Targeted Nutritional Intervention for Patients with Mild Cognitive Impairment: The Cognitive impAiRmEnt Study (CARES) Trial 1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. MCI Screening
2.3. Assessing Cognitive Function
2.3.1. Global Cognition
2.3.2. Specific Cognitive Domains
2.4. Assessing Functional Ability
2.5. Assessing Nutritional Status
2.5.1. Macular Pigment
2.5.2. Skin Carotenoid Score
2.6. Biochemical Analysis of Serum Xanthophyll Carotenoids and Vitamin E
2.6.1. Serum Extraction
2.6.2. Lutein, Zeaxanthin and α-Tocopherol Quantification (Assay 1)
2.6.3. Meso-Zeaxanthin Quantification (Assay 2)
2.7. Biochemical Analysis of Plasma Omega-3 Fatty Acids
2.7.1. Plasma Extraction
2.7.2. DHA and EPA Quantification
2.8. Additional Biochemical Analysis
2.9. Demographic, Health and Lifestyle Data
2.10. Statistical Analysis
3. Results
3.1. Baseline Results
3.2. Observed Change in Nutritional Status
3.3. Observed Change in Global Cognition
3.4. Observed Change in Episodic Memory
3.5. Observed Change in Working Memory
3.6. Observed Change in Reaction Time
4. Discussion
4.1. Significance and Interpretation of Findings
4.2. Neurobiological Mechanisms
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Compound Family | Compound | Formulated | Actual |
---|---|---|---|
Fatty Acids | Palmitic acid (16:0) | 55.44 ± 1.39 | |
Palmitoleic acid (16:1) | 0.84 ± 0.02 | ||
Stearic acid (18:0) | 31.60 ± 1.02 | ||
Oleic acid (18:1n9c) | 40.24 ± 0.74 | ||
Vaccenic acid (18:1n9t) | 6.26 ± 0.06 | ||
Linoleic acid (18:2n6) | 28.57 ± 0.78 | ||
α-Linolenic acid (18:3n3) | 1.55 ± 0.03 | ||
Eicosenoic acid (20:1n7, n9, n11) | 41.16 ± 0.94 | ||
Homo-γ-linolenic acid (20:3) | 1.45 ± 0.04 | ||
Arachidonic acid (20:4n6) | 14.20 ± 0.20 | ||
Eicosapentaenoic acid (20:5n3) | 45 | 47.89 ± 0.69 | |
Docosapentaenoic acid (22:5n3) | 11.37 ± 0.18 | ||
Docosahexaenoic acid (22:6n3) | 215 | 258.03 ± 2.75 | |
Carotenoids | Lutein | 5 | 5.18 ± 0.06 |
Zeaxanthin | 1 | 1.75 ± 0.03 | |
meso-zeaxanthin | 5 | 6.48 ± 0.24 | |
Vitamin E | α-tocopherol | 7.5 | 6.12 ± 0.04 |
Total mg | 558.15 |
Placebo | Active | |||
---|---|---|---|---|
V1 | V2 | V1 | V2 | |
Miristic acid | 158.39 ± 117.06 | 200.19 ± 98.13 | 166.02 ± 89.64 | 147.14 ± 76.60 |
Palmitic acid | 4040.87 ± 689.23 | 3976.31 ± 504.27 | 4088.68 ± 855.16 | 3794.24 ± 832.03 |
Palmitoleic acid | 208.07 ± 80.91 | 223.47 ± 59.86 | 231.43 ± 159.19 | 231.81 ± 153.37 |
Stearic acid | 1144.93 ± 154.75 | 1150.95 ± 105.75 | 1017.71 ± 186.56 | 938.33 ± 132.44 |
Oleic acid | 2368.04 ± 686.01 | 2693.92 ± 645.78 | 2383.20 ± 752.13 | 2405.17 ± 638.84 |
Vaccenic acid | 138.70 ± 21.46 | 155.97 ± 25.73 | 148.20 ± 46.87 | 137.51 ± 45.76 |
Linoleic acid | 2398.38 ± 409.88 | 2584.15 ± 206.55 | 2452.42 ± 186.15 | 2428.33 ± 276.07 |
γ-linolenic acid | 54.37 ± 19.81 | 51.36 ± 21.40 | 41.45 ± 20.50 | 39.65 ± 20.23 |
α-linolenic acid | 88.09 ± 32.29 | 96.32 ± 46.64 | 112.40 ± 29.93 | 101.14 ± 14.93 |
Eicosenoic acid | 493.59 ± 85.53 | 373.54 ± 46.86 | 479.94 ± 85.43 | 369.29 ± 33.35 |
Homo-γ-linolenic acid | 162.94 ± 39.32 | 166.81 ± 43.94 | 134.27 ± 36.82 | 127.83 ± 19.35 |
Arachidonic acid | 789.65 ± 197.72 | 842.89 ± 271.43 | 628.37 ± 208.69 | 588.96 ± 241.35 |
Eicosapentaenoic acid (EPA) | 141.06 ± 43.75 | 167.51 ± 90.72 | 148.53 ± 58.71 | 155.60 ± 60.72 |
Docosapentaenoic acid (DPA) | 55.21 ± 6.88 | 59.49 ± 16.69 | 50.74 ± 5.78 | 49.03 ± 13.64 |
Docosahexaenoic acid (DHA) | 199.96 ± 43.11 | 231.64 ± 47.20 | 211.72 ± 56.47 | 325.91 ± 97.80 |
Molecular Weight | Maximum Wavelength | Extinction Coefficient | Solvent | Reference | |
---|---|---|---|---|---|
Lutein | 568.88 | 444 | 144.8 × 103 | Ethanol | [88] |
Zeaxanthin | 568.88 | 450 | 144.2 × 103 | Ethanol | [89] |
β-cryptoxanthin | 552.85 | 450 | 135.7 × 103 | Hexane | [90] |
α-tocopherol | 430.71 | 292 | 326.5 | Ethanol | [91] |
Compound | Equation | R2 | LLOQ (n = 10) | ULOQ (n = 3) |
---|---|---|---|---|
Lutein | y = 0.0827x + 0.3409 | 0.9997 | 0.069 ± 0.0007 | 2.514 ± 0.003 |
Zeaxanthin | y = 0.0793x + 1.4721 | 0.9998 | 0.048 ± 0.0003 | 2.487 ± 0.007 |
β-cryptoxanthin | y = 0.0909x + 1.9363 | 0.9997 | 0.071 ± 0.0005 | 2.460 ± 0.007 |
α-tocopherol | y = 0.00254x + 0.04380 | 0.9992 | 4.053 ± 0.0913 | 69.469 ± 1.011 |
Appendix A.1. Analyte Recovery Analysis
Assay | % ULOQ | % Recovery No IS | % Recovery with IS |
---|---|---|---|
1 | 81.6 | 99.4 | 122.4 |
2 | 93.0 | 102.2 | 120.9 |
3 | 102.4 | 96.5 | 121.6 |
Average | 92.3 ± 10.4 | 99.3 ± 2.9 | 121.6 ± 0.7 |
Assay | %ULOQ | % Recovery No IS | % Recovery with IS |
---|---|---|---|
1 | 88.4 | 86.1 | 97.5 |
2 | 108.8 | 90.2 | 108.6 |
3 | 103.5 | 88.3 | 106.1 |
Average | 100.2 ± 10.6 | 88.2 ± 2.1 | 104.1 ± 5.8 |
Appendix A.2. HPLC Precision Analysis
μmol/L (n; CV) | Intra-Day 1 (n = 3) | Intra-Day 2 (n = 4) | Intra-Day 3 (n = 3) | Intra-Day 4 (n = 2) | Inter-Day |
---|---|---|---|---|---|
