Neutral, Negative, or Negligible? Changes in Patient Perceptions of Disease Risk Following Receipt of a Negative Genomic Screening Result
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Participants
2.2. Survey
2.3. Data Collection
2.4. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schmidlen, T.; Wawak, L.; Kasper, R.S.; García-España, J.F.; Christman, M.F.; Gordon, E.S. Personalized genomic results: Analysis of informational needs. J. Genet. Couns. 2014, 23, 578–587. [Google Scholar] [CrossRef]
- Bloss, C.S.; Schork, N.J.; Topol, E.J. Effect of direct-to-consumer genomewide profiling to assess disease risk. N. Engl. J. Med. 2011, 364, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Bloss, C.; Wineinger, N.E.; Darst, B.F.; Schork, N.J.; Topol, E.J. Impact of direct-to-consumer genomic testing at long term follow-up. J. Med. Genet. 2013, 50, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Carere, D.A.; Kraft, P.; Kaphingst, K.A.; Roberts, J.S.; Green, R.C. Consumers report lower confidence in their genetics knowledge following direct-to-consumer personal genomic testing. Genet. Med. 2015, 18, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egglestone, C.; Morris, A.; O’Brien, A. Effect of direct-to-consumer genetic tests on health behaviour and anxiety: A survey of consumers and potential consumers. J. Genet. Couns. 2013, 22, 565–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haga, S.B.; Barry, W.T.; Mills, R.; Svetkey, L.; Suchindran, S.; Willard, H.F.; Ginsburg, G.S. Impact of delivery models on understanding genomic risk for type 2 diabetes. Public Health Genom. 2014, 17, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Kaphingst, K.A.; McBride, C.M.; Wade, C.; Alford, S.H.; Reid, R.; Larson, E.; Baxevanis, A.D.; Brody, L.C. Patients’ understanding of and responses to multiplex genetic susceptibility test results. Genet. Med. 2012, 14, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, S.C.; Tercyak, K.P.; Baytop, C.; Alford, S.H.; McBride, C.M. A new approach to assessing affect and the emotional implications of personal genomic testing for common disease risk. Public Health Genom. 2015, 18, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Schrijver, I.; Aziz, N.; Farkas, D.H.; Furtado, M.; Gonzalez, A.F.; Greiner, T.C.; Grody, W.W.; Hambuch, T.; Kalman, L.; Kant, J.A.; et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: A report of the Association for Molecular Pathology. J. Mol. Diagn. 2012, 14, 525–540. [Google Scholar] [CrossRef] [Green Version]
- Huggins, M.; Bloch, M.; Wiggins, S.; Adam, S.; Suchowersky, O.; Trew, M.; Klimek, M.; Greenberg, C.R.; Eleff, M.; Thompson, L.P.; et al. Predictive testing for Huntington disease in Canada: Adverse effects and unexpected results in those receiving a decreased risk. Am. J. Med Genet. 1992, 42, 508–515. [Google Scholar] [CrossRef]
- Marteau†, T.M.; Roberts, S.; LaRusse, S.; Green, R.C. Predictive genetic testing for Alzheimer’s disease: Impact upon risk perception. Risk Anal. 2005, 25, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Ransohoff, D.F.; Khoury, M.J. Personal genomics: Information can be harmful. Eur. J. Clin. Investig. 2010, 40, 64–68. [Google Scholar] [CrossRef]
- Gericke, N.; Carver, R.; Castéra, J.; Evangelista, N.; Marre, C.C.; El-Hani, C.N. Exploring relationships among belief in genetic determinism, genetics knowledge, and social factors. Sci. Educ. 2017, 26, 1223–1259. [Google Scholar] [CrossRef] [Green Version]
