Simonaro, C.; Rozenfeld, P.A. Efficacy of pentosan polysulfate in in vitro models of lysosomal storage disorders: Fabry and Gaucher Disease. PLoS ONE 2019. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; DeAngelis, V.; Zhu, C.; Schuchman, E.H.; Simonaro, C.M. Pentosan polysulfate treatment of mucopolysaccharidosis Type IIIA mice. Jimd Rep. 2019. [Google Scholar] [CrossRef]
- Hennermann, J.B.; Gökce, S.; Solyom, A.; Mengel, E.; Schuchman, E.H.; Simonaro, C.M. Treatment with pentosan polysulphate in patients with MPS I: Results from an open label, randomized, monocentric phase II study. J. Inherit. Metab. Dis. 2016, 39, 831–837. [Google Scholar] [CrossRef]
- Oguma, T.; Tomatsu, S.; Montano, A.M.; Okazaki, O. Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal. Biochem. 2007, 368, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Oguma, T.; Tomatsu, S.; Okazaki, O. Analytical method for determination of disaccharides derived from keratan sulfates in human serum and plasma by high-performance liquid chromatography/turbo-ionspray ionization tandem mass spectrometry. Biomed. Chromatogr. 2007, 21, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Tomatsu, S.; Montano, A.M.; Oguma, T.; Dung, V.C.; Oikawa, H.; Gutiérrez, M.L.; Yamaguchi, S.; Suzuki, Y.; Fukushi, M.; Barrera, L.A. Validation of disaccharide compositions derived from dermatan sulfate and heparan sulfate in mucopolysaccharidoses and mucolipidoses II and III by tandem mass spectrometry. Mol. Genet. Metab. 2010, 99, 124–131. [Google Scholar] [CrossRef]
- Rowan, D.J.; Tomatsu, S.; Grubb, J.H.; Montaño, A.M.; Sly, W.S. Assessment of bone dysplasia by micro-CT and glycosaminoglycan levels in mouse models for mucopolysaccharidosis type I., IIIA, IVA, and VII. J. Inherit. Metab. Dis. 2013, 36, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Tomatsu, S.; Montaño, A.M.; Oguma, T.; Dung, V.C.; Oikawa, H.; de Carvalho, T.G.; Guitierrez, M.L.; Yamaguchi, S.; Suzuki, Y.; Fukushi, M.; et al. Validation of keratan sulfate level in mucopolysaccharidosis type IVA by liquid chromatography–tandem mass spectrometry. J. Inherit. Metab. Dis. 2010, 33, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Hintze, J.P.; Tomatsu, S.; Fujii, T.; Montaño, A.M.; Yamaguchi, S.; Suzuki, Y.; Fukushi, M.; Ishimaru, T.; Orii, T. Comparison of liquid chromatography–tandem mass spectrometry and sandwich ELISA for determination of keratan sulfate in plasma and urine. Biomark Insights 2011, 6, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, A.K.; Mason, R.W.; Giugliani, R.; Orii, K.; Fukao, T.; Suzuki, Y.; Yamaguchi, S.; Kobayashi, H.; Orii, T.; Tomatsu, S. Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol. Genet. Metab. 2018, 125, 44–52. [Google Scholar]
- Suzuki, Y.; Aoyama, A.; Kato, T.; Shimozawa, N.; Orii, T. Retinitis pigmentosa and mucopolysaccharidosis type II: An extremely attenuated phenotype. J. Inherit. Metab. Dis. 2009, 32, 582–583. [Google Scholar] [CrossRef] [PubMed]
- Isogai, K.; Sukegawa, K.; Tomatsu, S.; Fukao, T.; Song, X.-Q.; Yamada, Y.; Fukuda, S.; Orii, T.; Kondo, N. Mutation analysis in the iduronate-2-sulphatase gene in 43 Japanese patients with mucopolysaccharidosis type II (Hunter disease). J. Inher. Metab. Dis. 1998, 21, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Kato, Z.; Kuratsubo, I.; Tanaka, N.; Ishigami, T.; Kajihara, J.; Sukegawa-Hayasaka, K.S.; Orii, K.; Isogai, K.; Toshiyuki, F.; et al. Mutational and structural analysis of Japanese patients with mucopolysaccharidosis type II. J. Hum. Genet. 2005, 50, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Brusius-Facchin, A.C.; Schwarts, I.V.D.; Zimmer, C.; Ribeiro, M.G.; Acosta, A.X.; Horovitz, D.; Monlleó, I.L.; Fontes, M.I.B.; Fett-Conte, A.; Oliveira-Sobrinho, R.P.; et al. Mucopolysaccharidosis type II: Idenfication of 30 novel mutations among Latin American Patients. Mol. Genet. Metab. 2013, 111, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Joffe, S. Drug prevention of postoperative deep vein thrombosiss. A comparative study of calcium heparinate and sodium pentosan polysulfate. Arch. Surg. 1979, 111, 37–40. [Google Scholar] [CrossRef]