Lutein | 0.148 ± 0.007 (CV = 4.98%) | 0.156 ± 0.003 (CV = 1.89%) | 0.153 ± 0.003 (CV = 1.65%) | 0.147 ± 0.002 (CV = 1.05%) | 0.151 ± 0.004 (CV = 2.71%) |
α-tocopherol | 26.123 ± 1.095 (CV = 4.19%) | 29.031 ± 0.881 (CV = 3.03%) | 27.210 ± 0.697 (CV = 2.56%) | 23.745 ± 1.057 (CV = 4.45%) | 26.527 ± 2.209 (CV = 8.33%) |
Appendix A.3. Trueness of Xanthophyll Carotenoid Quantification
Compound | NIST Concentration (μmol/L) | |
---|---|---|
Level 1 (NIST Consensus Values) | Level 2 (NIST Consensus Values) | |
Total lutein | 0.035 (0.036 ± 0.010) | 0.075 (0.087 ± 0.037) |
Total lutein + zeaxanthin | 0.053 (0.052 ± 0.006) | 0.106 (0.115 ± 0.019) |
β-cryptoxanthin | 0.030 (0.030 ± 0.008) | 0.038 (0.044 ± 0.017) |
α-tocopherol | 4.114 (5.15 ± 0.21) | 11.508 (11.85 ± 0.73) |
Variable | Active (n = 10) Median (IQR) | Placebo (n = 9) Median (IQR) | Sig. |
---|---|---|---|
Cholesterol (mmol/L) | 4.20 (3.75–5.60) | 4.65 (4.23–5.40) | 0.541 |
Triglycerides (mmol/L) | 1.72 (1.03–2.21) | 1.32 (1.04–1.86) | 0.815 |
HDL (mmol/L) | 1.34 (1.06–1.55) | 2.03 (1.14–2.12) | 0.236 |
LDL (mmol/L) | 2.50 (1.85–3.50) | 2.15 (1.48–3.78) | 0.743 |
Homocysteine (µmol/L) | 11.0 (8.10–15.55) | 8.65 (7.33–11.80) | 0.236 |
C-reactive protein (mg/L) | 0.80 (0.55–5.10) | 0.45 (0.30–1.10) | 0.236 |
TSH (ulUml) | 1.52 (0.97–2.15) | 1.08 (0.95–1.84) | 0.541 |
Free T4 (pmol/L) | 12.10 (10.85–14.20) | 11.90 (10.88–13.78) | 0.888 |
Haemoglobin (g/dL) | 14.10 (12.55–15.15) | 12.90 (12.48–13.38) | 0.236 |
Sodium (mmol/L) | 138.0 (137.50–140.0) | 139.0 (138.0–140.0) | 0.743 |
Potassium (mmol/L) | 4.15 (3.88–4.83) | 4.20 (4.05–4.50) | 0.999 |
Chloride (mmol/L) | 101.0 (98.0–104.0) | 102.0 (97.0–103.75) | 0.999 |
Creatinine (µmol/L) | 74.0 (70.0–86.50) | 63.5 (57.5–68.75) | 0.008 |
References
- Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R., Jr. Mild cognitive impairment: Ten years later. Arch. Neurol. 2009, 66, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.B.; Han, J.W.; Kwak, K.P.; Kim, B.J.; Kim, S.G.; Kim, J.L.; Kim, T.H.; Ryu, S.H.; Moon, S.W.; Park, J.H.; et al. Impact of Mild Cognitive Impairment on Mortality and Cause of Death in the Elderly. J. Alzheimers Dis. 2018, 64, 607–616. [Google Scholar] [CrossRef]
- Ganguli, M.; Dodge, H.H.; Shen, C.; Pandav, R.S.; DeKosky, S.T. Alzheimer disease and mortality: A 15-year epidemiological study. Arch. Neurol. 2005, 62, 779–784. [Google Scholar] [CrossRef]
- Farias, S.T.; Mungas, D.; Reed, B.R.; Harvey, D.; DeCarli, C. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch. Neurol. 2009, 66, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Roberts, R.O.; Knopman, D.S.; Mielke, M.M.; Cha, R.H.; Pankratz, V.S.; Christianson, T.J.; Geda, Y.E.; Boeve, B.F.; Ivnik, R.J.; Tangalos, E.G.; et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology 2014, 82, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Lopez, O.L.; Becker, J.T.; Chang, Y.F.; Sweet, R.A.; DeKosky, S.T.; Gach, M.H.; Carmichael, O.T.; McDade, E.; Kuller, L.H. Incidence of mild cognitive impairment in the Pittsburgh Cardiovascular Health Study-Cognition Study. Neurology 2012, 79, 1599–1606. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- DeCarlo, C.A.; MacDonald, S.W.; Vergote, D.; Jhamandas, J.; Westaway, D.; Dixon, R.A. Vascular Health and Genetic Risk Affect Mild Cognitive Impairment Status and 4-Year Stability: Evidence From the Victoria Longitudinal Study. J. Gerontol. B. Psychol. Sci. Soc. Sci. 2016, 71, 1004–1014. [Google Scholar] [CrossRef] [Green Version]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martinez-Gonzalez, M.A.; Martinez-Lapiscina, E.H.; Fito, M.; Perez-Heras, A.; Salas-Salvado, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. Jama. Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, A.; Barul, C.; Feart, C.; Helmer, C.; Bernard, C.; Periot, O.; Dilharreguy, B.; Dartigues, J.F.; Allard, M.; Barberger-Gateau, P.; et al. Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimers Dement. 2015, 11, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Zamroziewicz, M.K.; Barbey, A.K. The Mediterranean diet and healthy brain aging: Innovations from nutritional cognitive neuroscience. In Role of the Mediterranean Diet in the Brain and Neurodegenerative Diseases; Farooqui, T., Farooqui, A.A., Eds.; Elsevier Publishing Company: New York, NY, USA, 2017. [Google Scholar]
- Zwilling, C.E.; Talukdar, T.; Zamroziewicz, M.K.; Barbey, A.K. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage 2019, 188, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Hardman, R.J.; Kennedy, G.; Macpherson, H.; Scholey, A.B.; Pipingas, A. Adherence to a Mediterranean-Style Diet and Effects on Cognition in Adults: A Qualitative Evaluation and Systematic Review of Longitudinal and Prospective Trials. Front. Nutr. 2016, 3, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otaegui-Arrazola, A.; Amiano, P.; Elbusto, A.; Urdaneta, E.; Martinez-Lage, P. Diet, cognition, and Alzheimer’s disease: Food for thought. Eur. J. Nutr. 2014, 53, 1–23. [Google Scholar] [CrossRef]