- Kullo, I.J.; Olson, J.; Fan, X.; Jose, M.; Safarova, M.; Breitkopf, C.R.; Winkler, E.; Kochan, D.C.; Snipes, S.; Pacyna, J.E.; et al. The Return of Actionable Variants Empirical (RAVE) Study, a mayo clinic genomic medicine implementation study: Design and initial results. Mayo Clin. Proc. 2018, 93, 1600–1610. [Google Scholar] [CrossRef]
- Stuttgen, K.; Pacyna, J.; Beck, A.; Kullo, I.; Sharp, R. Patient reactions to receiving genomic screening results by mail. Genet. Med. 2020. Under Review. [Google Scholar]
- Kalichman, S.C.; Price, D.; Eaton, L.A.; Burnham, K.; Sullivan, M.C.; Finneran, S.; Cornelius, T.; Allen, A.; Sullivan, M. Diminishing perceived threat of AIDS and increasing sexual risks of HIV among men who have sex with men, 1997-2015. Arch. Sex. Behav. 2017, 46, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Julian-Reynier, C.; Mancini, J.; Mouret-Fourme, E.; Gauthier-Villars, M.; Bonadona, V.; Berthet, P.; Fricker, J.-P.; Caron, O.; Luporsi, E.; Noguès, C. Cancer risk management strategies and perceptions of unaffected women 5 years after predictive genetic testing for BRCA1/2 Mutations. Eur. J. Hum. Genet. 2011, 19, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Hilgart, J.; Mercer, J.; Thirlaway, K. Individuals’ experiences of, and responses to, a negative genetic test result for familial hypercholesterolaemia. J. Heal. Psychol. 2012, 18, 339–349. [Google Scholar] [CrossRef]
- Levin, B.; Lieberman, D.A.; Mcfarland, B.; Smith, R.A.; Brooks, D.; Andrews, K.S.; Dash, C.; Giardiello, F.M.; Glick, S.; Levin, T.R.; et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: A joint guideline from the American cancer society, the US multi-society task force on colorectal cancer, and the American College of Radiology. CA Cancer J. Clin. 2008, 58, 130–160. [Google Scholar] [CrossRef] [Green Version]
- Klijs, B.; Otto, S.J.; Heine, R.J.; Van Der Graaf, Y.; Lous, J.J.; De Koning, H.J. Screening for type 2 diabetes in a high-risk population: Study design and feasibility of a population-based randomized controlled trial. BMC Public Health 2012, 12, 671. [Google Scholar] [CrossRef] [Green Version]
- Willems, J.I.; Otto, S.J.; Klijs, B.; De Koning, H.J. Screening for type 2 diabetes in a high-risk population: Effects of a negative screening test after 4 years follow-up. Ann. Behav. Med. 2013, 47, 102–110. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total N (%) | Adjusted Risk Down N (%) |
---|---|---|
N | 1442 | 604 |
Sex | ||
Male | 601 (42.4) | 225 (37.8) |
Female | 817 (57.6) | 370 (62.2) |
Age (years) at study invitation | ||
Mean; SD | 60.8; 7.3 | 60.8 (7.4) |
Range | 27–71 | 28–71 |
Race | ||
White | 1392 (96.5) | 590 (97.7) |
Other | 50 (3.5) | 14 (2.3) |
Ethnicity | ||
Non-Hispanic | 1413 (99.7) | 593 (99.8) |
Hispanic | 4 (0.3) | 1 (0.2) |
Marital Status | ||
Married / partnered | 1185 (83.6) | 500 (84.0) |
Not married / partnered | 233 (16.4) | 95 (16.0) |
Genetic Knowledge | ||
Mean, SD | 8.3, 2.2 | 8.3 (2.1) |
Range | 0–11 | 0–11 |
Education | ||
Grades 9-11 | 1 (0.1) | 0 (0.0) |
Grade 12/GED | 167 (11.7) | 67 (11.2) |
College 1-3 years | 502 (35.3) | 228 (38.0) |
College 4+ years | 405 (28.4) | 163 (27.2) |
Grad/professional school | 349 (24.5) | 142 (23.7) |
Health Literacy | ||