- Opoka-Winiarska, V.; Jurecka, A.; Emeryk, A.; Tylki-Syzmanska, A. Osteoimmunology in mucopolysaccharidoses type I., II, VI and VII. Immunological regulation of the osteoarticular system in the courof metabolic inflammation. Osteoarthr. Cartil. 2013, 21, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; An, J. Cytokines, inflammation and pain. Int. Anesth. Clin. 2009, 45, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.L.; Rees, M.H.; Klebe, S.; Flecher, J.M.; Byers, S. Improvement in behavior after substrate deprivation therapy with rhodamine B in a mouse model of MPS IIIA. Mol. Genet. Metab. 2007, 92, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Derrick-Roberts, A.L.K.; Jackson, M.R.; Pyragius, C.E.; Byers, S. Substrate deprivation therapy to reduce glycosaminoglycan synthesis improves aspects of neurological and skeletal pathology in MPS I mice. Diseases 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derrick-Roberts, A.L.; Marais, W.; Byers, S. Rhodamine B and 2-acetamido-1,3,6-tri-O-acetyl-4-deoxy-4-fluoro-D-glucopyranose (F-GlcNAc) inhibit chondroitin/dermatan and keratan sulphate synthesis by different mechanisms in bovine chondrocytes. Mol. Genet. Metab. 2012, 106, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, E.; Jakóbkiewicz-Banecka, J.; Barańska, S.; Tylki-Szymańska, A.; Czartoryska, B.; Wegrzyn, A.; Wegrzyn, G. Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur. J. Hum. Genet. 2006, 14, 846–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakóbkiewicz-Banecka, J.; Piotrowska, E.; Narajczyk, M.; Barańska, S.; Wegrzyn, G. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. J. Biomed. Sci. 2009. [Google Scholar] [CrossRef] [Green Version]
- Moskot, M.; Gabig-Cimińska, M.; Jakóbkiewicz-Banecka, J.; Węsierska, M.; Bocheńska, K.; Węgrzyn, G. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein. Gene 2016, 585, 100–103. [Google Scholar] [CrossRef]
Patient 1 | Patient 2 | Patient 3 | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
6-Minute Walk Test | 495 m | 480 m | 425 m | 410 m | N/A | N/A |
3-Minute Stair Climb Test | 173 steps | 153 steps | 188 steps | 187 steps | N/A | N/A |
Shoulder Range of Motion | ||||||
Flexion | R 134, L130 | R 140, L 140 | R 126, L124 | R 132, L138 | R 170, L170 | R 170, L170 |
Extension | R 50, L 45 | R 50, L 45 | R 50, L 45 | R 48, L 43 | R 30, L 30 | R 30, L 30 |
Abduction | R 90, L 130 | R 120, L 130 | R 80, L 80 | R 128, L 148 | N/A | N/A |
Adduction | R 28, L 38 | R 60, L 55 | R 20, L 20 | R 52, L 37 | N/A | N/A |
Outer rotation | R 70, L 90 | R 65, L 80 | R 5, L 5 | R 5, L 6 | N/A | N/A |
Inner rotation | R 90, L 51 | R 90, L 90 | R 10, L 10 | R 85, L 80 | N/A | N/A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orii, K.; Lim, A.; Tomatsu, S.; Stapleton, M.; Suzuki, Y.; Simonaro, C.M.; Schuchman, E.H.; Fukao, T.; Matsumoto, T. Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II. Diagnostics 2019, 9, 226. https://doi.org/10.3390/diagnostics9040226
Orii K, Lim A, Tomatsu S, Stapleton M, Suzuki Y, Simonaro CM, Schuchman EH, Fukao T, Matsumoto T. Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II. Diagnostics. 2019; 9(4):226. https://doi.org/10.3390/diagnostics9040226
Chicago/Turabian StyleOrii, Kenji, Alaena Lim, Shunji Tomatsu, Molly Stapleton, Yasuyuki Suzuki, Calogera M. Simonaro, Edward H. Schuchman, Toshiyuki Fukao, and Tadashi Matsumoto. 2019. "Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II" Diagnostics 9, no. 4: 226. https://doi.org/10.3390/diagnostics9040226
APA StyleOrii, K., Lim, A., Tomatsu, S., Stapleton, M., Suzuki, Y., Simonaro, C. M., Schuchman, E. H., Fukao, T., & Matsumoto, T. (2019). Safety Study of Sodium Pentosan Polysulfate for Adult Patients with Mucopolysaccharidosis Type II. Diagnostics, 9(4), 226. https://doi.org/10.3390/diagnostics9040226