- Lourida, I.; Soni, M.; Thompson-Coon, J.; Purandare, N.; Lang, I.A.; Ukoumunne, O.C.; Llewellyn, D.J. Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology 2013, 24, 479–489. [Google Scholar] [CrossRef]
- Roberts, R.O.; Geda, Y.E.; Cerhan, J.R.; Knopman, D.S.; Cha, R.H.; Christianson, T.J.; Pankratz, V.S.; Ivnik, R.J.; Boeve, B.F.; O’Connor, H.M.; et al. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 2010, 29, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Parsaik, A.K.; Mielke, M.M.; Erwin, P.J.; Knopman, D.S.; Petersen, R.C.; Roberts, R.O. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimer Dis. 2014, 39, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Craft, N.E.; Haitema, T.B.; Garnett, K.M.; Fitch, K.A.; Dorey, C.K. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J. Nutr. Health. Aging 2004, 8, 156–162. [Google Scholar]
- Johnson, E.J.; Vishwanathan, R.; Johnson, M.A.; Hausman, D.B.; Davey, A.; Scott, T.M.; Green, R.C.; Miller, L.S.; Gearing, M.; Woodard, J. Relationship between serum and brain carotenoids,-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the Georgia Centenarian Study. J. Aging Res. 2013, 2013, 951786. [Google Scholar] [CrossRef] [Green Version]
- Singh, M. Essential fatty acids, DHA and human brain. Indian. J. Pediatr. 2005, 72, 239–242. [Google Scholar] [CrossRef]
- Rinaldi, P.; Polidori, M.C.; Metastasio, A.; Mariani, E.; Mattioli, P.; Cherubini, A.; Catani, M.; Cecchetti, R.; Senin, U.; Mecocci, P. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol. Aging 2003, 24, 915–919. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Schneider, J.A.; Tangney, C.; Tremblay-Mercier, J.; Fortier, M.; Bennett, D.A.; Morris, M.C. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 2012, 29, 691–697. [Google Scholar] [CrossRef]
- Nolan, J.; Loskutova, E.; Howard, N.A.; Moran, R.; Mulcahy, R.; Stack, J.; Bolger, M.; Dennison, J.; Akuffo, K.; Owens, N.; et al. Macular Pigment, Visual Function, and Macular Disease among Subjects with Alzheimer’s Disease: An Exploratory Study. J. Alzheimers Dis. 2014, 42, 1191–1202. [Google Scholar] [CrossRef] [Green Version]
- Feeney, J.; O’Leary, N.; Moran, R.; O’Halloran, A.M.; Nolan, J.M.; Beatty, S.; Young, I.S.; Kenny, R.A. Plasma Lutein and Zeaxanthin Are Associated With Better Cognitive Function Across Multiple Domains in a Large Population-Based Sample of Older Adults: Findings from The Irish Longitudinal Study on Aging. J. Gerontol. A. Biol. Sci. Med. Sci. 2017, 72, 1431–1436. [Google Scholar] [CrossRef] [Green Version]
- Zamroziewicz, M.K.; Paul, E.J.; Zwilling, C.E.; Johnson, E.J.; Kuchan, M.J.; Cohen, N.J.; Barbey, A.K. Parahippocampal Cortex Mediates the Relationship between Lutein and Crystallized Intelligence in Healthy, Older Adults. Front. Aging Neurosci. 2016, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Ding, Y.; Wu, F.; Li, R.; Hou, J.; Mao, P. Omega-3 fatty acids intake and risks of dementia and Alzheimer’s disease: A meta-analysis. Neurosci. Biobehav. Rev. 2015, 48, 1–9. [Google Scholar] [CrossRef]
- Talukdar, T.; Zamroziewicz, M.K.; Zwilling, C.E.; Barbey, A.K. Nutrient biomarkers shape individual differences in functional brain connectivity: Evidence from omega-3 PUFAs. Hum. Brain. Mapp. 2019, 40, 1887–1897. [Google Scholar] [CrossRef] [Green Version]
- Bowman, G.L.; Dodge, H.H.; Mattek, N.; Barbey, A.K.; Silbert, L.C.; Shinto, L.; Howieson, D.B.; Kaye, J.A.; Quinn, J.F. Plasma omega-3 PUFA and white matter mediated executive decline in older adults. Front. Aging Neurosci. 2013, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Power, R.; Coen, R.F.; Beatty, S.; Mulcahy, R.; Moran, R.; Stack, J.; Howard, A.N.; Nolan, J.M. Supplemental Retinal Carotenoids Enhance Memory in Healthy Individuals with Low Levels of Macular Pigment in A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J. Alzheimers Dis. 2018, 61, 947–961. [Google Scholar] [CrossRef] [Green Version]
- Hammond, B.R., Jr.; Miller, L.S.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. Front. Aging Neurosci. 2017, 9, 254. [Google Scholar] [CrossRef]
- Kulzow, N.; Witte, A.V.; Kerti, L.; Grittner, U.; Schuchardt, J.P.; Hahn, A.; Floel, A. Impact of Omega-3 Fatty Acid Supplementation on Memory Functions in Healthy Older Adults. J. Alzheimers Dis. 2016, 51, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Yurko-Mauro, K.; McCarthy, D.; Rom, D.; Nelson, E.B.; Ryan, A.S.; Blackwell, A.; Salem, N., Jr.; Stedman, M. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010, 6, 456–464. [Google Scholar] [CrossRef]
- Power, R.; Prado-Cabrero, A.; Mulcahy, R.; Howard, A.; Nolan, J.M. The Role of Nutrition for the Aging Population: Implications for Cognition and Alzheimer’s Disease. Annu. Rev. Food. Sci. Technol. 2019, 10, 619–639. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.J.; McDonald, K.; Caldarella, S.M.; Chung, H.Y.; Troen, A.M.; Snodderly, D.M. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef]