Adequate | 1338 (92.8) | 557 (93.0) |
Inadequate | 104 (7.2) | 42 (7.0) |
Unable to access physician due to cost | 28 (2.0) | 11 (1.8) |
Financial Situation (income) | ||
More than enough | 1162 (82.3) | 483 (81.6) |
Just enough | 201 (14.2) | 89 (15.0) |
Have to cut back | 40 (2.8) | 17 (2.9) |
Difficulty paying bills | 9 (0.6) | 3 (0.5) |
Insurance coverage | ||
None | 9 (0.6) | 3 (0.5) |
Private | 1107 (77.8) | 465 (77.6) |
Public program | 307 (21.6) | 131 (21.9) |
Colon Polyp Phenotype | 711 (49.7) | 312 (52.1) |
Elevated Lipid Phenotype | 1011 (70.7) | 411 (68.6) |
Higher Than General Population | Same as General Population | Lower Than General Population | p-Value a | |
---|---|---|---|---|
Perceived risk of colon cancer | ||||
Has colon polyps | <0.0001 | |||
Before receiving results | 266 (38.0) | 376 (53.7) | 58 (8.3) | |
After receiving results | 104 (14.9) | 470 (67.3) | 124 (17.8) | |
Does not have colon polyps | <0.0001 | |||
Before receiving results | 119 (16.8) | 467 (65.8) | 124 (17.5) | |
After receiving results | 29 (4.1) | 492 (69.3) | 189 (26.6) | |
Perceived risk of heart disease | ||||
Has lipids | <0.0001 | |||
Before receiving results | 425 (42.5) | 496 (49.6) | 78 (7.8) | |
After receiving results | 204 (20.5) | 688 (69.0) | 105 (10.5) | |
Does not have high lipids | ||||
Before receiving results | 137 (33.3) | 220 (53.4) | 55 (13.3) | <0.0001 |
After receiving results | 61 (14.8) | 280 (68.1) | 70 (17.0) |
Has Colon Polyps | Has Hyperlipidemia | |||||||
---|---|---|---|---|---|---|---|---|
Adjusts Perceived Risk of Colon Cancer Down | Adjusts Perceived Risk of Heart Disease Down | |||||||
All | No | Yes | p Value | All | No | Yes | p Value | |
n = 711 | n = 461 | n = 237 | n = 1011 | n = 734 | n = 263 | |||
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | |||
Sex | 0.17 | 0.001 | ||||||
Male | 326 (46.8) | 220 (48.7) | 100 (43.1) | 424 (42.6) | 327 (45.4) | 88 (33.8) | ||
Female | 371 (53.2) | 232 (51.3) | 132 (56.9) | 571 (57.4) | 394 (54.6) | 172 (66.2) | ||
Age, Mean (SD) | 61.6 (6.3) | 61.7 (6.3) | 61.6 (6.3) | 0.99 | 60.7 (7.6) | 60.9 (7.6) | 60.2 (7.7) | 0.20 |
Marital status | 0.56 | 0.39 | ||||||
Partnered | 586 (84.1) | 380 (84.1) | 199 (85.8) | 835 (83.9) | 610 (84.6) | 214 (82.3) | ||
Not partnered | 111 (15.9) | 72 (15.9) | 33 (14.2) | 160 (16.1) | 111 (15.4) | 46 (17.7) | ||
Education | 0.34 | 0.30 | ||||||
Grades 9-11 | 1 (0.1) | 1 (0.2) | 0 (0.0) | 1 (0.1) | 1 (0.1) | 0 (0.0) | ||
HS Grad/ GED | 89 (12.7) | 64 (14.1) | 24 (10.2) | 111 (11.2) | 89 (12.3) | 20 (7.7) | ||
College 1-3 y | 238 (33.9) | 143 (31.5) | 89 (37.9) | 358 (36.0) | 252 (35.0) | 99 (37.9) | ||
College 4+ y | 207 (29.5) | 138 (30.4) | 66 (28.1) | 284 (28.5) | 203 (28.2) | 79 (30.3) | ||
Grad School | 167 (23.8) | 108 (23.8) | 56 (23.8) | 241 (24.2) | 176 (24.4) | 63 (24.1) | ||
Race | 0.48 | 0.15 | ||||||
White | 691 (97.2) | 447 (97.0) | 232 (97.9) | 973 (96.2) | 703 (95.8) | 257 (97.7) | ||
Other | 20 (2.8) | 14 (3.0) | 5 (2.1) | 38 (3.8) | 31 (4.2) | 6 (2.3) | ||
Health literacy | 0.98 | 0.26 | ||||||
Adequate | 661 (94.4) | 429 (94.5) | 221 (94.4) | 932 (93.8) | 680 (94.3) | 241 (92.3) | ||
Inadequate | 39 (5.6) | 25 (5.5) | 13 (5.6) | 38 (6.2) | 41 (5.7) | 20 (7.7) | ||
Self-reported health | 0.35 | 0.13 | ||||||
Excellent | 98 (13.8) | 57 (12.4) | 37 (15.7) | 129 (12.8) | 100 (13.7) | 25 (9.5) | ||