- Nolan, J.M.; Mulcahy, R.; Power, R.; Moran, R.; Howard, A.N. Nutritional Intervention to Prevent Alzheimer’s Disease: Potential Benefits of Xanthophyll Carotenoids and Omega-3 Fatty Acids Combined. J. Alzheimers Dis. 2018, 64, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Dubois, B.; Albert, M.L. Amnestic MCI or prodromal Alzheimer’s disease? Lancet Neurol. 2004, 3, 246–248. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef]
- Randolph, C. RBANS. Update: Repeatable Battery for the Assessment of Neuropsychological Status Manual; NCS Pearson; PsychCorp: Bloomington, MN, USA, 2012. [Google Scholar]
- Cambridge Cognition. CANTAB Connect Research: Admin Application User Guide v1.6; Cambridge Cognition Limited: Cambridge, UK, 2019. [Google Scholar]
- Zygouris, S.; Tsolaki, M. Computerized cognitive testing for older adults: A review. Am. J. Alzheimers Dis. Other. Demen. 2015, 30, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Cambridge Cognition. Product Overview: CANTAB Connect Research v11.10; Cambridge Cognition Limited: Cambridge, UK, 2019. [Google Scholar]
- Chan, D.; Gallaher, L.M.; Moodley, K.; Minati, L.; Burgess, N.; Hartley, T. The 4 Mountains Test: A Short Test of Spatial Memory with High Sensitivity for the Diagnosis of Pre-dementia Alzheimer’s Disease. J. Vis. Exp. 2016. [Google Scholar] [CrossRef] [Green Version]
- Bird, C.M.; Chan, D.; Hartley, T.; Pijnenburg, Y.A.; Rossor, M.N.; Burgess, N. Topographical short-term memory differentiates Alzheimer’s disease from frontotemporal lobar degeneration. Hippocampus 2010, 20, 1154–1169. [Google Scholar] [CrossRef] [PubMed]
- Moodley, K.; Minati, L.; Contarino, V.; Prioni, S.; Wood, R.; Cooper, R.; D’Incerti, L.; Tagliavini, F.; Chan, D. Diagnostic differentiation of mild cognitive impairment due to Alzheimer’s disease using a hippocampus-dependent test of spatial memory. Hippocampus 2015, 25, 939–951. [Google Scholar] [CrossRef]
- Bucks, R.S.; Ashworth, D.L.; Wilcock, G.K.; Siegfried, K. Assessment of activities of daily living in dementia: Development of the Bristol Activities of Daily Living Scale. Age. Ageing 1996, 25, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucks, R.S.; Haworth, J. Bristol Activities of Daily Living Scale: A critical evaluation. Expert. Rev. Neurother. 2002, 2, 669–676. [Google Scholar] [CrossRef]
- Moniz-Cook, E.; Vernooij-Dassen, M.; Woods, R.; Verhey, F.; Chattat, R.; De Vugt, M.; Mountain, G.; O’Connell, M.; Harrison, J.; Vasse, E.; et al. A European consensus on outcome measures for pyschosocial intervention research in dementia care. Aging Ment. Health. 2008, 12, 14–29. [Google Scholar] [CrossRef]
- Sabbagh, M.N.; Malek-Ahmadi, M.; Kataria, R.; Belden, C.M.; Connor, D.J.; Pearson, C.; Jacobson, S.; Davis, K.; Yaari, R.; Singh, U. The Alzheimer’s questionnaire: A proof of concept study for a new informant-based dementia assessment. J. Alzheimers Dis. 2010, 22, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Malek-Ahmadi, M.; Davis, K.; Belden, C.; Laizure, B.; Jacobson, S.; Yaari, R.; Singh, U.; Sabbagh, M.N. Validation and diagnostic accuracy of the Alzheimer’s questionnaire. Age. Ageing. 2012, 41, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Trieschmann, M.; Heimes, B.; Hense, H.W.; Pauleikhoff, D. Macular pigment optical density measurement in autofluorescence imaging: Comparison of one- and two-wavelength methods. Graefes. Arch. Clin. Exp. Ophthalmol. 2006, 244, 1565–1574. [Google Scholar] [CrossRef]
- Roche, W.; Green-Gomez, M.; Moran, R.; Nolan, J. The physics of using the Heidelberg Spectralis dual-wavelength autofluorescence method for the measurement of macular pigment volume. J. Alzheimers Dis. 2018, 64, 1019–1048. [Google Scholar]
- Green-Gomez, M.; Bernstein, P.S.; Curcio, C.A.; Moran, R.; Roche, W.; Nolan, J. Standardizing the Assessment of Macular Pigment Using a Dual-Wavelength Autofluorescence Technique. Transl. Vis. Sci. Technol. 2019, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zidichouski, J.A.; Mastaloudis, A.; Poole, S.J.; Reading, J.C.; Smidt, C.R. Clinical validation of a noninvasive, Raman spectroscopic method to assess carotenoid nutritional status in humans. J. Am. Coll. Nutr. 2009, 28, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Meagher, K.A.; Thurnham, D.I.; Beatty, S.; Howard, A.N.; Connolly, E.; Cummins, W.; Nolan, J.M. Serum response to supplemental macular carotenoids in subjects with and without age-related macular degeneration. Br. J. Nutr. 2013, 110, 289–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benner, B.A.; Schantz, M.M.; Powers, C.D.; Schleicher, R.L.; Camara, J.E.; Sharpless, K.E.; Yen, J.H.; Sniegoski, L.T. Standard Reference Material (SRM) 2378 fatty acids in frozen human serum. Certification of a clinical SRM based on endogenous supplementation of polyunsaturated fatty acids. Anal. Bioanal. Chem. 2018, 410, 2321–2329. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Agosti, P.; Lozupone, M.; Custodero, C.; Schilardi, A.; Valiani, V.; Santamato, A.; Sardone, R.; Dibello, V.; Di Lena, L.; et al. Nutritional interventions and cognitive-related outcomes in patients with late-life cognitive disorders: A systematic review. Neurosci. Biobehav. Rev. 2018, 95, 480–498. [Google Scholar] [CrossRef]
- Remington, R.; Lortie, J.J.; Hoffmann, H.; Page, R.; Morrell, C.; Shea, T.B. A Nutritional Formulation for Cognitive Performance in Mild Cognitive Impairment: A Placebo-Controlled Trial with an Open-Label Extension. J. Alzheimers Dis. 2015, 48, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Yurko-Mauro, K.; Alexander, D.D.; Van Elswyk, M.E. Docosahexaenoic acid and adult memory: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0120391. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.K.; Shahar, S.; Chin, A.V.; Yusoff, N.A. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology 2013, 225, 605–612. [Google Scholar] [CrossRef]
- Mazereeuw, G.; Lanctot, K.L.; Chau, S.A.; Swardfager, W.; Herrmann, N. Effects of omega-3 fatty acids on cognitive performance: A meta-analysis. Neurobiol. Aging 2012, 33, 1482.e1417–1429. [Google Scholar] [CrossRef]
- Bo, Y.; Zhang, X.; Wang, Y.; You, J.; Cui, H.; Zhu, Y.; Pang, W.; Liu, W.; Jiang, Y.; Lu, Q. The n-3 Polyunsaturated Fatty Acids Supplementation Improved the Cognitive Function in the Chinese Elderly with Mild Cognitive Impairment: A Double-Blind Randomized Controlled Trial. Nutrients 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Farina, N.; Llewellyn, D.; Isaac, M.G.E.K.; Tabet, N. Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane. Database Syst. Rev. 2017, 4, CD002854. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for vitamin E as α-tocopherol. Efsa. J. 2015, 13. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Dysken, M.W.; Sano, M.; Asthana, S.; Vertrees, J.E.; Pallaki, M.; Llorente, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA 2014, 311, 33–44. [Google Scholar] [CrossRef]
- Kryscio, R.J.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of Antioxidant Supplement Use and Dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium Trial (PREADViSE). JAMA Neurol. 2017, 74, 567–573. [Google Scholar] [CrossRef]
- Andrés, P.; Vico, H.; Yáñez, A.; Siquier, A.; Ferrer, G.A. Quantifying memory deficits in amnestic mild cognitive impairment. Alzheimers Dement. 2019, 11, 108–114. [Google Scholar] [CrossRef]
- Irish, M.; Lawlor, B.A.; Coen, R.F.; O’Mara, S.M. Everyday episodic memory in amnestic mild cognitive impairment: A preliminary investigation. BMC Neurosci. 2011, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Hasselmo, M.E. How We Remember: Brain Mechanisms of Episodic Memory; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Nyberg, L. Functional brain imaging of episodic memory decline in ageing. J. Intern. Med. 2017, 281, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Nyberg, L.; McIntosh, A.R.; Cabeza, R.; Habib, R.; Houle, S.; Tulving, E. General and specific brain regions involved in encoding and retrieval of events: What, where, and when. Proc. Natl. Acad. Sci. USA 1996, 93, 11280–11285. [Google Scholar] [CrossRef] [Green Version]
- Weiser, M.J.; Butt, C.M.; Mohajeri, M.H. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients 2016, 8, 99. [Google Scholar] [CrossRef]
- McDougle, D.R.; Watson, J.E.; Abdeen, A.A.; Adili, R.; Caputo, M.P.; Krapf, J.E.; Johnson, R.W.; Kilian, K.A.; Holinstat, M.; Das, A. Anti-inflammatory ω-3 endocannabinoid epoxides. Proc. Natl. Acad. Sci. USA 2017, 114, E6034–E6043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smedt-Peyrusse, V.D.; Sargueil, F.; Moranis, A.; Harizi, H.; Mongrand, S.; Layé, S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J. Neurochem. 2008, 105, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Bauer, I.; Crewther, S.; Pipingas, A.; Sellick, L.; Crewther, D. Does omega-3 fatty acid supplementation enhance neural efficiency? A review of the literature. Hum. Psychopharmacol. 2014, 29, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Okabe, N.; Nakamura, T.; Toyoshima, T.; Miyamoto, O.; Lu, F.; Itano, T. Eicosapentaenoic acid prevents memory impairment after ischemia by inhibiting inflammatory response and oxidative damage. J. Stroke. Cereb. Dis. 2011, 20, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Sakai, C.; Ishida, M.; Ohba, H.; Yamashita, H.; Uchida, H.; Yoshizumi, M.; Ishida, T. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS ONE 2017, 12, e0187934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouayed, J.; Bohn, T. Dietary Derived Antioxidants: Implications on Health, Nutrition, Well-Being and Health. Available online: https://www.intechopen.com/books/nutrition-well-being-and-health/dietary-derived-antioxidants-implication-on-health (accessed on 31 March 2020).