Very good | 328 (46.3) | 208 (45.3) | 117 (49.6) | 492 (48.9) | 357 (48.9) | 130 (49.4) | ||
Good | 222 (31.4) | 151 (32.9) | 65 (27.5) | 328 (32.6) | 226 (31.0) | 97 (36.9) | ||
Fair | 55 (7.8) | 40 (8.7) | 15 (6.4) | 55 (5.5) | 44 (6.0) | 11 (4.2) | ||
Poor | 5 (0.7) | 3 (0.7) | 2 (0.8) | 3 (0.3) | 3 (0.4) | 0 (0.0) |
Total | If I Were to Get Colon Cancer, It Would Be the Result of Lifestyle Choices, Not Genes N (%) | p-Value | If I Were to Get Heart Disease, It Would Be the Result of Lifestyle Choices, Not Genes N (%) | p-Value | |
---|---|---|---|---|---|
Sex | 0.62 | 0.18 | |||
Male | 60142.4) | 261 (42.9) | 340 (43.8) | ||
Female | 817 (57.6) | 347 (57.1) | 436 (371) | ||
Age, Mean (SD) | 60.8 (7.3) | 60.7 (7.3) | 0.90 | 60.7 (7.3) | 0.74 |
Marital status | 0.85 | 0.73 | |||
Partnered | 1185 (83.6) | 510 (83.9) | 647 (83.4) | ||
Not partnered | 233 (16.4) | 98 (16.1) | 129 (16.6) | ||
Education | 0.65 | 0.009 | |||
Grades 9-11 | 1 (0.1) | 0 (0.0) | 1 (0.1) | ||
HS Grad/ GED | 167 (11.7) | 68 (11.1) | 84 (10.7) | ||
College 1-3 y | 502 (35.3) | 206 (33.7) | 251 (32.0) | ||
College 4+ y | 405 (28.4) | 183 (30.0) | 236 (30.1) | ||
Grad School | 349 (24.5) | 154 (25.2) | 212 (27.0) | ||
Race | 0.62 | 0.43 | |||
White | 1392 (96.5) | 595 (93.6) | 761 (96.2) | ||
Other | 50 (3.5) | 23 (3.7) | 30 (3.8) | ||
Health literacy | 0.39 | 0.03 | |||
Adequate | 1338 (94.1) | 579 (94.8) | 746 (95.3) | ||
Inadequate | 84 (5.9) | 32 (5.2) | 37 (4.7) | ||
Self-reported health status | 0.45 | 0.26 | |||
Excellent | 194 (13.5) | 75 (12.2) | 112 (14.2) | ||
Very good | 686 (47.8) | 293 (47.5) | 372 (47.3) | ||
Good | 465 (32.4) | 210 (34.0) | 262 (33.3) | ||
Fair | 85 (5.9) | 38 (6.2) | 39 (5.0) | ||
Poor | 5 (0.3) | 1 (0.2) | 2 (0.3) |
Shared or Intend to Share with Family N (%) | Do not Intend to Share with Family N (%) | p-Value | |
---|---|---|---|
Perceived risk of Colon Cancer after receipt of results | 0.002 | ||
Adjusted down | 325 (78.7) | 88 (21.3) | |
Did not adjust down | 709 (70.6) | 296 (29.5) | |
Perceived risk of Heart Disease after receipt of results | 0.009 | ||
Adjusted down | 288 (78.1) | 81 (22.0) | |
Did not adjust down | 745 (71.0) | 304 (29.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuttgen, K.; Pacyna, J.; Kullo, I.; Sharp, R. Neutral, Negative, or Negligible? Changes in Patient Perceptions of Disease Risk Following Receipt of a Negative Genomic Screening Result. J. Pers. Med. 2020, 10, 24. https://doi.org/10.3390/jpm10020024
Stuttgen K, Pacyna J, Kullo I, Sharp R. Neutral, Negative, or Negligible? Changes in Patient Perceptions of Disease Risk Following Receipt of a Negative Genomic Screening Result. Journal of Personalized Medicine. 2020; 10(2):24. https://doi.org/10.3390/jpm10020024
Chicago/Turabian StyleStuttgen, Kelsey, Joel Pacyna, Iftikhar Kullo, and Richard Sharp. 2020. "Neutral, Negative, or Negligible? Changes in Patient Perceptions of Disease Risk Following Receipt of a Negative Genomic Screening Result" Journal of Personalized Medicine 10, no. 2: 24. https://doi.org/10.3390/jpm10020024
APA StyleStuttgen, K., Pacyna, J., Kullo, I., & Sharp, R. (2020). Neutral, Negative, or Negligible? Changes in Patient Perceptions of Disease Risk Following Receipt of a Negative Genomic Screening Result. Journal of Personalized Medicine, 10(2), 24. https://doi.org/10.3390/jpm10020024