- Bovier, E.R.; Hammond, B.R. A randomized placebo-controlled study on the effects of lutein and zeaxanthin on visual processing speed in young healthy subjects. Arch. Biochem. Biophys. 2015, 572, 54–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindbergh, C.A.; Mewborn, C.M.; Hammond, B.R.; Renzi-Hammond, L.M.; Curran-Celentano, J.M.; Miller, L.S. Relationship of Lutein and Zeaxanthin Levels to Neurocognitive Functioning: An fMRI Study of Older Adults. J. Int. Neuropsychol. Soc. 2016, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sohl, G.; Maxeiner, S.; Willecke, K. Expression and functions of neuronal gap junctions. Nat. Rev. Neurosci. 2005, 6, 191–200. [Google Scholar] [CrossRef]
- Guest, J.; Grant, R. Carotenoids and Neurobiological Health. Adv. Neurobiol. 2016, 12, 199–228. [Google Scholar] [CrossRef]
- Kametani, F.; Hasegawa, M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front. Neurosci. 2018, 12, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strain, H.H. Leaf Xanthophylls; Carnegie Institution of Washington: Washington, DC, USA, 1938. [Google Scholar]
- Zhang, J.; Burgess, J.G. Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T. PLoS ONE 2017, 12, e0188081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britton, G. Carotenoids Volume 1B: Spectroscopy; Britton, G., Ed.; Birkhauser Verlag: Basel, Switzerland, 1995. [Google Scholar]
- Gueguen, S.; Herbeth, B.; Siest, G.; Leroy, P. An Isocratic Liquid Chromatographic Method with Diode-Array Detection for the Simultaneous Determination of alpha-Tocopherol, Retinol, and Five Carotenoids in Human Serum. J. Chromatogr. Sci. 2002, 40, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency. Guideline on Bioanalytical Method Validation; European Medicines Agency: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Brown, J.M.; Duewer, D.L.; Burdette, C.Q.; Sniegoski, L.T.; Yen, J.H. Certification of Standard Reference Material® 968f Fat-Soluble Vitamins in Frozen Human Serum; Special Publication, Report Number 260-188; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
Cognitive Domain | Task | Description | Outcome Measure | Desirable Score | Performance Ranges |
---|---|---|---|---|---|
Comprehension | MOT | Individuals must touch the flashing cross shown in different locations on the screen. | Latency (speed of response) | Lower | - |
Total correct | Higher | 0–10 | |||
Total errors | Lower | 0–10 | |||
Executive function (working memory) | SWM | The aim of this test is that, by touching the boxes and using a process of elimination, the individual should find one ‘token’ in each of the boxes and use them to fill up an empty column on the right-hand side of the screen. The key task instruction is that the computer will never hide a token in the same coloured box, so once a token is found in a box the individual should not return to that box to look for another token. | Between errors | Lower | 0–90 |
Total errors | Lower | 0–90 | |||
Strategy | Lower | 2–14 | |||
Reaction time | RTI | Individuals must press and hold down a touchscreen button at the bottom of the screen. Circles are presented at the top of the screen (one for simple mode, and five for the five-choice mode). In each case, a yellow spot will appear in one of the circles. Individuals must respond to the spot as quickly as they can by letting go of the button and touching inside the circle where the yellow spot appeared. | Simple reaction time | Lower | 100–5100 |
Simple movement time | Lower | 100–5100 | |||
Simple error score | Lower | 0–30 | |||
Five-choice reaction time | Lower | 100–5100 | |||
Five-choice movement time | Lower | 100–5100 | |||
Five-choice error score | Lower | 0–30 | |||
Episodic memory | PAL | Boxes are displayed on the screen and open one by one in a randomized order to reveal patterns hidden inside. The patterns are then displayed in the middle of the screen, one at a time, and the individual must touch the box where the pattern was originally located. If the individual makes an error, the patterns are re-presented to remind the individual of their locations. | First attempt memory score | Higher | 0–20 |
No. patterns reached | Higher | 2–8 | |||
Total errors adjusted | Lower | 0–70 |
Variable | Active (n = 10) Median (IQR) | Placebo (n = 9) Median (IQR) | Sig. |
---|---|---|---|
Demographic data | |||
Age (years) | 73.5 (69.5–80.5) | 72.0 (69.5–75.5) | 0.549 |
Sex ([n]; [% female]) | 5 (50.0%) | 8 (88.9%) | 0.069 |
Education (years) | 17.5 (15.5–21.0) | 15.0 (15.0–16.5) | 0.095 |
Health and lifestyle data | |||
Medications | 6.0 (3.0–8.3) | 5.0 (2.0–5.5) | 0.133 |
Exercise (min/week) | 217.0 (0–326.3) | 210.0 (45.0–375.0) | 0.720 |
Smoking ([n]; [%]) | 0.463 | ||
Never | 5 (50%) | 6 (66.7%) | |
Past | 5 (50%) | 3 (33.3%) | |
Current | 0 | 0 | |
Alcohol consumption ([n]; [%]) | 0.473 | ||
0 units | 5 (50.0%) | 4 (44.4%) | |
1 unit | 3 (30.0%) | 2 (22.2%) | |
2–5 units | 0 | 2 (22.2%) | |
6–10 units | 2 (20.0%) | 1 (11.2%) | |
>10 units | 0 | 0 | |
BMI (kg/m2) | 26.3 (25.8–30.7) | 26.7 (25.1–27.8) | 0.720 |
Nutritional status | |||
MPOV | 6987 (2969–9080) | 4682 (3740–7311) | 0.497 |
SCS | 4.20 (3.75–5.60) | 4.65 (4.23–5.40) | 0.541 |
Serum L | 1.72 (1.03–2.21) | 1.32 (1.04–1.86) | 0.815 |
Serum Z | 1.34 (1.06–1.55) | 2.03 (1.14–2.12) | 0.236 |
Serum MZ | 2.50 (1.85–3.50) | 2.15 (1.48–3.78) | 0.743 |
Serum vitamin E | 11.0 (8.10–15.55) | 8.65 (7.33–11.80) | 0.236 |
Plasma DHA | 0.80 (0.55–5.10) | 0.45 (0.30–1.10) | 0.236 |
Plasma EPA | 1.52 (0.97–2.15) | 1.08 (0.95–1.84) | 0.541 |
Folate | 12.10 (10.85–14.20) | 11.90 (10.88–13.78) | 0.888 |
Vitamin B12 | 14.10 (12.55–15.15) | 12.90 (12.48–13.38) | 0.236 |
Variable | Active (n = 10) Median (IQR) | Placebo (n = 9) Median (IQR) | Sig. |
---|---|---|---|
Global cognition | |||
MoCA | 21.0 (18.8–24.0) | 21.0 (19.0–24.0) | 0.842 |
RBANS immediate memory | 78.0 (64.0–82.5) | 85.0 (72.5–98.5) | 0.156 |
RBANS visuospatial | 101.0 (92.0–109.0) | 100.0 (91.5–110.5) | 0.842 |
RBANS language | 89.0 (84.5–93.0) | 88.0 (82.0–92.0) | 0.661 |
RBANS attention | 81.0 (71.0–98.5) | 79.0 (77.0–89.5) | 0.905 |
RBANS delayed memory | 75.0 (47.0–87.5) | 71.0 (58.0–87.0) | <0.999 |
RBANS total scale | 78.0 (75.0–84.0) | 82.0 (73.5–85.0) | 0.497 |
4 mountains test | 6.5 (6.0–7.8) | 7.0 (5.5–7.5) | 0.905 |
Comprehension | |||
Latency | 1165.9 (812.9–1322.2) | 1152.8 (991.75–1301.5) | 0.842 |
Total errors | 0 | 0 | 0.720 |
Working memory | |||
Between errors | |||
Stage 4 | 1.0 (0.8–2.0) | (1.0–2.5) | 0.497 |
Stage 6 | 6.0 (4.3–7.5) | 6.0 (6.0–7.0) | 0.497 |
Stage 8 | 16.0 (15.0–17.0) | 12.5 (11.0–14.0) | 0.006 |
All stages | 21.5 (21.0–26.5) | 20.0 (18.0–22.5) | 0.182 |
Total errors | |||
Stage 4 | (0.8–2.0) | 2.0 (1.0–2.5) | 0.447 |
Stage 6 | 6.0 (4.3–7.5) | 6.0 (6.0–7.0) | 0.497 |
Stage 8 | 16.5 (15.0–17.3) | 13.0 (11.0–14.8) | 0.012 |
All stages | 21.5 (21.0–28.3) | 22.0 (18.0–22.5) | 0.447 |
Strategy | 10.0 (9.0–11.3) | 9.0 (8.5–10.0) | 0.315 |
Reaction time | |||
Simple reaction time | 382.4 (370.7–463.6) | 372.9 (354.9–411.5) | 0.356 |
Simple movement time | 296.5 (249.6–336.6) | 318.9 (277.3–352.3) | 0.497 |
Simple error score | 2.0 (0.8–3.5) | 1.0 (0–3.0) | 0.400 |
Five-choice reaction time | 458.1 (415.7–510.3) | 435.1 (406.5–485.5) | 0.549 |
Five-choice movement time | 310.3 (286.5–367.0) | 313.0 (294.2–335.4) | <0.999 |
Five-choice error score | 0.5 (0–1.3) | 1.0 (0–2.0) | 0.549 |
Episodic memory | |||
First attempt memory score | 4.0 (3.5–5.5) | 4.0 (2.5–6.5) | 0.905 |
No. patterns reached | 6.0 (4.0–6.5) | 6.0 (4.0–6.0) | 0.549 |
Total errors adjusted stage 2 | 0 (0–0.3) | 0 (0–0.5) | 0.905 |
Total errors adjusted stage 4 | 6.0 (2.3–8.8) | 6.0 (0.5–9.5) | 0.780 |
Total errors adjusted stage 6 | 18.5 (12.3–20.0) | 20.0 (14.5–20.0) | <0.999 |
Total errors adjusted stage 8 | 28.0 (25.3–28.0) | 28.0 (28.0–28.0) | 0.720 |
Total errors adjusted all stages | 52.5 (42.8–59.0) | 48.0 (45.0–58.0) | 0.780 |
Functional ability | |||
BADLS | 20.0 (15.5–20.0) | 20.0 (20.0–20.0) | 0.243 |
AQ | 8.0 (4.8–13.8) | 5.0 (2.5–8.0) | 0.113 |
Variable | Active Intervention | Placebo Intervention | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Baseline Median (IQR) | 12 Months Median (IQR) | %Δ | Outcome | n | Baseline Median (IQR) | 12 Months (Median (IQR) | %Δ | Outcome | Sig. | |
Nutrition | |||||||||||
MPOV | 6 | 6987 (2947–9080) | 10,363 (5488–12,906) | +62 | Improved | 7 | 4682 (3838–7264) | 4300 (3827–7277) | −2 | Declined | 0.001 |
SCS | 6 | 27,250 (18,250–36,705) | 37,000 (30,000–60,250) | +79 | Improved | 7 | 17,000 (15,000–35,000) | 21,000 (14,000–38,000) | +2 | Improved | 0.014 |
Serum L | 5 | 0.152 (0.107–0.217) | 0.562 (0.339–1.388) | +421 | Improved | 7 | 0.104 (0.067–0.188) | 0.133 (0.067–0.168) | +5 | Improved | 0.003 |
Serum Z | 5 | 0.059 (0.036–0.078) | 0.075 (0.056–0.125) | +58 | Improved | 7 | 0.037 (0.035–0.051) | 0.042 (0.037–0.049) | +1 | Improved | 0.247 |
Serum MZ | 5 | 0 | 0.068 (0.031–0.234) | - | Improved | 7 | 0 | 0 | 0 | Unchanged | 0.003 |
Serum vit. E | 5 | 23.988 (20.346–30.264) | 23.015 (21.010–31.802) | −4 | Declined | 7 | 24.426 (22.007–26.274) | 24.704 (23.074–26.093) | +1 | Improved | >0.999 |
Plasma DHA | 5 | 235.730 (153.115–258.315) | 291.910 (262.170–406.650) | +59 | Improved | 7 | 200.480 (165.230–212.230) | 234.630 (204.150–267.680) | +17 | Improved | 0.048 |
Plasma EPA | 5 | 164.500 (90.000–199.070) | 178.410 (178.410–205.425) | +6 | Improved | 7 | 129.530 (127.550–146.620) | 147.020 (108.080–201.850) | +13 | Improved | 0.639 |
Variable | Active Intervention | Placebo Intervention | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Baseline Median (IQR) | 12 Months Median (IQR) | %Δ | Outcome | n | Baseline Median (IQR) | 12 Months (Median (IQR) | %Δ | Outcome | |
Global cognition (RBANS) | ||||||||||
Immediate memory | 6 | 78.0 (73.3–82.5) | 91.0 (81.3–100.8) | +18 | Improved | 7 | 94.0 (85.0–100.0) | 90.0 (81.0–103.0) | 0 | Unchanged |
Visuospatial | 6 | 107.0 (101.5–110.8) | 105.0 (101.5–112.0) | −1 | Declined | 7 | 96.0 (87.0–109.0) | 96.0 (84.0–109.0) | 0 | Unchanged |
Language | 6 | 91.0 (88.0–96.0) | 89.0 (88.0–93.0) | −1 | Declined | 7 | 88.0 (82.0–92.0) | 92.0 (72.0–105.0) | +2 | Improved |
Attention | 6 | 84.5 (68.0–103.8) | 91.0 (79.0–100.0) | +7 | Improved | 7 | 79.0 (75.0–85.0) | 79.0 (79.0–94.0) | 0 | Unchanged |
Delayed memory | 6 | 85.0 (63.3–96.5) | 86.0 (63.0–106.3) | +12 | Improved | 7 | 71.0 (60.0–93.0) | 90.0 (78.0–98.0) | +14 | Improved |
Total scale | 6 | 82.0 (78.0–91.5) | 87.0 (82.3–99.3) | +6 | Improved | 7 | 82.5 (76.3–87.3) | 88.5 (78.5–91.3) | +3 | Improved |
Variable | Active Intervention | Placebo Intervention | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Baseline Median (IQR) | 12 Months Median (IQR) | Δ | Outcome | n | Baseline Median (IQR) | 12 Months (Median (IQR) | Δ | Outcome | |
Episodic memory (PAL) | ||||||||||
First attempt memory score | 6 | 4.5 (3.3–7.5) | 6.5 (2.0–9.8) | +1 | Improved | 7 | 4.0 (3.0–6.0) | 3.0 (2.0–6.0) | −1 | Declined |
Total errors adjusted stage 2 | 6 | 0 (0–1.3) | 0 (0) | −1 | Improved | 7 | 0 (0) | 0 (0–2.0) | −1 | Improved |
Total errors adjusted stage 4 | 6 | 6.0 (2.3–8.0) | 7.5 (2.0–11.8) | +2 | Declined | 7 | 6.0 (0–10.0) | 8.0 (4.0–10.0) | +2 | Declined |
Total errors adjusted stage 6 | 6 | 15.0 (7.0–18.5) | 14.0 (5.8–20.0) | −1 | Improved | 7 | 20.0 (15.0–20.0) | 20.0 (15.0–20.0) | 0 | Unchanged |
Total errors adjusted stage 8 | 6 | 28.0 (15.3–28.0) | 20.5 (8.8–28.0) | −4 | Improved | 7 | 28.0 (28.0–28.0) | 28.0 (28.0–28.0) | 0 | Unchanged |
Total errors adjusted all stages | 6 | 54.5 (24.8–54.5) | 39.5 (17.8–59.8) | −4 | Improved | 7 | 48.0 (47.0–58.0) | 51.0 (48.0–58.0) | +2 | Declined |
Variable | Active Intervention | Placebo Intervention | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Baseline Median (IQR) | 12 Months Median (IQR) | Δ | Outcome | n | Baseline Median (IQR) | 12 Months (Median (IQR) | Δ | Outcome | |
Working memory (SWM) | ||||||||||
Between errors stage 4 | 6 | 1.0 (0.8–2.0) | 1.5 (0.8–2.5) | +1 | Declined | 7 | 2.0 (1.0–3.0) | 2.0 (0–3.0) | 0 | Unchanged |
Between errors stage 6 | 6 | 5.5 (2.0–7.5) | 6.0 (5.5–8.8) | +2 | Declined | 7 | 6.0 (6.0–7.0) | 9.0 (6.0–10.0) | +1 | Declined |
Between errors stage 8 | 5 | 17.0 (15.0–17.0) | 16.0 (10.0–18.0) | −2 | Improved | 5 | 12.0 (10.5–15.5) | 13.0 (12.5–18.0) | +2 | Declined |
Between errors all stages | 5 | 21.0 (20.0–24.0) | 26.0 (15.5–27.0) | −2 | Improved | 5 | 20.0 (19.0–23.5) | 21.0 (20.0–24.0) | +2 | Declined |
Total errors stage 4 | 6 | 1.0 (0.8–2.0) | 1.5 (0.8–2.5) | +1 | Declined | 7 | 2.0 (1.0–3.0) | 2.0 (0–3.0) | −1 | Improved |
Total errors stage 6 | 6 | 5.5 (2.0–7.5) | 6.0 (5.5–9.0) | +2 | Declined | 7 | 6.0 (6.0–7.0) | 10.0 (6.0–11.0) | +2 | Declined |
Total errors stage 8 | 5 | 17.0 (15.0–18.5) | 16.0 (10.5–19.0) | −2 | Improved | 5 | 12.0 (10.5–16.5) | 15.0 (12.5–18.0) | +2 | Declined |
Total errors all stages | 5 | 21.0 (20.0–25.5) | 26.0 (16.0–28.0) | 0 | Unchanged | 5 | 22.0 (13.5–22.8) | 22.5 (20.5–24.3) | +4 | Declined |
Strategy | 5 | 10.0 (8.5–12.0) | 10.0 (8.5–11.5) | 0 | Unchanged | 5 | 9.0 (6.8–10.5) | 9.0 (9.0–10.5) | +1 | Declined |
Attention (RTI) | ||||||||||
Simple reaction time | 6 | 381.1 (364.4–463.6) | 397.3 (342.8–453.9) | −2 | Improved | 7 | 389.7 (340.4–430.6) | 369.2 (355.3–448.7) | −2 | Improved |
Simple movement time | 6 | 302.9 (181.9–432.5) | 316.0 (244.7–433.5) | +13 | Declined | 7 | 318.9 (274.6–337.7) | 344.2 (246.3–449.8) | +29 | Declined |
Simple error score | 6 | 1.5 (0–2.8) | 1.0 (0–2.5) | 0 | Unchanged | 7 | 1.0 (0–3.0) | 1.0 (1.0–3.0) | 0 | Unchanged |
Five-choice reaction time | 6 | 483.7 (420.5–519.5) | 445.7 (429.1–477.4) | −20 | Improved | 7 | 435.1 (391.2–479.0) | 450.7 (393.4–488.3) | +12 | Declined |
Five-choice movement time | 6 | 316.6 (279.2–443.8) | 333.2 (261.8–417.4) | +13 | Declined | 7 | 310.5 (289.1–320.0) | 332.8 (323.3–416.4) | +29 | Declined |
Five-choice error score | 6 | 1.0 (0–2.3) | 0 (0–3.3) | 0 | Unchanged | 7 | 1.0 (0–2.0) | 1.0 (0–3.0) | +1 | Declined |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Power, R.; Nolan, J.M.; Prado-Cabrero, A.; Coen, R.; Roche, W.; Power, T.; Howard, A.N.; Mulcahy, R. Targeted Nutritional Intervention for Patients with Mild Cognitive Impairment: The Cognitive impAiRmEnt Study (CARES) Trial 1. J. Pers. Med. 2020, 10, 43. https://doi.org/10.3390/jpm10020043
Power R, Nolan JM, Prado-Cabrero A, Coen R, Roche W, Power T, Howard AN, Mulcahy R. Targeted Nutritional Intervention for Patients with Mild Cognitive Impairment: The Cognitive impAiRmEnt Study (CARES) Trial 1. Journal of Personalized Medicine. 2020; 10(2):43. https://doi.org/10.3390/jpm10020043
Chicago/Turabian StylePower, Rebecca, John M. Nolan, Alfonso Prado-Cabrero, Robert Coen, Warren Roche, Tommy Power, Alan N. Howard, and Ríona Mulcahy. 2020. "Targeted Nutritional Intervention for Patients with Mild Cognitive Impairment: The Cognitive impAiRmEnt Study (CARES) Trial 1" Journal of Personalized Medicine 10, no. 2: 43. https://doi.org/10.3390/jpm10020043
APA StylePower, R., Nolan, J. M., Prado-Cabrero, A., Coen, R., Roche, W., Power, T., Howard, A. N., & Mulcahy, R. (2020). Targeted Nutritional Intervention for Patients with Mild Cognitive Impairment: The Cognitive impAiRmEnt Study (CARES) Trial 1. Journal of Personalized Medicine, 10(2), 43. https://doi.org/10.3390/jpm10020043